
58 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 59 more queue: www.acmqueue.com

There’s no obfuscated Perl contest because it’s pointless.
—Jeff Polk

Whatever language you write in, your task as a programmer
is to do the best you can with the tools at hand. A good pro-
grammer can overcome a poor language or a clumsy operating
system, but even a great programming environment will not
rescue a bad programmer. —Kernighan and Pike

P
rogrammers have debated the merits of different
programming languages since the dawn of program-
ming. Every coder has a favorite general-purpose

programming language, and many have an unfavorite
language, too. If the coder is old enough, often that unfa-
vorite language is Fortran. The world has seen so much
bad Fortran code that the name of the language is now a
synonym for bad coding. Many of us have never seen real
Fortran code, but we know what coders mean when they
say, “You can write Fortran in any language.”

I spent a significant part of my career in proximity to
Fortran. Believe it or not, you can write good Fortran, as
well as bad Fortran. No one would want to program in
Fortran today, since many better alternatives are available.
But you can write a usable and maintainable program in
Fortran in spite of its many hindrances.

There are characteristics of good coding that transcend
all general-purpose programming languages. You can
implement good design and transparent style in almost
any code, if you apply yourself to it. Just because a pro-
gramming language allows you to write bad code doesn’t
mean that you have to do it. And a programming lan-
guage that has been engineered to promote good style and
design can still be used to write terrible code if the coder is
sufficiently creative. You can drown in a bathtub with an
inch of water in it, and you can easily write a completely
unreadable and unmaintainable program in a language
with no gotos or line numbers, with exception handling
and generic types and garbage collection. Whether you’re

How Not to Write

in Any Language
FORTRAN

DONN SEELEY, WIND RIVER SYSTEMS

Programming
LanguagesFO

CU
S

58 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 59 more queue: www.acmqueue.com

How Not to Write

in Any Language
FORTRAN

There are characteristics of
good coding that transcend all
programming languages.

60 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 61 more queue: www.acmqueue.com

writing Fortran or Java, C++ or Smalltalk, you can (and
should) choose to write good code instead of bad code.

LINGUISTIC DETERMINISM IS OVERRATED
Human beings do not live in the objective world alone, nor
alone in the world of social activity as ordinarily understood,
but are very much at the mercy of the particular language
which has become the medium of expression for their society.
—Edward Sapir

Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice. —Christopher Alexander

I’m going to state my biases up front, then attempt to
justify them by example.

There is a famous view of linguistic determinism
known as the Sapir-Whorf hypothesis, framed by Edward
Sapir and his student Benjamin Lee Whorf. Roughly, it
holds that the vocabulary and syntax of our language
guide and limit the way we see the world: form dictates
content. Edsger Dijkstra believed that programming in
Fortran or Basic not only condemned us to produce bad
code, it corrupted us for life.

The idea of programming-language determinism has
some truth to it, but is overrated. Because we are often
tackling the same problems in C, Perl, Scheme, Smalltalk,
and so on, we can usu-
ally find a way to analyze
them and code solutions
using common designs.
Sometimes the features of
a particular language make
a particular solution much
more elegant and compre-
hensible, and in that case
form influences content.
But these languages have
enough common ground
that they can share many

designs. C may have pre-increment and post-increment
operators, but you can still add 1 to a variable in any lan-
guage that supports variables.

C doesn’t contain built-in support for features such
as object-oriented programming. You can still use an
object-oriented design in C, however, if the design is fairly
simple and solves your problem. Many data structures
and libraries written in C have the form and function of
objects, even though the language does not directly sup-
port inheritance, packages, private members, and other
features. The vnode structure is a fine example. The idea
of the vnode abstraction layer for file system operations
became so popular among Unix-like operating systems
because it is such an obviously good design and because
C didn’t get in the way, although it didn’t provide any
help either. My experience with other ideas and other
languages has been similar—if the design is good, and
the language doesn’t get in the way, then programmers
will adopt it and adapt it. Many good programming ideas
can be used a million times over in different languages
and operating system environments.

WHY WE WRITE CODE
You are not expected to understand this. — Comment above
a nonlocal goto in swtch() in Version 6 Unix

We can make some generalizations about good code
across different general-purpose programming languages
because there are common reasons why we write code,

case 5:
#line 60 “/usr/src/core_contrib/linux/transform/parse.y”
{ puts(yyvsp[0].string); }
break;
case 14:
#line 72 “/usr/src/core_contrib/linux/transform/parse.y”
{ add_alias(&yyvsp[-3].ident, &yyvsp[-1].ident); }
break;
case 15:
#line 76 “/usr/src/core_contrib/linux/transform/parse.y”
{ push_file(yyvsp[0].string); }
break;

FI
G

 1

Programming
LanguagesFO

CU
S

How Not to Write

in Any Language
FORTRAN

60 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 61 more queue: www.acmqueue.com

including the following two big reasons.
First, we write code to design solutions to problems.

Therefore, good code has good design elements. In the
real world, many problems that are similar to yours have
already been solved, so there usually are plenty of good
design elements that you can use to compose into your
solution. The success of the solution follows from the
quality of the design; bad design often leads to wrong
“solutions” (aka bugs). The design may not scale well, or
it may be difficult to extend, or it may be so complex that
finding and repairing bugs becomes an extremely painful
and time-consuming task. Good design is easy to identify
because it seems intuitive and (often) familiar.

Second, we write code to communicate our designs to
people. Machines are interested only in ones and zeroes.
They couldn’t care less about a high-level programming
language. People, on the other hand, do quite poorly
when maintaining code written directly as ones and
zeroes. For people, form and style are very important to
communicating content. Good form is transparent: the
reader “sees” the content, rather than the form or style.
Good form is also elegant. It doesn’t clutter the page or
confuse your mind with excess information. Your reader
will most thoroughly assimilate your code when it is both
easy to understand and contains few distractions.

If you are skeptical that you write code for people
rather than for machines, I suggest that you take a look at
machine-generated code: (See Figure 1)

If you wrote and maintained code like this, you would
go nuts very quickly. What do all those numbers mean?
The machine knows, but we don’t. Form and style are
extremely important to good code, much more important
than many programmers believe they are.

HOW NOT TO WRITE BAD CODE
The competent programmer is fully aware of the strictly lim-
ited size of his own skull; therefore he approaches the program-
ming task in full humility, and among other things he avoids
clever tricks like the plague. —Edsger Dijkstra

My ideal is that I should be able to read through good
code and find that the design is so obvious and intuitive,
and the style so natural and transparent, that I can char-
acterize it accurately in my native language more or less
in realtime. I’ve spent almost 30 years maintaining code,
most of which was written by someone else, and by now
I know exactly what I want to see, and I try to put that
knowledge into my own code.

Elements of good design have been described well
elsewhere, so I’m going to emphasize form and style here,

particularly those features that apply across programming
languages. Many of the features that I look for in good
code can be found in every general-purpose programming
language, even Fortran. Here are some of them.

GROUPING
Every modern general-purpose programming language
provides great leeway over white space. It is typically
mandatory only between identifiers, and optional around
punctuation and operators. Blank lines, indentation, and
spacing within expressions are all permitted but are all
optional. In spite of this, white space is mandatory in
good code because it implements grouping.

When we write natural languages, we use white space
as a form of punctuation, to mark paragraph breaks and
headings. White space has the same function in coding.
Of course, the compiler couldn’t care less:
 This

 =

 is

 +

 very

 *

 annoying

 ;
You should use blank lines and indentation in code to

emphasize its logical structure, as a guide to the reader. If
the code is nicely paragraphed using blank lines, it’s far
easier to navigate. Insufficient white space makes it hard
to see structure and, almost as importantly, makes it hard
to follow code on the screen or on the page. If you briefly
look away from a solid chunk of code, say, to check on
a variable declaration, it can be tough to find your place
when you look back. If the programming language lets
you omit spaces around operators and punctuation, you
can get the same effect within a single line of code:
This=is+almost*(as-annoying);

You can use internal white space on a line to empha-
size logical sections, such as the left and right sides of an
assignment:
This = is + much * (more - readable);

Abuse of white space creates visual clutter, which, iron-
ically, causes the same problem as lack of white space: the

62 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 63 more queue: www.acmqueue.com

text becomes hard to navigate because the structure and
the landmarks disappear. Most of the bad code that I’ve
seen, however, seems to err on the side of too few blank
lines. Over the course of time, I have found my own code
having more blank lines for grouping. I try not to let it get
too choppy. It’s a bit like the difference between para-
graphs in a newspaper and paragraphs in a novel—form
needs to be transparent in a newspaper, whereas a novel is
often a deep relationship between form and content.

Let’s go a little deeper. Machines don’t care how long
a group is. So why should we? People have a limited
amount of short-term memory. It holds maybe seven
items. (This is supposedly why local phone numbers in
the U.S. have seven digits.) You can get around this limit
through chunking. If you can group several items together,
the group itself becomes an item. People can build hierar-
chies of groups in their minds, but at each level, they will
remember things better if there are a limited number of
items. If your code exceeds the limit, people get confused
and start fumbling.

This mental limitation hits at every level in code, all
the way down to statements. If a line of code is jammed
with operations, it becomes difficult to read and under-
stand. I have seen plenty of code that uses really wide
lines or shorter indentation stops to pack more informa-
tion on each line. I think that this is wrong. More code
per line is not a virtue; readability is a virtue.

Statements that creep from several elements to many
elements need to be broken into multiple statements.
Most modern languages permit line breaks in the middle
of statements, but the line breaks don’t make the state-
ments easier to read. Sometimes an interface dictates the
number of elements in a statement, and you’re pretty
much stuck. Even then, you could minimize the pain:
Can(you, tell, at + a, glance, which * of, these,
parameters, is(the, eighth), one ? yeah : sure);

When you have this many parameters, it’s probably
time to switch to an interface that passes a record rather
than individual parameters.

Familiarity and patterns reduce the memory load for
an item in a group. A visual pattern can make code strik-
ingly simple to read:

It = 0;
is = 0;
pretty = 0;
obvious = 0;
what = 0;
this = 0;
code = 0;
does = 0;
even = 0;
at_this = 0;
length = 0;

You can take advantage of this memory trick by keep-
ing the groups as natural as possible. You can put blank
lines around the following:
• Related field declarations in class or record declarations
• Related constants
• Related local and global declarations
• Related variable and field initializations in code
• Related arithmetic statements
• Related output statements
• Related defensive programming elements

It’s a simple principle: related things are easier to
remember as a group.

Indentation also provides grouping. It’s a visual
indication that’s different from blank lines, but related.
I’m sure that all of us have seen bugs where indentation
gave a very misleading sense of structure, even though
indentation has no syntactic significance in the program-
ming language. Good indentation practices are especially
important in languages such as Lisp, where the visual
cues for structure are more difficult to spot. Fortunately,
the standard coding styles for various languages put a lot
of emphasis on indentation, so there are fewer examples
of indentation abuse these days.

Related to indentation is tabbing. I’m referring to the
practice of aligning elements within a line with elements
vertically above and below it. Tabbing appears to be a
common practice, primarily serving to emphasize an
important operator such as assignment. Wide tabbing,
however, tends to make me visually associate elements in
a vertical dimension rather than a horizontal one, even if
the horizontal grouping is more natural:

Programming
LanguagesFO

CU
S

How Not to Write

in Any Language
FORTRAN

62 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 63 more queue: www.acmqueue.com

I = because;
scan = these + items;
down = are(associated);
the = vertically;
column = “so it feels”;
rather = natural;
than = to(read, them);
across = that % way;

This sort of code can be impressively hard to read
correctly. Tabbing works best when the average horizon-
tal separation is small. I usually avoid tabbing in code
because of this problem, although tabbing is sometimes
mandated by a coding standard.

Tabbing for comments is less of a problem. When one
column is code and the other column is comments, they
do have a natural grouping. It’s a visual clue that the
comments aren’t code. When tabbed comments aren’t
close together, they stand out and can serve as visual
landmarks. Even with comments, wide tabbing still tends
to make me read down the columns rather than across. It
also creates more visual clutter, concealing the structure
of the program.

Natural grouping is so important for readability that
it may be worth changing the structure of some code
to group-related elements. Sometimes, deeply embed-
ded control structures can split groups and even cause
issues for the limit on memory. If you can flatten out the
control structures by using alternative syntax or moving
code into subroutines, the code can become much more
readable.

This problem is evident in natural language. In
linguistics, there is a well-known phenomenon called self-
embedding that demonstrates the issue:
The WMDs that the UN inspectors that Iraq charged were
spies failed to find were a figment of Bush’s mind.

This is grammatical English and thoroughly unread-
able. The “WMDs” “were a figment,” but those phrases
are visually far apart and are quite hard to match up.
In code we can sometimes use indentation to make the
grouping work:
if (WMDs != FIGMENT)
 if (WMDs == 0)
 if (spies(&inspectors) == TRUE)
 dump(&Tenet);
 else
 withdraw_from(UN);
 else
 invade(&Iraq);
 else
 seek(PSYCHIATRIC_HELP);

But this still breaks up natural groupings by putting
the else clauses far from the if tests. Watch what happens
to readability if we flatten out this code:
if (WMDs == FIGMENT)
 seek(PSYCHIATRIC_HELP);
 else if (WMDs != 0)
 invade(&Iraq);
 else if (spies(&inspectors) == FALSE)
 withdraw_from(UN);
 else
 dump(&Tenet);

Of course, you can also avoid excessive embedding by
pushing the deeply nested code out to a subroutine.

COMMENTS
Comments are syntactically white space in modern
general-purpose programming languages. The compiler
ignores them, but the reader won’t!

Everyone has a favorite bad comment.
/* add one to I */
i = i + 2;

Because no mechanical check exists for the correctness
or appropriateness of comments, they are ripe for abuse.
A comment that restates the obvious is just visual clutter.
A comment that describes code incorrectly is a disaster for
the reader. Comments of the first kind often turn into the
second kind when someone makes a fix to the code and
not to the comment.

A good comment shouldn’t restate code; good code
should speak for itself. Rather, a good comment should
motivate or explain the code without introducing details
that are properly part of the code. A bad comment:
/* shift x by 2 and add to base */
 result = base + (x << SCALE_FACTOR);

A better comment:
/Memory is partitioned. Scale the index. */
result = base + (x << SCALE_FACTOR);

I’m a strong believer that single- and multi-line com-
ments should contain real sentences, rather than teleg-
raphese or pseudocode. This may seem like a lot of work,
but I also believe that once you are writing good code and
avoiding bad comments, you’ll find that fewer good com-
ments will more than make up for lots of bad comments.
People will appreciate real sentences in comments, since
they won’t have to struggle with yet another language.
Reading code is hard enough already; why make readers
do yet more work to understand comments?

Good code should use the “principle of least astonish-
ment.” Readers often miss a tricky spot if they haven’t
been warned to expect one. A nice block comment is a

64 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 65 more queue: www.acmqueue.com

fine way to flag code that needs closer inspection. Good
code should avoid relying on tricks as much as possible,
but when a trick is unavoidable, put up those orange
cones and flashing lights:
 /*
 * If the new process paused because it was
 * swapped out, set the stack level to the last call
 * to savu(u_ssav). This means that the return
 * which is executed immediately after the call to aretu
 * actually returns from the last routine which did
 * the savu.
 *
 * You are not expected to understand this.
 */
if (rp->p_flag&SSWAP) {
 rp->p_flag =& ~SSWAP;
 aretu(u.u_ssav);
 }
(No, that ‘=&’ operator is not a typo.)

Comments can be important visual cues to structure.
Lining up stars in C comments or semicolons in Lisp
comments or octothorpes (#) in shell comments draws
the eye. A visual theme like this also is a great way to
make comments look distinct from code.

NAMES
What’s in a name? Plenty. Good names are extremely
important to good code. You get to pick most of the
names that you use in code. Like comments, names
mean nothing to the machine. They have no significance
except as strings of characters that stand for elements of
the program, such as variables, functions, classes, or more
exotic things. Like comments, names have much more
meaning to people. To make code readable, you need to
choose names wisely.

What is important in a name? As we saw previously,
familiarity reduces the mental workload, so familiar
names in familiar contexts are easier to understand. Cod-
ers have used i as the name of an index variable since
time immemorial. It’s boring, but you can’t go wrong
using i for an index variable in your own code.

The more familiar the name, the more it communi-

cates to the reader:
Int
main(int argv, char **argc)
{
[...]
}

If you know C, the preceding code will make you
choke. Long ago, I actually was exposed to some C code
that was deliberately written this way. In C, the names
argc and argv are not arbitrary. If you see them in a
function, even a function other than main(), you know
exactly what they are supposed to mean. These names
are not mandated by the ANSI C standard, but they are
still standard practice. Ignore their standard usage at your
(great) peril.

We need to consider this issue even for names that are
not part of standard practice. If you use the name pShl for
a local variable that points at an SHL_NODE structure, you
should be consistent and never use that name for a differ-
ent purpose anywhere else in the program. Even better,
you should use the same name for the same purpose in
the same context throughout your code. If you’re consis-
tent, then when people see pShl anywhere in your code,
even without having seen the declaration for it, they will
know exactly what it does. Reducing the burden on the
reader’s memory by using familiar names will make code
immensely more readable.

I can’t stress this enough. Wise name choice is maybe
the biggest factor in writing readable code. Familiar and
obvious names make code more readable. Use familiar
and obvious names whenever possible and be consistent
about the names you use.

Also, like comments, there is a tension in naming
between descriptiveness and visual clutter. There is a
balance between these extremes that I have managed to
reach after reading and writing a lot of code. I try to use
short, punchy names for commonly used elements and
longer, more descriptive names for rarer elements:
char c;
off_t o2;
extern iso_t neodymium_148;
extern iso_t *actinide_series[14];

Programming
LanguagesFO

CU
S

How Not to Write

in Any Language
FORTRAN

64 December/January 2004-2005 QUEUE rants: feedback@acmqueue.com QUEUE December/January 2004-2005 65 more queue: www.acmqueue.com

Really long names can get in the way so much that
they obscure the structure of code. On the other hand,
squeezing really long names down into acronyms can
produce code that looks like line noise.

In spite of being lexical atoms, names are composable:
mol_t calcium_carbonate;
mol_t calcium_magnesium_carbonate;
mol_t potassium_magnesium_iron_aluminum_silicate_
hydroxide_fluoride;

This is another fine way to create familiarity. We want
to use similar names for similar elements. In natural lan-
guages, we build words out of elements called morphemes,
like carbon + ate. We do the same thing with names in
code: off_t is off + _t. Composition can sometimes create
awkward names:
void XrmStringToBindingQuarkList(const char *,
 XrmBindingList, XrmQuarkList);

As long as we’re talking about exceedingly long names,
I might as well mention my biases:
I_find_underscores_easier_to_read_than(lotsOfStudlyCaps);
Underscores are a bit like white space within identifiers.
But reasonable people can differ on this weighty subject.

CONSISTENCY
Style guides: I hate ’em. After all, I know which style is
the best: mine! Style guides often appear to be dreary lists
of arbitrary-seeming rules that limit my creativity. Read-
ing them puts me to sleep.

When I maintain code, however, I set aside my
personal style and try to match the style of the project.
I want my code to look exactly like everyone else’s code,
at least as far as the style guide goes. The reason for this,
again, is familiarity. (Is this sounding familiar?) If you
use the same coding conventions throughout a software
project, the maintainers will grow accustomed to the style
and it will magically become transparent to them. They
will see the code, not the style.

Lack of consistency is one of the hallmarks of bad
code. If 30 different people worked on a source file,
I really, really don’t want to see 30 different coding
styles or naming schemes when I read it. It becomes a
nightmare to attempt to find structure in code like that.
Coders have to be humble and accept that for code to be
readable, their favorite style is not as good as the estab-
lished style.

To summarize, regardless of the programming lan-
guage, good code should:
• Avoid clutter
• Use chunking
• Use familiarity

• Prevent astonishment
• Be consistent

I KNOW BAD CODE WHEN I SEE IT
It is practically impossible to teach good programming style
to students that have had prior exposure to Basic; as potential
programmers they are mentally mutilated beyond hope of
regeneration. —Edsger Dijkstra

I’m not Dijkstra or Kernighan, but I’ve been coding since
I was knee high to a wumpus. It’s possible that my mind
was destroyed by all the Basic that I wrote in high school.
I can still remember discovering GOSUB and finding ways
to use it in my (few) programs. I wrote my share of For-
tran, too. I can also remember trying to force some of my
Fortran practices on Algol when I encountered Algol for
the first time. I ended up doing coding projects in many
programming languages. After a while I developed an eye
for what was common among them.

Like pornography, I know bad code when I see it. I usu-
ally know good code when I see it, too. I think most other
coders do as well. And from reading lots of bad code (and
some good code), I have come to realize that the code’s
programming language is less important to the quality
of the code than the way in which the code is (ab)used. I
think I have found a number of reasonable explanations
for why some code looks good and some looks bad.

 I still see a lot of bad code. There are plenty of
excuses:
• The code was written under tight deadlines.
• It was someone’s first big coding project.
• It was only supposed to be a prototype.
• It began as a personal project.

The effort required to write good code rather than bad
code is really pretty small. The payoff for good code over
time as various people maintain the software is really
quite large; it just doesn’t make sense to write anything
other than good code right from the start. Q

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

Donn M. Seeley is a senior member of technical staff at
Wind River Systems. He was a co-founder of Berkeley Soft-
ware Design, Inc., the first commercial vendor of 4BSD. He
is the author of “A Tour of the Worm,’’ one of the original
papers on the Morris Internet Worm incident of 1988. He is
currently working on embedded systems technology at Wind
River Systems.
© 2004 ACM 1542-7730/04/1200 $5.00

