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1 Intro to Supervised Learning

Machine learning is a method of data analysis that automates analytical model building. Using algorithms
that iteratively learn from data, machine learning allows computers to find hidden insights without being
explicitly programmed where to look

ML pipeline, setup, feature matrix:
- data given with labels
- but learning setup up to us
- ML algorithm up to us
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Figure 1: Machine Learning Typical workflow

Data is typically organized for machine learning into a “feature matrix” where rows are datapoints in a
vectorial representation, and columns are “features” of data like “age”, “length”, “number of rooms”, “blood




pressure”, “color”, “presence of word China” — depending on the actual data. These might be very different
for datasets of patients, datasets of text articles, datasets of images etc.
It is important that features are consistent in meaning, i.e. the second column always indicates “age”.
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Figure 2: Machine Learning Typical workflow

Heuristic rules. People have used heuristic rules to make decisions since thousands of years ago. These
rules are not learned from data, but rather verified over time by trial and error. A machine learning model
essentially learns such rules from data, adapting to particular datasets (for example liver cancer patients
in Africa might be different than the ones in Europe). Here are some examples of such heuristic rules, not
learned from data:

If fever> 100, patient has flu

If email contains words “free” or “porn”, it is spam

If a web page contains ngram “Michael Jackson”, it is relevant to the user

If age< 22 and sex=F and highschool_diploma=Yes, then eligible for application
If income_per_capita< $1000, region prone to civil war

If romantic=Yes and comedy=Yes and Orlando_Bloom=Yes, then movie success among females aged
20-40

If Nasdaq_-Computer_Index=Gain and Apple announces new Ipad, then AAPL_Stock=Buy



For research and testing purposes, usually data is partitioned, randomly, into Training and testing sets.
A popular split is Training 90% and testing 10%, or Training 80% and testing 20%.
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Figure 3: Machine Learning Typical workflow

To avoid various biases that can appear due to randomness from such partitions, a more robust way to
test ML algorithms is to use Cross-Validation:
- split data randomly into K folds, for example K=10 folds each with 10% of data
train on K-1 folds and test on the one fold not included in training
- repeat train/test for each fold, K separate runs
- average measurements

1.1 Popular Machine Learning libraries
e LibLinear
e LibSVM
e SVM light, SVM rank
e WEKA
e Mahout
e Python scikit-learn
e ntlk
e spark

o Mallet



2 setup for ranking documents

First, documents dont come with many natural features like “age”, “bloodtest” etc, so a necessary step
is fature extraction. Usually the meaning of text is what matters most in building a good model, so it is
necessary to extract features such as words (unigrams), bigrams, trigrams, other expressions etc. The feature
values can be simply binary (presence/absence of term) or counts (TF values).
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. for objects like text documents or images:

- extract features (to obtain matrix form)
- annotate (to obtain labels)

Figure 4: Machine Learning Typical workflow

In Information Retrieval, when data is given as (query,document) datapoints, such as the TREC docu-
ments with queryIDs and QREL assessments, we want to create training and testing sets following queries.
In other words, we typically dont want to have the same query on both training and testing sets; instead
each query will send all its documents to either training set, or all its documents to the testing set.

nominal output. If the ML algorithm is nominal (like usual) with a prediction per datapoint, then we
sort the output for each test query and measure typical IR performance such as Average Precision or nDCG.

pairwise output. If the output of the learning algorithm is pairwise, then we get an output for pairs
(docy, docy) indicating which document is better. For each test query, will have to use an aggregation
algorithm (similar to metasearch fusion, of graph sorting) to obtain a ranking from all pairs. Once we have
a ranking, we can compute IR measures.

3 ML algorithms for supervised learning

e Decision Trees and Regression Trees. See separate notes.
e Linear and Logistic Regression. See separate notes.

e pairwise ML algorithms. RankBoost, LambdaMart, RankNet



4 ML with LibLinear package, evaluation, cross validation

4.1 running LibLinear

Liblinear

LibLinear is a public Machine Learning package for linear classifier for data with millions of instances and
features. You could download the package from http://www.csie.ntu.edu.tw/~cjlin/liblinear/

Once you have the unzipped folder of LibLinear, you need first compile the files. To do this, just run
”make” in your terminal.

bingyu@fij1ll ~]$
[bingyu@fijill liblinear]$ 1s
heart_scale linear.def Makefile train.c  tron.h

COPYRIGHT 1linear.cop  linear.h Makefile.win predict.c README tron.cpp
[bingyu@fijill liblinear]$ make
g+F -waLL -wconversion -U3 -TPIC -c -0 tron.o tron.cpp
g++ -Wall -Wconversion -03 -fPIC -c -o linear.o linear.cpp
make -C blas OPTFLAGS='-Wall -Wconversion -03 -fPIC' CC="cc';
make[1]: Entering directory °/home/bingyu/liblinear/blas’
cc -Wall -Wconversion -03 -fPIC -c dnrm2.c
cc -Wall -Wconversion -03 -fPIC -c daxpy.c
cc -Wall -Weconversion -03 -fPIC -c ddot.c
cc -Wall -Wconversion -03 -fPIC -c dscal.c
ar rcv blas.a dnrm2.o0 daxpy.o ddot.o dscal.o
a - dnrm2.0
a - daxpy.o
a - ddot.o
a - dscal.o
ranlib blas.a
make[1]: Leaving directory °/home/bingyu/liblinear/blas’'
g++ -Wall -Wconversion -03 -fPIC -o train train.c tron.o linear.o blas/blas.a
g++ -Wall -Wconversion -03 -fPIC -o predict predict.c tron.o linear.o blas/blas.a
[bingyu@fijill liblinear]$ ||

Figure 5: Compile the LibLinear Package

After compiling, you could do training and prediction process. Suppose your input feature matrix named
“train.txt” and “test.txt”. To do the simple training and prediction:

training

Run “/train train.txt linear.model” in your terminal.
“train.txt” is your input training feature matrix file. “linear.model” is the output model name, you could
name it.

prediction

Run “./predict test.txt linear.model linear.predict”.
“test.txt” is your input testing file. “linear.model”, this is the model you got from training process as an
input here. “linear.predict” is the output prediction results for testing data. You could name it.


http://www.csie.ntu.edu.tw/~cjlin/liblinear/

"bingyu@fijill liblinear]$ ./train train.txt linear.model

WARNING: reaching max number of iterations
Using -s 2 may be faster (also see FAQ)

Objective value = -1.056825

nSV = 1171

[bingyu@fijill liblinear]$ ./predict test.txt linear.model linear.predict
Accuracy = 99.8674% (15064/15084)

[bingyu@fijill liblinear]$ ||

Figure 6: Training and Prediction by LibLinear Example

4.2 ML evaluation

To evaluate your Machine Learning algorithms, first you need select a training set and testing set. There is
no overlapping between these two groups, which means you could not include any testing samples in your
training, or any training samples in your testing. Random selecting from data into training and testing could
be a simple way.

After getting training and testing, the Machine Learning algorithms will be trained on training set and
will be evaluated on the testing set. Remember that the model training process is not allowed to access any
testing set.

Once you have the trained model, you could do prediction on testing set using the trained model. To
evaluate the predictions on the testing set, based on different Machine Learning tasks, there are different
performance measures. For classification, we could choose accuracy (total number of correct predictions on
testing divided by the total number of testing samples.) Furthermore, to dig more information from accuracy,
you could refer confusion matrix(https://en.wikipedia.org/wiki/Confusion_matrix|) information. For
example, in spam classification, people may care more about the false positives. For regression problem,
you may consider the Root Mean Squared Error as the measure(https://en.wikipedia.org/wiki/Mean_
squared_error).

4.3 Cross Validation

A more sophisticated way than evaluate ML only using one training and testing set is trying to randomly
split the entire dataset into a few folders evenly, let’s say 5 folders. Then you could do following evaluations:

e Train on folder 1,2,3,4; Test on 5
e Train on folder 2,3,4,5; Test on 1
e Train on folder 3,4,5,1; Test on 2

Train on folder 4,5,1,2; Test on 3

Train on folder 5,1,2,3; Test on 4


https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error
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Figure 7: Machine Learning Typical workflow

Finally you could take an average of your five times performance measures on testing set as your final
evaluation. We call this method as Cross Validation.
The number of folders is chosen based on the size of your dataset. We usually choose 5 or 10.

5 ML for text, IR data

5.1 Document Features

We could regard documents or text as sequences of words so far, but documents have much richer structure
and information. Let us see some other extra features we can use as clues of relevance.

Structural Features

Some of these features are structural: the document’s organization gives clues about the topic:
e The title, headings, and menu give fine-grained topic and subtopic information.

e Links and their anchor text provide clues about the relevance of other pages related to this one.
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Figure 8: Structural Features Example

Topical Features

Other features are topical: the document’s text may contain special words and phrases that pertain to a
certain topic.

e Named entities(people, companies, places, events ...) are strong topical clues.

e Topic modeling discovers the vocabulary that tends to be used when speaking of a certain topic.
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Figure 9: Topical Features Example

Features from ML
Tools from Machine Learning can be used to generate additional features for a page.
e Document classifiers are used to identify news articles, blogs, reviews, and other types of specialized
pages.

e Document clustering can find very similar pages, which is useful for providing diverse result lists and
“more like this” functions (e.g. clustering news articles by story).
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Figure 10: Features from ML Example

5.2 Feature Matrix

When we have collected all the document features we are interested in, we can use standard Machine Learning
classifiers to learn how to predict document relevance from document features. This makes scoring functions
such as BM25 simply one component of a more complicated relevance predictor. And all documents and
queries can be converted into numeric vectors that provide this rich information to learning algorithms. This
allows us to leverage the best ML techniques for document ranking. A example is shown as below:

10
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Figure 11: Features Matrix Example
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6 ES feature value collection, sparse Feature Matrix

See Cheng’s and Bingyu’s demos.

This is a Demo on IMDB dataset, where documents are movie reviews. Labels are annotations “good”
or “bad” for each review obtained from ratings. The purpose of a model is to predict the “good” or “bad”
from the review text. It is essentially the same problem as predicting “spam” or “not spam” from the email
text.

train
(pos) T highly recommend this movie.
(neg) I do not recommend this movie to anybody.
(neg) It is a waste of time.
(pos) Good fun stuff !
(neg) It’s just not worth your time.

test
(neg) I do not recommend this movie unless you are prepared for the biggest waste of money and time
of your life.
(neg) This movie was the slowest and most boring so called horror that I have ever seen.
(neg) The film is not worth watching.
(pos) A wonderful film
(pos) This is a really nice and sweet movie that the entire family can enjoy.

Two steps: 1. gather ngrams, 2. computing matching scores

6.1 enumerate unigrams, bigrams

Gather ngrams only once from the training set. Use these ngrams to compute matching scores for both
training set and test set. Make sure the same ngrams are used and the orders are the same. Enumerating
ngrams: Scan all documents. For each document, pull out the term vector. Get sorted list. Scan the list.

Procedure:

connected to index

there are 10 documents in the index.

number of training documents = 5

there are 2 classes in the training set.

label distribution in training set:

neg:3, pos:2,

LabelTranslator{int ToExt={0=neg, 1=pos}, extTolnt={neg=0, pos=1}}

fields to be considered = [body]

gathering 1-grams from field body with slop 0 and minDf 0

gathered 22 1-grams

gathering 2-grams from field body with slop 0 and minDf 0

gathered 21 2-grams

there are 43 ngrams in total

creating training set

allocating 43 columns for training set

training set created

data set saved to /hugel/people/chengli/projects/pyramid/archives/exp35/imdb_toy/1/train

creating test set

allocating 43 columns for test set

test set created

data set saved to|/hugel/people/chengli/projects/pyramid/archives/exp35/imdb_toy/1/test

12


/huge1/people/chengli/projects/pyramid/archives/exp35/imdb_toy/1/train
/huge1/people/chengli/projects/pyramid/archives/exp35/imdb_toy/1/test

6.2 Sparse Feature Matrix

The format that we want: an on-disk sparse matrix In each line, the first number is the label. The rests are
feature index: feature value pairs. The feature index starts at 0. Since the feature matrix is very sparse,
only non-zero feature values are stored. We expect features not listed to have value 0.

Fundamental constraint: cannot hold the entire dense matrix in memory

sparse matrix options:

1. use a sparse matrix library

python: numpy sparse matrix

http://docs.scipy.org/doc/scipy/reference/sparse.html

java: Mahout sparse matrix or Guava table

http://mahout.apache.org/

http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/collect/Table.
html

WARNING: Be careful with complexity of the operations

2. write your own data structure array of hash maps

6.3 skip-grams, slop, and “span near query”

Computing matching scores:

For unigrams, one can use binary feature values (present or not), tf, tfidf, or the scores provided by
Elasticsearch. For ngrams or skip-grams, one can use binary feature values (present or not), phrase frequency,
or the scores provided by Elasticsearch. Please refer to the “Span Near” query E] documentation for details.
A 0 slot corresponds to ngrams, while a non-zero slop corresponds to skip-grams.

6.4 Running Cheng’s Learning Algorithms

System requirement: Java 8.

Each data set is a folder, which includes two mandatory files “feature_matrix.txt”, “config.txt” and some
optional files.

The “config.txt” file looks like:

numClasses=2

numDataPoints=5

missing Value=false

numFeatures=43

Before running the code, please first modify the paths in run.sh and exp33.config. Then in command line
type:

./run.sh exp33.config

Thttps://wuw.elastic.co/guide/en/elasticsearch/reference/1.6/query-dsl-span-near-query.html
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