Learning to (Retrieve and) Rank —
Intuitive Overview — part lli

Michele Trevisiol

Real case candidate/job opening ranking framework at Jobandtalent (JT)

)

<

e to Pe o

Fig1.

In previous posts (part | and II) we have seen how to build a candidate matrix b,
filled with a set of online and offline features, given a job position gi € . Thisis
a collection of a set of information regarding the matching between that job and
its candidates, and the candidate and company’s historical behaviors. What we
need now is an algorithm that can interpret this data and, based on the
candidate relevance, optimize the order of the returned candidates.

One thing that we didn’t mention is the need for collecting the relevance score
for each <job, candidate> pair. The relevance very much depends on what we
want to optimise, at Jobandtalent we are taking care of the entire funnel, from

https://jobandtalent.engineering/@mtrevi?source=post_page-----1292f4259315----------------------
https://jobandtalent.engineering/learning-to-retrieve-and-rank-intuitive-overview-part-i-5340fcf4a863
https://jobandtalent.engineering/learning-to-retrieve-and-rank-intuitive-overview-part-ii-79c3791c558f

the search till the offer signed (directly within the app), thus we can define our
relevance scores based on how far a candidate went within the funnel, e.g., y1:
shortlisted, y2: contacted, ..., yk: interviewed, ..., yn: hiring succeed. Where each
scoreyj € N (e.g., {yI1=1, y2=2, .., yn=n}).

This class of problems is known as Ranking Problem, and the most popular set
of supervised Machine Learning methods that aim to solve them is called
“Learning to Rank” (LTR).

Learning to Rank

There are three main approaches when dealing with the Ranking Problem, called
Pointwise, Pairwise and Listwise, that we briefly summarise below.

Take one candidate Take a pair of candidates Take the entire list
Compute score between Given a pair of candidates ,
. . . optimise its order
candidate and query decide which one rank higher

hypothesis: more important the
relative position

algorithms: algorithms: algorithms:
anything that deals with RankNet SoftRank
regression problems LambdaRank* ListNet
. AdaRank
LambdaRank*

Fig2. Summary of the three main approaches of Learning to Rank.

For our use-case, we decided to use LambdaMART (TechReport, Microsoft 2010),
the last of three popular algorithms (RankNet ICML2005, LambdaRank
NIPS2006) main authored by Chris Burges.

Briefly, RankNet introduces the use of the Gradient Descent (GD) to learn the

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-82.pdf
http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf
https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf

learning function (update the weights or model parameters) for a Learning to
Rank problem. Since the GD requires the calculation of gradient, RankNet
requires a model for which the output is a differentiable function — meaning that
its derivative always exists at each point in its domain (they use neural networks
but it can be any other model with this property). RankNet is a pairwise
approach and uses the GD to update the model parameters in order to minimise
the cost (RankNet was presented with the Cross-Entropy cost function). This is
like defining the force and the direction to apply when updating the positions of
the two candidates (the one ranked higher up in the list while the other one
down but with the same force). As an optimisation final decision, they speed up
the whole process using the Mini-batch Stochastic Gradient Descent (computing
all the weight updates for a given query, before actually applying them).

S

"

The black arrows denote the RankNet gradients with the size of the change, while the red arrows identify just the

gradients—the directions of the changes (image taken from the original paper).

Note that when using RankNet, two cost functions are usually applied: one for
optimization (e.g., Cross-Entropy) and one for the final ranking quality (nDCG,
MRR, MAP, etc.). This is quite common in classification and regression problems
since the former cost function needs to respect more strict constraints in order
to be easily optimized (smooth, convex, etc.), but it is the latter one the most
interesting for the task in which the model is finally applied (this is defined by
Burges as the target cost).

LambdaRank is based on the idea that we can use the same direction (gradient
estimated from the candidates pair, defined as lambda) for the swapping, but
scaling it by the change of the final metric, such as nDCG, at each step (e.g.,
swapping the pair and immediately computing the nDCG delta). This is a very
tractable approach since it supports any model (with differentiable output) with
the ranking metric we want to optimize in our use case.

LambdaMART is inspired by LambdaRank but it is based on a family of models
called MART (Multiple Additive Regression Trees). These models exploit the
Gradient Boosted Trees that is a cascade of trees, in which the gradients are
computed after each new tree, to estimate the direction that minimises the loss
function (that will be scaled by the contribution of the next tree). In other words,
each tree contributes to a gradient step in the direction that minimizes the loss
function. The ensemble of these trees is the final model (i.e., Gradient Boosting
Trees). LambdaMART uses this ensemble but it replaces that gradient with the
lambda (gradient computed given the candidate pairs) presented in
LambdaRank.

This algorithm is often considered a Pairwise approach since the lambda
considers pairs of candidates, but it actually requires to know the entire ranked
list (i.e., scaling the gradient by a factor of the nDCG metric, that keeps into
account the whole list) - with a clear characteristic of a Listwise approach.

For more details, refer to [Burges et al. 2010] for the description of the three
approaches in details or Wellecks' blog posts on Learning to Rank or on

LambdaMART for a nice read with great visualizations.

1. Dataset Preparation

Now, going back to our use case the first step, as usual, it's to prepare the data
that we need for training LambdaMART.

https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
https://wellecks.wordpress.com/2015/01/15/learning-to-rank-overview/
https://wellecks.wordpress.com/tag/lambdamart/

()] build historical dataset

e retrieve historical jobs

¢ retrieve candidates and
build features for that time

(I
(i)

e retrieve relevance scores

()

Fig3.

The idea is to reproduce the normal behavior of our Information Retrieval
system for a historical time frame since we also need the relevance score (so we
need to know what happened for each <job, candidate> pair). For example,
let’s assume we want to build the dataset between last October Tst and
November 30th, this means that we have to collect all the jobs Q < ¢ created
and retrieve all the candidates D < D that were returned in those two months.
Then we have also to compute the relevance scoresY < v for those candidates
(i.e., how far they went through the funnel) considering a temporal offset of a
few weeks. Jobs created the last week of November need more time to have a
comparable set of relevance scores for all its candidates.

In other words, we need to store all the historical data somewhere, in order to
build this training set correctly. This is fairly simple when we deal with databases
or logs, but it’s a bit more problematic when we deal with a search engine such
as Elasticsearch. In another blog post, we'll discuss a trick that can be used to
maintain (almost effortless) a parallel index that keeps the historical changes of
our candidates’ profiles.

2. LTR Model Training

tragr;%eLlTR e NDCG (position is key!)
e parameter tuning with CV

— Arghap
library: RankLib LTR model

https://sc

forge.net/p/lemur/wiki/RankLib/

Fig4.

Once we have a historical dataset, we need to train the LambdaMART model
using Cross-Validation (CV) to perform parameters tuning. We are using
RankLib, a popular BSD licensed library written in Java that includes, among
others, implementation of LambdaMART. For alternatives libraries see this
Quora Q&A, but considering the maturity and stability level of RankLib, it seems
probably the best choice out there.

As evaluation metric, we are using nDCG a very popular ranking metric that is
computed normalizing the Discounted Cumulative Gain.

Very quickly, the Cumulative Gain (CG) is the sum of the relevance scores of the
documents (candidates) retrieved, if we are considering the top k positions, it is
calculated as the summation of the first k relevance scores (see Fig5/a). Since we
are dealing with a ranking list, a candidate with relevance y = 5 ranked fifth
should not count the same as if it was ranked first. That's why it was introduced
the Discounted CG (DCG), that basically penalizes the relevance score in the
function of the document’s position (see Fig5/b). However, these scores don’t
have a fixed upper bound limit since it depends on the number of results
returned by the query, and thus in order to compare DCG of different queries we
need to normalize them. To do so, we need to compute the best possible ranking
(remember that we know all the relevance scores because we are dealing with
historical data) and divide the DCG value by this Ideal DCG (IDCG), obtaining the

https://sourceforge.net/p/lemur/wiki/RankLib/
https://www.quora.com/What-are-the-alternatives-to-RankLib
http://en.wikipedia.org/wiki/Discounted_cumulative_gain

nDCQG, a value between O and 1.

Fig5. Normalized Discount Cumulative Gain (nDCG)

This is why the nDCG is a very good metric for ranking problems. We are using it
to evaluate the ranks computed by LambdaMART with different parameter
settings, splitting the data with a Cross-Validation fashion.

3. Data and Model Analysis

I | | 1
I I n
-._ ——- - -l
data and model ————
analysis e —— lil‘.h i ||
09 "_l—,|Lll|i||h||
) e correlation study FEF I IL, = | |
e features importance Er[[|] ’]_‘j | |
e trees investigation o i RN ul

Fig6.

Finally, we have a model trained to compute high-quality rankings given a set of
candidates’ features. We are almost done, but we should spend some time
analyzing the results we've got. A strong advantage of the MART model, on
which is based LambdaMART, is that it allows a deep exploration of the use of
the features. Since they are Trees, we can investigate how the features are used
and, in particular, which is their impact in predicting the right score (e.g., feature
importance).

Unfortunately, RankLib doesn’t provide any function to estimate the importance
of the features, and thus we implemented it from scratch using the Gini Index to
estimate the impurity of the split. If you're not familiar with Trees and these

terms, see [Louppe et al. 2014], [Loh 2011], or Jason Brownlee's blog post for

further explanation.

This and other types of analysis sheds many lights on the features relation with
the business and the customer’s needs in general, and they can give us
important insights on how to improve the features engineering step (how to
select the features, how to compute them, etc.). A typical workflow includes
multiple iterations of the whole process, especially when these analyses show
strong evidence that adding, removing or changing certain features may lead to
improvements in the final ranking.

Conclusions

With this set of three blog posts we have described, on a very high level, the
backbone of the Information Retrieval framework that we used at
Jobandtalent. As we have seen there are many possible configurations and
decisions that can significantly change the quality of the final ranking. However,
with this overview, you should have enough insights to understand how similar
problems can be solved.

Soon we are planning to post related articles (more advanced), re-discuss topics
with more technical details (e.g., Ensemble of NERs, Query Expansion), or talk
about new challenges (e.g., Elasticsearch training index, ETL Framework,
Features Builder at scale).

Speeding up Superset by choosing the right database

Data is one of the key ingredients in the success and

we’..

jobandtalent.engineering

https://papers.nips.cc/paper/4928-understanding-variable-importances-in-forests-of-randomized-trees.pdf
http://www.stat.wisc.edu/~loh/treeprogs/guide/wires11.pdf
http://machinelearningmastery.com/implement-decision-tree-algorithm-scratch-python/
https://jobandtalent.engineering/speeding-up-superset-by-choosing-the-right-database-d85283d39f75

We are hiring!

If you want to know more about how is work at Jobandtalent you can read the
first impressions of some of our teammates on this blog post or visit our twitter,

or check out my personal one.

Thanks to Sebastidn Ortega, Sergio Espeja and Ana Freire for feedback and reviews.

https://twitter.com/jobandtalentEng
https://twitter.com/jobandtalentEng
https://twitter.com/jobandtalentEng/status/1125743791196049409
https://twitter.com/intent/like?tweet_id=1125743791196049409
https://twitter.com/jobandtalentEng/status/1125743791196049409
https://support.twitter.com/articles/20175256
https://t.co/oZvRaKdlxF
https://twitter.com/jobandtalentEng
https://jobandtalent.engineering/our-first-impressions-working-at-jobandtalent-part-1-991a48eac2a4
https://twitter.com/jobandtalentEng
https://twitter.com/trevi
https://medium.com/u/cc852d69d71a?source=post_page-----1292f4259315----------------------
https://medium.com/u/914874cceb2a?source=post_page-----1292f4259315----------------------

