
1

Chapter 1

Pattern Recognition in Time Series

 Jessica Lin Sheri Williamson Kirk Borne David DeBarr

George Mason University Microsoft Corporation

 jessica@cs.gmu.edu swillif@gmu.edu kborne@gmu.edu dave.debarr@microsoft.com

Abstract

Massive amount of time series data are generated daily, in areas as diverse as astronomy, industry,
sciences, and aerospace, to name just a few. One obvious problem of handling time series databases
concerns with its typically massive size—gigabytes or even terabytes are common, with more and more
databases reaching the petabyte scale. Most classic data mining algorithms do not perform or scale well
on time series data. The intrinsic structural characteristics of time series data such as the high
dimensionality and feature correlation, combined with the measurement-induced noises that beset
real-world time series data, pose challenges that render classic data mining algorithms ineffective and
inefficient for time series. As a result, time series data mining has attracted enormous amount of attention
in the past two decades.

In this chapter, we discuss the state-of-the-art techniques for time series pattern recognition, the
process of mapping an input representation for an entity or relationship to an output category. Approaches
to pattern recognition tasks vary by representation for the input data, similarity/distance measurement
function, and pattern recognition technique. We will discuss the various pattern recognition techniques,
representations, and similarity measures commonly used for time series. While the majority of work
concentrated on univariate time series, we will also discuss the applications of some of the techniques on
multivariate time series.

1. INTRODUCTION

Perhaps the most commonly encountered data type are time series, touching almost every aspect of
human life, including astronomy. One obvious problem of handling time series databases concerns with
its typically massive size—gigabytes or even terabytes are common, with more and more databases
reaching the petabyte scale. For example, in telecommunication, large companies like AT&T produce
several hundred millions long-distance records per day [Cort00]. In astronomy, time domain surveys are
relatively new – these are surveys that cover a significant fraction of the sky with many repeat
observations, thereby producing time series for millions or billions of objects. Several such time domain
sky surveys are now completed, such as the MACHO [Alco01], OGLE [Szym05], SDSS Stripe 82
[Bram08], SuperMACHO [Garg08], and Berkeley’s Transients Classification Pipeline (TCP) [Star08]
projects. The Pan-STARRS project is an active sky survey – it began in 2010, a 3-year survey covering
three-fourths of the sky with ~60 observations of each field [Kais04]. The Large Synoptic Survey
Telescope (LSST) project proposes to survey 50% of the visible sky repeatedly approximately 1000 times
over a 10-year period, creating a 100-petabyte image archive and a 20-petabyte science database
(http://www.lsst.org/). The LSST science database will include time series of over 100 scientific
parameters for each of approximately 50 billion astronomical sources – this will be the largest data
collection (and certainly the largest time series database) ever assembled in astronomy, and it rivals any

2

other discipline’s massive data collections for sheer size and complexity.
More common in astronomy are time series of flux measurements. As a consequence of many

decades of observations (and in some cases, hundreds of years), a large variety of flux variations have
been detected in astronomical objects, including periodic variations (e.g., pulsating stars, rotators, pulsars,
eclipsing binaries, planetary transits), quasi-periodic variations (e.g., star spots, neutron star oscillations,
active galactic nuclei), outburst events (e.g., accretion binaries, cataclysmic variable stars, symbiotic
stars), transient events (e.g., gamma-ray bursts (GRB), flare stars, novae, supernovae (SNe)), stochastic
variations (e.g., quasars, cosmic rays, luminous blue variables (LBVs)), and random events with precisely
predictable patterns (e.g., microlensing events). Several such astrophysical phenomena are
wavelength-specific cases, or were discovered as a result of wavelength-specific flux variations, such as
soft gamma ray repeaters, X-ray binaries, radio pulsars, and gravitational waves. Despite the wealth of
discoveries in this space of time variability, there is still a vast unexplored region, especially at low flux
levels and short time scales (see also Bloom & Richards chapter in this book). Figure 1 illustrates the gap
in astronomical knowledge in this time domain space. The LSST project aims to explore phenomena in
the time gap.

Figure 1. Discovery space of astronomical variability. Numerous classes of flux variability have
been identified through analysis of astronomical time series observations. But there is still a vast
unexplored region of this parameter space that the LSST survey aims to explore. The axes on this
plot are time scale of variability (abscissa) and the negative logarithm of the flux (ordinate),
measured in magnitudes, where magnitudes decrease as an object gets brighter. This figure is
reproduced from the LSST Science Book [Lsst09] and adapted from [Rau09].

In addition to flux-based time series, astronomical data also include motion-based time series. These
include the trajectories of planets, comets, and asteroids in the Solar System, the motions of stars around
the massive black hole at the center of the Milky Way galaxy, and the motion of gas filaments in the
interstellar medium (e.g., expanding supernova blast wave shells). In most cases, the motions measured

3

in the time series correspond to the actual changing positions of the objects being studied. In other cases,
the detected motions indirectly reflect other changes in the astronomical phenomenon, such as light
echoes reflecting across vast gas and dust clouds, or propagating waves.

For concreteness, we define time series below:

Definition 1. Time Series: A time series T = t1,…,tm is an ordered set of m real-valued variables.

Figure 2 shows examples of time series data on several types of variable stars (reproduced from
Rebbapragada et al. [Rebb09].

Figure 2. Examples of time series data for 3 different types of variable stars – the left panel in each case is the
measured data, and the right panel is the processed data (including smoothing, interpolation, and spike removal).
These data and processing results are reproduced from Rebbapragada et al. [Rebb09].

Most classic data mining algorithms do not perform or scale well on time series data. The intrinsic

structural characteristics of time series data such as the high dimensionality and feature correlation,
combined with the measurement-induced noises that beset real-world time series data, pose challenges

4

that render classic data mining algorithms ineffective and inefficient for time series. As a result, time
series data mining has attracted enormous amount of attention in the past two decades. Some of the areas
that have seen the majority of research in time series data mining include indexing (query by content)
[Agra93, Agra95, Came10, Chan99, Chen05, Ding08, Falo94, Keog01, Keog02b, Lin07, Yi00],
clustering [Kalp01, Keog98, Keog04, Liao05, Lin04], classification [Geur01, Rado10, Wei06], anomaly
detection [Dasg99, Keog02c, Keog05, Pres09, Yank08], and motif discovery [Cast10, Chiu03, Lin02,
Minn06, Minn07, Muee09, Muee10, Tang08]. All tasks require that the notion of similarity be defined.
As a result, similarity search has been an active research area in the last two decades.

In all of the above astronomical cases, pattern recognition and mining of the time series data falls into
the usual three categories: supervised learning (classification), unsupervised learning (pattern detection,
clustering, class discovery, characterization, change detection, and Fourier, wavelet, or principal
component decomposition), and semi-supervised learning (semi-supervised classification,
outlier/surprise/novelty/anomaly detection). For each of these applications, scientific knowledge
discovery is the goal. Approaches to pattern recognition tasks vary by representation for the input data,
similarity/distance measurement function, and pattern recognition technique. In this chapter, we discuss
the various supervised, semi-supervised, and unsupervised learning techniques, representations, and
similarity measures commonly used for time series. While the majority of work concentrated on
univariate time series, we will also discuss the applications of some of the techniques on multivariate time
series.

2. Pattern Recognition Approaches

Previous work on time series pattern recognition focuses on one of the three areas: pattern recognition
algorithms, efficient time series representations and dimensionality reduction techniques, and similarity
measures for time series data.

2.1 Pattern Recognition Algorithms
Pattern recognition is the process of automatically mapping an input representation for an entity or

relationship to an output category. The recognition task is generally categorized based on how the
learning procedure determines the output category. The learning procedure can be supervised (when a
given pattern is assigned to one of the pre-defined classes, using labeled data to build a model or guide the
pattern classification), unsupervised (when a given pattern is assigned to an unknown class), or
semi-supervised (when a given pattern is assigned to one of the pre-defined classes, using both labeled
and unlabeled data). For supervised learning, or classification, a functional model is often used to map
observed inputs to output categories. A great deal of model construction techniques have been developed
for this purpose [Duda00], including decision trees, rule induction, Bayesian networks, memory-based
reasoning, Support Vector Machines (SVMs), and neural networks.

Memory-based reasoning methods, such as nearest neighbor, have been successfully used for
classification of time series data. The Nearest Neighbor (NN) classification algorithm works by
computing the distance between the object to be classified and each member of the training set [Han00].
The classification of the object to be classified is predicted to be the same as the classification of the
nearest training set member. A common variation of this algorithm predicts the classification of the test
object to be the most common classification found among the “k” nearest neighbors in the training set
(k-NN). The 1-NN classifier, with leaving-one-out cross validation, has become the standard method used
to compare and evaluate the utilities of time series representations and similarity measures [Ding08].

Another common choice of classifier is decision tree. A decision tree [Han00] is classic machine
learning tool that uses a flow-chart-like tree structure, in which an internal node denotes a test on an
attribute, a branch denotes the outcome on a test, and a leaf node denotes the class label or class
distribution. By placing the attribute that best distinguishes the data (i.e. the one resulting in the highest
information gain) at the root, a decision tree induction process recursively partitions the data samples into

5

subsets of samples based on the attribute splitting criterion. The resulting tree can be used to classify
future incoming samples, and it can also be easily converted to a set of rules that generalize the behaviors
of the data. While decision trees are defined for real data, attempting to classify time series using the raw
data would clearly be a mistake, since the high dimensionality and noise levels would result in a deep,
bushy tree with poor accuracy [Lin07]. In an attempt to overcome this problem, Geurts [Geur01]
suggested representing the time series as a Regression Tree (RT), and training the decision tree directly
on this representation. The technique shows great promise.

Support Vector Machines (SVMs) [Duda00, Rodr05] are commonly used for constructing
classification models for high-dimensional representations. The observations from the training set which
best define the decision boundary between classes are chosen as support vectors (they support/define the
decision boundary). A non-zero weight is assigned to each support vector. The classification of a test
object is predicted by computing a weighted sum of similarity function output between the new object
and the support vectors for each class. The predicted class is the class with the largest sum, relative to a
bias (offset) for the decision boundary. Kernel functions are used to measure the similarity between
objects. Common kernel functions for this purpose include the cosine similarity function and the
Gaussian RBF. SVMs have been used for time series classification by several researchers.
Chaovalitwongse and Pardalos used SVMs with dynamic time warping kernel for brain activity
classification [Chao08]. Kampouraki et al. [Kamp09] extracted features from ECG time series using
statistical methods and signal analysis techniques, and classified the data using SVMs. Eads et al.
proposed to use genetic algorithms to extract time series features, which are then classified using SVMs
[Eads02].

Artificial Neural Networks (ANN) [Lipp87], also known as neural networks or neural nets, are
analogous to their namesake, biological neural networks, in that both receive multiple inputs and respond
with a single output. ANNs are comprised of connected nodes, called neurons, which are partitioned into
layers. Networks may contain an input layer, an output layer, and a hidden inner layer, and additional
hidden layers may be added to increase the complexity of the network. Weights are assigned to each of
the links between neurons, and they are updated as part of the learning process. A simple example of an
ANN is a perceptron [Rose58], which is a two-class linear classifier that is composed of a single-layered
neural network. During training, each example is fed through the network, and the weights are updated
according to the difference between the actual and expected output. During testing, the weighted sum of
the network (the dot product of the instance and the vector of weights) is compared to a bias parameter to
classify each instance as either a positive or negative instance. ANNs generalize well to previously
unseen instances because they map every possible input to some output. Additionally, they are robust
because even if a node is faulty or is removed, since the work is distributed across the network, it is still
possible to achieve good results. ANNs have been successfully applied to domains such as character
recognition [Desa10], face detection [Aitk03], intrusion detection [Amin06], speech recognition
[Dede10], autonomous driving [Pome89], and astronomy [Coll04, Wang09]. In recent years, research has
shown that constructing an ensemble of neural networks, where the majority vote determines the
classification, can improve the accuracy of ANNs [Kim07, Kras07, Mink08, Zhou02].

Semi-Supervised Learning
All of the techniques described above are supervised learning techniques, for which training

examples with known classification labels are used to construct a model to label test examples with
unknown classification labels. Semi-supervised learning on the other hand involves using both the
training examples with known classification labels and the test examples with unknown classification
labels to construct a model to label the examples with unknown classification labels. While it’s possible
to construct a model for labeling future test examples, it’s also possible to construct a model that focuses
on the current test examples. Vapnik referred to this as transduction [Vapn98], suggesting that it’s better
to focus on the simpler problem of classifying the current test examples rather than trying to construct a
model to future test examples. For time series, Wei and Keogh [Wei06] proposed a semi-supervised
classification technique based on 1-NN. The algorithm starts by training the classifier using all labeled

6

data. It then classifies unlabeled data, and adds the most confidently classified unlabeled data into the
training set [Wei06]. This process is repeated until some stopping criterion is reached. This algorithm is
an example of self-training algorithms [Zhu05]. The authors have shown that their algorithm requires
only a handful of labeled data to construct an accurate classifier.

In addition to semi-supervised classification, semi-supervised learning is also applicable to anomaly
detection and novelty discovery, since we often do not know what’s anomalous in advance. In fact,
anomaly detection is often regarded as a binary classification problem. A simple idea for detecting
anomalous behavior in time series is to examine previously observed normal data and build a model of it.
Data obtained in the future can be compared to this model and any lack of conformity can signal an
anomaly [Das99]. In order to achieve this, Keogh et al combined a statistically sound scheme with an
efficient combinatorial approach [Keog02c]. The statistically scheme is based on Markov chains and
normalization. Markov chains are used to model the “normal” behavior, which is inferred from the
previously observed data. The time- and space-efficiency of the algorithm comes from the use of a suffix
tree as the main data structure. Each node of the suffix tree represents a pattern. The tree is annotated with
a score obtained comparing the support of a pattern observed in the new data with the support recorded in
the Markov model. Model-free anomaly detection approaches have also been proposed. In a previous
work, we defined time series discords to be subsequences of a longer time series that are maximally
different from all the rest of the subsequences [Keog06b]. They thus capture the sense of the most unusual
subsequence within a time series. Time series discords are superlative anomaly detectors, able to detect
subtle anomalies in diverse domains. In fact, in a recent extensive empirical study, Vipin Kumar
concluded “..on 19 different publicly available data sets, comparing 9 different techniques time series
discord is the best overall technique among all techniques” [Chan09].

Unsupervised Learning
Unlike supervised or semi-supervised learning, unsupervised learning (e.g. clustering) involves only

unlabeled data. One of the most widely used clustering approaches is hierarchical clustering, due to the
great visualization power it offers [Keog98]. Hierarchical clustering produces a nested hierarchy of
similar groups of objects, according to a pairwise distance matrix of the objects. One of the advantages of
this method is its generality, since the user does not need to provide any parameters such as the number of
clusters. However, its application is limited to only small datasets, due to its quadratic (or higher order)
computational complexity.

A faster method to perform clustering is k-Means [McQu67, Brad98]. Table 1 summarizes the
algorithm.

Table 1. An outline of the k-Means algorithm

Algorithm k-Means

1 Decide on a value for k.

2 Initialize the k cluster centers (randomly, if necessary).

3 Decide the class memberships of the N objects by
assigning them to the nearest cluster center.

4 Re-estimate the k cluster centers, by assuming the
memberships found above are correct.

5 If none of the N objects changed membership in the last
iteration, exit. Otherwise goto 3.

The basic intuition behind k-Means (and in general, iterative refinement algorithms) is the

continuous reassignment of objects into different clusters, so that the within-cluster distance is minimized.
Therefore, if x are the objects and c are the cluster centers, k-Means attempts to minimize the following
objective function:

7

∑∑
= =

−=
k

m

N

i
mi cxF

1 1 (1)

The k-Means algorithm for N objects has a complexity of O(kNrD) [McQu67], where k is the number of
clusters specified by the user, r is the number of iterations until convergence, and D is the dimensionality
of the points. The shortcomings of the algorithm are its tendency to favor spherical clusters, and its
requirement for prior knowledge on the number of clusters, k. The latter limitation can be mitigated by
attempting all values of k within a large range. Various statistical tests can then be used to determine
which value of k is most parsimonious. Since k-Means is essentiality a hill-climbing algorithm, it is
guaranteed to converge on a local but not necessarily global optimum. In other words, the choices of the
initial centers are critical to the quality of results. Nevertheless, in spite of these undesirable properties,
for clustering large datasets of time-series, k-Means is preferable due to its faster running time.

Another well-known partitional clustering algorithm is the EM (Expectation-Maximization)
algorithm. The EM algorithm with Gaussian Mixtures is very similar to k-Means. As with k-Means, the
algorithm begins with an initial guess as to the location of the clusters. The steps are: (1) the data are
apportioned into separate localized data elements weighted according to the cluster models (the "E" step);
and then (2) the parameters of the cluster models (location, width, etc.) are fit to these data elements by
maximizing some goodness-of-fit quantity (the "M" step); (3) steps (1) and (2) are repeated until the
model converges. In some cases convergence is slow or otherwise problematic.

The major distinction between EM and k-Means is that k-Means attempts to model the data as a
collection of k spherical regions, with every data object belonging to exactly one cluster. In contrast, EM
models the data as a collection of k Gaussians, with every data object having some degree of membership
in each cluster (in fact, although Gaussian models are most common, other distributions are possible). The
major advantage of EM over k-Means is its ability to model a much richer set of cluster shapes. This
generality has made EM (and its many variants and extensions) the clustering algorithm of choice in data
mining [Demp77] and bioinformatics [Lawr90].

Specialized clustering algorithms have been proposed for time series. For example, Lin et al [Lin04]
proposed an incremental and iterative version of the k-Means algorithm called i-kMeans. The algorithm
works by leveraging off the multi-resolution property of wavelets, which mitigates the dilemma of initial
centers selection for k-Means [Lin04]. They further extended the approach to a general framework, which
works for any iterative refining clustering algorithms (such as EM), with any multi-resolution
decomposition methods. Rodriguez et al [Rodr06] proposed a hierarchical clustering algorithm for time
series data streams. The algorithm incrementally constructs a tree-like hierarchy of clusters, using a
correlation-based dissimilarity measure between time series [Rodr06].

2.2 Time Series Representations and Symbolic Aggregate approXimation (SAX)

With the rapid growth of storage technology, datasets from practical applications typically do not fit
in main memory, and disk I/O tends to be the bottleneck for any data mining task. The sheer volume of
time series databases makes sequential scanning of the databases infeasible for any data mining and
retrieval tasks. A simple generic framework for time series data mining has thus emerged [Lin07]. It
works by (1) approximating the time series data with some representation that typically fits in the main
memory, (2) approximately solving the problem at hand using the representation, and (3) validating the
results by making (hopefully) a small number of disk accesses.

It is obvious that the quality of the framework heavily relies on the quality of the representation. If
the representation is faithful to the original data, then the approximate solutions obtained from Step 2 will
be close to the actual solutions. Towards this end, many high-level time series representations have been
proposed, including Discrete Fourier Transform (DFT) [Agra93], Discrete Wavelet Transform (DWT)
[Chan99], Piecewise Linear Aggregate (PLA) and Piecewise Constant models (PAA) [Keog01], and
Adaptive Piecewise Constant Approximation (APCA) [Keog01]. Figure 3 illustrates a hierarchy of the
various representations in the literature.

8

Figure 3. A hierarchy of all the various time series representations in the literature.

These representations allow fast access to the “approximation” version of the data via some index

structure, so as to relieve the burden associated with disk I/Os. In addition, since time series data are
typically very high dimensional and noisy, it is essential to reduce its dimensionality via one of these
representations. In fact, even though most of the representations use only a few coefficients to represent
the data, they often result in better accuracy than the raw data due to the implicit noise removal.

One important feature of most of the representations is that they are real valued. This limits the
algorithms, data structures and definitions available for them. Such limitations have led researchers to
consider using a symbolic representation for time series. In addition, there is an enormous wealth of
existing algorithms and data structures that allow the efficient manipulations of strings, e.g. hashing,
Markov models, suffix trees, decision trees etc. Such algorithms have received decades of attention in the
text retrieval community, and more recent attention from the bioinformatics community.

While many symbolic representations of time series have been introduced over the past decades, they
suffer from two fatal flaws: (1) The dimensionality of the symbolic representation is the same as the
original data, and virtually all data mining and indexing algorithms degrade exponentially with
dimensionality. (2) Although distance measures can be defined on the symbolic approaches, these
distance measures have little correlation with distance measures defined on the original signals. In our
previous work, we introduced a symbolic representation for time series called Symbolic Aggregate
approXimation (SAX) [Lin07] that remedies the problems mentioned above. More specifically, SAX is
both time- and space-efficient, and we can define a distance measure that guarantees the distance between
two SAX strings to be no larger than the true distance between the original time series. This
lower-bounding property is at the core of almost all algorithms in time series data mining [Falo94]. It
plays an important role in indexing and similarity search, since it’s the essential key to guarantee no false
dismissal of results. In general, without a lower-bounding distance measure, one cannot meaningfully
compute the approximate solution in the representation space, since the approximate solution obtained
may be arbitrarily dissimilar to the true solution obtained from the original data.

SAX performs the discretization by dividing a time series into w equal-sized segments. For each
segment, the mean value for the points within that segment is computed. Aggregating these w coefficients
forms the Piecewise Aggregate Approximation (PAA) representation of T. Each coefficient is then
mapped to a symbol according to a set of breakpoints that divide the distribution space into α
equiprobable regions, where α is the alphabet size specified by the user. If the symbols were not
equiprobable, some of the symbols would occur more frequently than others. As a consequence, we
would inject a probabilistic bias in the process. It has been noted that some data structures such as suffix
trees produce optimal results when the symbols are of equiprobability [Croc94]. The discretization steps
are summarized in Figure 4.

9

Figure 4: A time series is discretized by first obtaining a PAA approximation and then
using predetermined breakpoints to map the PAA coefficients into SAX symbols. In the
example above, with n = 128, w = 8 and a = 3, the time series is mapped to the word
baabccbc

Preliminary results show that SAX is competitive compared to other time series representations

[Lin07]. SAX has had a large impact in both industry and academia. It has received a large number of
references, and it has been used worldwide in many domains1. To name a few, Chen et al. convert
palmprint to time series, then to SAX, and then perform biometric recognition [Chen05b]. Murakami et
al. use SAX to find repeated patterns in robot sensors [Mura04]. Pouget et al. use SAX for the detection
of multi-headed stealthy attack tools [Poug06]. McGovern et al. use SAX for the prediction of severe
weather phenomena such as tornados, thunderstorms, hail, and floods [McGo10].

Many researchers have introduced various time series data mining algorithms that use SAX as a
representation. For example, Bakalov et al. use SAX to do spatiotemporal trajectory joins [Baka05].
Many motif discovery [Cast10, Chiu03, Lin02, Minn06, Minn07, Muee09, Muee10, Tang08] and
anomaly detection [Dasg99, Keog02c, Keog05, Pres09, Yank08] algorithms have been proposed that
utilize SAX as the representation.

While there have been dozens of applications of SAX to diverse problems, there has been
surprisingly little work to augment or extend the SAX representation itself. We attribute this to the
generality of the original framework; it simply works very well for most problems. Nevertheless, there
have been some SAX extensions, which we consider below. Lkhagva et al. augment each SAX symbol by
incorporating the minimum and maximum value in the range [Lkha06]. Thus each SAX segment contains
a triplet of information, rather than a single symbol. Very preliminary results are presented which suggest
that this may be useful in some domains. Bernard Hugueney [Hugu06] has recently suggested that SAX
could be improved by allowing SAX symbols to adaptively represent different length sections of a time
series. Just as SAX may be seen as symbolic a symbolic version of the PAA representation, Dr.
Hugueneys approach may be seen as a symbolic version of the APCA representation [Keog01]. In
contrast to Hugueneys idea of allowing segment lengths to be adaptive, work by Morchen and Ultsch has
suggested that the breakpoints should be adaptive [Morc05]. The authors make a convincing case that in
some datasets this may be better than the Gaussian assumption. Shieh and Keogh introduced iSAX
[Shie08], the generalization of SAX that allows multiresolution indexing and mining of massive time
series data.

To see how SAX compares to Euclidean distance, we ran an extensive 1-NN classification
experiment and compared the error rates on 22 publicly available datasets2 [Lin07]. Each dataset is split
to training and testing parts. We use the training part to search the best value for SAX parameters w
(number of SAX words) and a (size of the alphabet):

• For w, we search from 2 up to n/2 (n is the length of the time series). Each time we double the
value of w.

• For a, we search each value between 3 and 10.

1 For a more complete list of papers that extend and use SAX, see http://www.cs.gmu.edu/~jessica/sax.htm
2 Available online at http://www.cs.ucr.edu/~eamonn/time_series_data/

10

• If there is a tie, we use the smaller values.

The compression ratio (last column of next table) is calculated as: , because for SAX

representation we only need bits per word, while for the original time series we need 4 bytes (32
bits) for each value.

Then we classify the testing set based on the training set using one nearest neighbor classifier and
report the error rate. The results are shown in Table 1 [Lin07]. From this experiment, we can conclude
that SAX is competitive with Euclidean distance, but requires far less space. More experiments that
compare different time series representations can be found in [Ding08].

Table 1. 1-NN classification results between SAX and raw data using Euclidean Distance
Name Number

of
Classes

Size of
Training

Set

Size of
Testing Set

Time
Series
Length

1-NN EU
Error

1-NN SAX
Error

w a Compression
Ratio

Synthetic
Control

6 300 300 60 0.12 0.02 16 10 3.33%

Gun-Point 2 50 150 150 0.087 0.18 64 10 5.33%
CBF 3 30 900 128 0.148 0.104 32 10 3.13%
Face (all) 14 560 1690 131 0.286 0.330 64 10 6.11%
OSU Leaf 6 200 242 427 0.483 0.467 128 10 3.75%
Swedish Leaf 15 500 625 128 0.211 0.483 32 10 3.13%
50Words 50 450 455 270 0.369 0.341 128 10 5.93%
Trace 4 100 100 275 0.24 0.46 128 10 5.82%
Two Patterns 4 1000 4000 128 0.093 0.081 32 10 3.13%
Wafer 2 1000 6174 152 0.0045 0.0034 64 10 5.26%
Face (four) 4 24 88 350 0.216 0.170 128 10 4.57%
lightning-2 2 60 61 637 0.246 0.213 256 10 5.02%
lightning-7 7 70 73 319 0.425 0.397 128 10 5.02%
ECG 2 100 100 96 0.12 0.12 32 10 4.17%
Adiac 37 390 391 176 0.389 0.890 64 10 4.55%
Yoga 2 300 3000 426 0.170 0.195 128 10 3.76%
Fish 7 175 175 463 0.217 0.474 128 10 3.46%
Plane 7 105 105 144 0.038 0.038 64 10 5.56%
Car 4 60 60 577 0.267 0.333 256 10 5.55%
Beef 5 30 30 470 0.467 0.567 128 10 3.40%
Coffee 2 28 28 286 0.25 0.464 128 10 5.59%
Olive Oil 4 30 30 570 0.133 0.833 256 10 5.61%

2.3 Similarity Measure
Another active area of research in time series data mining is similarity measure, since all tasks,

including classification and clustering, require that the notion of similarity be defined. As a result, many
distance/similarity measures have been proposed for time series data. We start by defining Dist(A, B), the
distance between two objects A and B.

Definition 2. Distance: Dist is a function that has two objects A and B as inputs and returns a
nonnegative value R, which is said to be the distance from A to B.

Each time series is normalized to have a mean of zero and a standard deviation of one before calling

⎡ ⎤
32
log2
×

×

n
aw

⎡ ⎤a2log

11

the distance function, since it is well understood that in virtually all settings, it is meaningless to compare
time series with different offsets and amplitudes [Keog02]. It should be noted that not all similarity
measures are distance metrics. For a function calculating the similarity/dissimilarity between the time
series A and B to qualify as a distance metric, it must satisfy the following conditions [Keog04b]:

1. Symmetry D(A,B) = D(B,A)
2. Constancy D(A,A) = 0
3. Positivity D(A,B) = 0 if and only if A = B
4. Triangle Inequality D(A,B) <= D(A,C) + D(B,C)

If a similarity measure satisfies the requirements to be a distance metric, then it can be used to index
the time series in a database, which makes queries (e.g. searching for the nearest neighbor) more efficient.

Similarity measures can be categorized, based on how features are extracted and how similarity is
determined, into shape-based similarity and structure-based similarity. The former determines the
similarity of two time series by comparing their individual point values, whereas the latter looks at the
higher-level structures. We discuss the two kinds of similarity in more details in the following sections.

2.3.1 Shape-Based Similarity

Given two time series Q and C, their shape-based similarity can be determined by comparing local
point values. By far the most common distance measure for time series is the Euclidean distance.
Assuming that Q and C are of the same length n, Eq. 2 defines their Euclidean distance.

 (2)

The simplicity and efficiency of Euclidean distance makes it the most popular distance measure in
data mining, and it has the advantage of being a distance metric. However, a major drawback for
Euclidean distance is that it is very brittle. It requires that both input sequences be of the same length, and
it is sensitive to distortions, e.g. shifting, along the time axis. Such a problem can generally be handled by
elastic distance measures such as Dynamic Time Warping (DTW) [Keogh02b] and Longest Common
SubSequence (LCSS) [Vlac02].

DTW searches for the best alignment between two time series, attempting to minimize the distance
between them. It is typically implemented using dynamic programming, and an example implementation
is given below:

Table 2. An algorithm that calculates the DTW similarity between two time series, A[0..n] and
B[0..m], using some distance measure, D(x,y).

Algorithm DTW(A, B)
1. Initialize a matrix dtw[0...n][0..m] with all values 0
2. for i = 1 to n
3. for j = 1 to m
4. dtw[i][j] = D(A[i],B[j]) + min(dtw[i-1][j], dtw[i][j-1], dtw[i-1][j-1])
5. endfor
6. endfor
7. return dtw[n][m]

Figure 5 demonstrates the difference between Euclidean distance and DTW. Note that with

Euclidean distance, the dips and peaks in the pair of time series are mis-aligned and therefore not
matched, whereas with DTW, the dips and peaks are aligned with their corresponding points from the
other time series.

Some global constraint on the warping path is typically specified to restrict the warping paths. The
advantages of using a global constraint are two-fold: (1) it produces more intuitive alignment, and (2) it

() ()∑ −≡
=

n

i
ii cqCQD

1

2,

12

speeds up the computation by narrowing the search space. A large warping window causes the search to
become prohibitively expensive, as well as possibly allowing meaningless matching between points that
are far apart. On the other hand, a small window might prevent us from finding the best solution. It has
been shown by Ratanamahatana and Keogh [Rata04] that by learning the best size and shape of the global
constraint for different datasets, higher accuracy can be achieved.

While DTW is a more robust distance measure than Euclidean Distance, it is also a lot more
computationally intensive than Euclidean Distance, even with the presence of a global constraint. Keogh
proposed an indexing scheme for DTW that allows faster retrieval [Keog02b]. Nevertheless, DTW is still
at least several orders slower than Euclidean distance.

Figure 5. (Left) Alignment for Euclidean distance between two sequence data. (Right)
Alignment for Dynamic Time Warping distance between two sequence data.

Notice that DTW requires a distance measure for comparing two observations, one from each time

series; typically the L1 or L2 norm is used.
LCSS, as its name suggests, finds the length of the longest matching subsequence. Originally created

for discrete values, it can be adapted to continuous values in time series by redefining a “match” to be
whenever the difference between two observations in the time series is below a given threshold. Also
typically implemented using dynamic programming, the algorithm is given below:

Table 3. An algorithm that calculates the LCSS between two time series, A[0..n] and B[0..m], using
some distance measure, D(x,y), and a threshold, δ.

Algorithm LCSS(A, B)
1. Initialize a matrix lcss[0...n][0..m] with all values 0
2. for i = 1 to n
3. for j = 1 to m
4. if (D(A[i],B[j]) < δ)
5. lcss[i][j] = lcss[i-1][j-1] + 1
6. else
7. lcss[i][j] = max(lcss[i][j-1], lcss[i-1,j])
8. endif
9. endfor
10. endfor
11. return 1 - lcss[n][m] / min(n,m)

Compared to Euclidean distance, DTW and LCSS are more elastic, supporting local time shifts and

variations in lengths of pairs of time series, but they are also more expensive to compute. Of the three
measures, LCSS is the least sensitive to noise because it includes a threshold to define a “match.”

Note that the above definition of LCSS works well for univariate time series, where there are
observations through time of only one variable. However, multivariate time series can encounter a
situation where one threshold does not hold well across all variables. Thus, we introduce a variation on
LCSS, which we call LCSS Relaxed, in our experimental results. In this variation, to constitute a
“match” for multivariate time series, only a percentage of variables must “match” according to the given

13

threshold.
Since DTW and LCSS do not satisfy the triangle inequality, they are not distance metrics. Other

elastic distance metrics such as Edit distance with Real Penalty (ERP) [Chen04] and Time-Warp Edit
Distance (TWED) [Mart09] have been proposed. Both ERP and TWED have their roots in the classic
string edit distance, which calculates the minimum number of insertions, deletions, and substitutions
required to transform one string into another. ERP calls an inserted or deleted element to be a ‘gap’ in the
opposing time series and it defines a constant, g, to use in calculating the penalty for gaps.

Given two time series, A[0..n] and B[0..m], and a constant g, ERP is determined by using Eq. 3 as
the recursive formula for dynamic programming.

 (3)

A feature of particular interest for TWED is that it can account for time stamp differences between
each observation. That is, each observation in the time series is taken at a different moment in time, and
while other measures assume observations were taken at a consistent sampling rate, TWED can account
for inconsistent observations. This makes it possible to compare time series with irregular or inconsistent
sampling rates or missing values. In addition to using a similar gap penalty as ERP, TWED also defines a
constant, λ, which controls the stiffness of elastic matching.

Using dynamic programming, TWED is determined by Eq. 4, where Dist is a distance measure (e.g.
Dist(a, b) = | a – b | + λ | ta – tb | , where ti is the timestamp for observing instance i in time series I)

 (4)

Experimental Results. Several studies that compare time series similarity measures have been performed
[Ding08, Keog02, Keog06a]. Most of them focus on univariate time series. In this chapter, we compare
the various similarity measures discussed above on multivariate time series classification. Five time series
datasets were chosen, and Table 4 shows the characteristics of the datasets.

Table 4. Important Features of Datasets

 AUSLAN3 Japanese
Vowels4

Wafer5 ECG6 Star Light
Curve7

3 M. Kadous. Australian Sign Language Signs (High Quality) Data Set. The UCI KDD Archive, 26 February 2002.
http://archive.ics.uci.edu/ml/databases/auslan2/
4 M. Kudo, J. Toyama, M. Shimbo. Japanese Vowels. The UCI KDD Archive, 13 June 2000.
http://archive.ics.uci.edu/ml/databases/JapaneseVowels/
5 R. Olszewski. Wafer Database. Carnegie Mellon University, 8 October 2001. http://www.cs.cmu.edu/~bobski/
6 R. Olszewski. ECG Database. Carnegie Mellon University, 8 October 2001. http://www.cs.cmu.edu/~bobski/
7 Dragomir Yankov, Eamonn Keogh, and Umaa Rebbapragada. 2008. Disk aware discord discovery: finding
unusual time series in terabyte sized datasets. Knowl. Inf. Syst. 17, 2 (November 2008), 241-262.

14

Number of
variables

22 12 6 2 1

Length of
time series

57 (avg) 7-29 104-198 39-152 1024

Number of
classes

20 (subset of
original)

9 2 2 3

Size of
Training set

540 270 1194 200 1024

Size of Test
set8

(use 9 fold cross
validation)

370 (use 10 fold
cross validation)

(use 10 fold
cross validation)

(use 10 fold
cross validation)

For each dataset, classification was performed using the k-NN algorithm with k=3, and the error rate (the
percentage of incorrectly recorded instances) was recorded and shown in the table below. For each
dataset, the numbers in bold face denote the best (smallest) error rate.

Table 5. Error Rates for each Similarity Measure by Dataset

 AUSLAN Japanese
Vowels

Wafer ECG Star Light
Curve

Euclidean .1722 .3838 .08333 .1778 .1767

DTW (full) .1556 .1063 .0909 .1889 .1647

DTW (window) .1444 .1063 .0656 .1722 .1566

EDR .4167 .1417 .3131 .2000 .1606

ERP .2778 .2970 .0556 .1944 .3936

LCSS .4185 .1226 .1363 .1278 .1687

LCSS Relaxed .2259 .1172 .1091 .1278 .1687

TWED .1741 .1063 .0318 .1278 .1606

Varations on the DTW and LCSS algorithms were compared. Specifically, DTW was performed both
with and without a specified warping window size. Consistent with the observation made by
Ratanamahatana and Keogh [Rata04], the results indicate that imposing a window constraint on the

8 Note that some data sets already had the training and test sets divided. The others used cross validation (divide the
data into groups and leave one group out for testing and train on the other groups).

15

search for the best alignment not only increases the algorithm’s efficiency but has the same or better
performance. Additionally, the results for the variation on LCSS (LCSS Relaxed), described in the
previous section, demonstrate that relaxing the definition of a “match” has beneficial results.

As it turns out, Euclidean distance is indeed just as good as other more complex measures, and it is
the fastest, giving it an added advantage. In fact, it had similar performance to DTW (with a window
constraint) for four out of five datasets. Thus, it is recommended as a valid and computationally
inexpensive option for measuring similarity. Our results are consistent with those reported for univariate
time series by other researchers [Keog06a, Ding08].

The error rates for DTW with a warping window were consistently less than or equal to the full DTW
(no window). This shows that allowing any observation to match any other observation leads to
misclassification. The intuition behind this is that while there may be time shifts between two similar
time series, this time shift is local. That is, if the two time series are truly similar, then an observation at
the beginning of the first should not be matching up with an observation at the end of the second.
Otherwise, the two time series are not truly similar, but DTW (without a window) will still give these
series an advantage by minimizing the penalty. Therefore, DTW should be used with a window
constraint. Again, the results we obtained on multivariate time series are consistent with those reported by
Ratanamahatana and Keogh [Rata04], for univariate time series.

For the similarity measures of the edit distance variety (i.e. EDR, ERP, and TWED), TWED appears
to be the best measure. In fact, for multivariate time series, it appears that TWED is a better option than
the non-constraint DTW in most cases. This is most likely due to the fine-tuned penalty system TWED
provides. However, constrained DTW performs just as well as TWED (best case for three out of five
datasets).

2.3.2 Structural Similarity

Shape-based similarities work well for short signals or subsequences; however, for long time series
data (generally speaking, with a length of hundreds or more), they produce poor results. To illustrate this,
we extracted subsequences of length 2048 from six different records on PhysioNet [Goldberger97], an
online medical archive containing digital recordings of physiological signals. Signals #1~3 are
measurements on respiratory rates, and signals #4~6 are ECG signals. Visually, these two vital signs
readouts are readily distinguishable (Figure 6), however, if we try to cluster them using Euclidean
distance as the distance measure, the result is disappointing. Figure 6 shows the hierarchical clustering
results using Euclidean distance. The dendrogram illustrates that the only datasets that are correctly
clustered are datasets #5 and #6 (i.e. they share a common parent node).

16

Figure 6. Result of hierarchical clustering using Euclidean distance on raw data. In fact, using DTW produces
the same result.

This is a surprising result, as these two sets of signals are visually very different. One reason for the
poor clustering result could be due to the imperfect alignment of data points between signals from the
same set. In addition, the presence of anomalous points, as shown in the beginning of dataset #4, could
also throw off the distances computed. Dynamic time warping may be used to mitigate the first issue to a
certain extent. However, in this example, DTW does not seem to offer any improvement; clustering using
DTW produces a similar dendrogram as the one shown in Figure 5. Furthermore, the high computational
cost for dynamic time warping makes it a less than desirable choice of distance measure for large datasets.

A more appropriate alternative to determine similarity between long time series is to measure their
similarity based on higher-level structures. Compared to the large amount of work on shape-based
similarity, there is relatively little work on finding structural similarity. This is an unfortunate oversight,
as the structural approach is particularly useful in applications where domain experts compare signals
based on the arrangement of morphological events present in the signals [Olsz01c], e.g., radar signal
detection and speech recognition. In addition, while some of the shape-based approaches work well for
short time series data, they typically fail to produce satisfactory results when the time series are long.

Several structure- or model-based similarity measures have been proposed that extract global features
such as autocorrelation, skewness, and model parameters from data [Nano01, Wang06]. Deng et al
[Deng97] proposed learning ARMA model on the time series, and using the model coefficients as the
feature. Ge and Smyth [Ge00] proposed a deformable Markov Model template for temporal pattern
matching, in which the data is converted to a piecewise linear model. Nanopoulos et al [Nano01]
proposed extracting statistical features of time series, and classifying the data using multi-layer
perceptron (MLP) neural network.

Keogh et al. [Keog04] proposed a compression-based distance measure that compares the
co-compressibility between datasets. Motivated by Kolmogorov Complexity [Keog04, Li97] and
promising results shown in similar work in bioinformatics and computational theory, the authors devised
a new dissimilarity measure called CDM (Compression-based Dissimilarity Measure). Given two datasets
(strings) x and y, their compression-based dissimilarity measure can be formulated as follows:

 (5)

where C(x) and C(y) are the compressed sizes of the string x and y, respectively, and C(xy) is the

€

CDM(x,y) =
C(xy)

C(x)+C(y)

17

compressed size of the concatenated string x+y. The compression-based distance measure is shown to
produce superior results compared to other existing structural similarity approaches [Keog04].

Bag-of-Patterns Representation (BOP)

In a previous work, we proposed a histogram-based representation that allows computation of
similarity between data based on high-level structure, using a representation similar to the one widely
used for text data [Lin09]. In the Vector Space Model [Salt75], a document is represented as a vector:
each dimension of the vector corresponds to one word in the vocabulary, and its value is the (relative)
frequency of occurrences for the corresponding word in the document. As a result, a p-by-q
term-document matrix X is constructed, where p is the number of unique terms in the corpus, q is the
number of documents, and each element Xi,j is the frequency of the ith word occurring in the jth document.
This “bag of words” representation works well for documents. It is able to capture the structure of a
document, without knowing the exact locations or ordering of the words within.

We proposed to represent time series data in a similar fashion, i.e., as a combination of patterns.
However, there are two challenges for representing real-valued time series as a “bag of patterns”: (1) how
to define patterns, and (2) how to find these patterns. Since time series are composed of real-valued data
points, unlike textual data, there are no clear “delimiters” between patterns. In our work, we used a simple
sliding-window scheme and the SAX representation to overcome these two challenges.

The algorithm works as follows. First, we construct the pattern “vocabulary” for our time series
database. The easiest way to achieve this is to extract subsequences of a fixed length n, normalize the
subsequences so they have a mean of zero and standard deviation of one, and then convert them to SAX
strings. As a result, we obtain a set of strings, each of which corresponds to a subsequence in the time
series. (Recall that SAX has two parameters, α and w.) If we choose α = 4 and w = 8, the resulting
dictionary size is αw = 48 = 65,536. Despite its apparent size, the matrix is likely to be sparse, as with
textual data. In our experiments, we find that only about 10% of all strings have some subsequence
mapped to them [Lin09]. Therefore, we can eliminate words that never occur in any data, or store only the
list of occurring SAX strings for each time series.

The construction of the bag-of-patterns matrix is straightforward. The matrix M is a SAX-sequence
matrix, analogous to term-document matrices used for information retrieval and text mining. Each row i
denotes a SAX string (that is, a pattern) from the pattern vocabulary; each column j denotes a time series;
and each Mi,j stores the frequency of string i occurring in time series j. The matrix is a histogram of all
pattern counts, which provides a summary for the time series dataset. Once we build the matrix M, we can
then use any applicable distance measures, typically Euclidean distance, or dimensionality reduction
techniques to compute the similarity between them.

In Figure 6, we showed a simple example where both Euclidean Distance and Dynamic Time
Warping on the raw data fail to find the correct clusters. Figure 7 shows the clustering results on the same
datasets, using the bag-of-patterns approach. Note we are now clustering on the transformed time series,
or the “histogram” of the patterns. For clarity, the original, corresponding time series are also plotted on
the left of the dendrogram. We can see clearly that the time series clustered together have similar pattern
distribution, which explains why certain datasets are grouped together.

18

Figure 7. New clustering result on the same data shown in Figure 6. This time, we use our frequency-based, bag-of-patterns
approach, and combine it with Euclidean distance. The two clusters are well separated.

To see how the algorithm does on long time series, and on datasets with less diverse structures,

Figures 8 and 9 below shows the hierarchical clustering results on 20 ECG records obtained from
PhysioNet [Gold97]. This dataset, containing data from patients with various heart conditions, forms four
clusters. Each record is of length 15,000. Figure 7 show the clustering results using Euclidean distance.
We also tried using DTW on the raw data, as well as using Euclidean distance on DFT coefficients, with
DFT dimensionality ranging from 100 to 1000, and obtained similarly dissatisfactory results.

Figure 8. Clustering result on raw ECG data using Euclidean Distance. Only 9 datasets are correctly clustered (#11,
#12, #14, #15, #16-#20).

For comparison, the clustering results using the bag-of-patterns approach are shown in Figure 9
below. As the figure illustrates, all four clusters are cleanly and well separated. In addition, the histograms
(of the pattern counts, shown in the middle of the plot) reveal the structure of the data, and provide insight
for the clustering results. Note that Keogh et al. reported similar results using the compression-based
algorithm, CDM [Keog04].

19

Figure 9. Clustering result on the same ECG datasets, using our bag-of-patterns approach. All data are clustered
correctly. This figure is best viewed in color.

To demonstrate the effectiveness on 1-nearest-neighbor classification, we extracted 250 records from
the PhysioNet archive [Gold97]. Each record contains 2048 points. These records are extracted from
various databases containing different vital signs, or patients with different heart conditions. We separated
the records into 5 classes, and labeled them according to the databases that they are extracted from. We
use the leave-one-out cross validation, and count the number of misclassified objects, mc. The error rate is
the ratio of mc and the total number of objects (i.e. 250). For this experiment, we also compared with
Dynamic Time Warping. The improvement is astounding. The error rate of 0.004 means that there is only
1 misclassified object, out of 250 objects.

Table 6. Classification error rates on three different methods. Our method shows a drastic improvement.

 Raw data + Euclidean
distance

Raw data +
DTW

Bag of Patterns representation +
Euclidean distance

Error rate 0.56 0.272 0.004

The results shown above demonstrate that the structure-based similarity measure has the potential of
distinguishing different datasets, even when the differences in structures are subtle. Unlike a distance
measure that computes point-to-point distances, it captures the global structure of the data consisting of an
unordered set of local features, rather than just local differences. This time-invariant feature is useful if
we are interested in the overall structures of the time series. At the same time, some orderings are
preserved within subsequences.

3. Astronomical Applications: Current and Future

 As described in Section 1, astronomical time series mining includes supervised, unsupervised, and
semi-supervised learning applications (see Bloom & Richards chapter in this book). Classification of
stars and other phenomena into one of the known types of variability (described in Section 1) is a very
common and traditional astronomy application [Bloo08]. Usually the first step is to determine the type of
variability (e.g., periodic, transient, stochastic) and then to determine the specific astrophysical class of
object within that variability type. For example, classification of supernovae of different types is a very

20

important science objective of many large sky surveys, since distant supernovae in far away galaxies
assist in the measurement of the Dark Energy content of the Universe and thereby contribute to our
understanding of the origin and ultimate fate of the cosmos. Pattern recognition and detection are critical
steps in identifying and classifying observed supernovae into known classes, since supernovae of a
specific type (Type Ia) are most useful for the cosmological studies.

Unsupervised learning applications are also critical. These include early characterization and
description of transients (e.g., early detection of an exploding supernova), discovery of new classes of
variability, component decomposition and analysis, and changes in the stationarity of a source. Class
discovery is one of the great promises of large astronomical sky surveys – the massive quantity of objects
to be studied and of data to be collected should enable the discovery of a grand number of new classes of
objects and of astrophysics behaviors. As in most unsupervised learning applications, the same is true
here: similarity measures between different time series are crucial ingredients to the learning and
discovery phase.

Semi-supervised learning is applicable to anomaly detection and novelty discovery. This is an
enormously important aspect of the large sky surveys, especially the petascale surveys of the future (e.g.,
LSST), since these surveys will generate tens of billions of individual objects’ time series. These
enormous time series databases will enable the detection and discovery of extremely rare one-in-a-billion,
maybe one-in-a-trillion, types of phenomena. The huge discovery space that remains to be explored
(Figure 1) bodes well for a vast number of new discoveries in time domain astronomy.

The LSST will present an unprecedented time series data mining challenge. The project anticipates
the detection of approximately one million astronomical events each and every night for 10 years. These
events include objects that have changed in brightness since their previous observation, or changed in
position since their previous observation, or have appeared for the very first time in the night sky. The
rapid characterization and probabilistic classification of each of these million events is not only critical to
the success of the scientific mission of the LSST, but it is a scientific requirement – i.e., the project is
required to send an event notification to the worldwide astronomical research community within 60
seconds of detection of an event. Since there are roughly 1000 image pairs obtained nightly, one pair
every 40 seconds, each of which containing tens of millions of sources, therefore the project must
characterize and classify (roughly, probabilistically) about 1000 new events every 40 seconds throughout
the night, on every night, for 10 years, while also analyzing the time series of all of the tens of millions of
sources in each image (in order to determine if any of them have changed in brightness or position). The
resulting characterizations and classifications are critical inputs to the next phase of scientific discovery –
astronomical facilities worldwide will conduct follow-up observations on the most scientifically
interesting objects in the LSST event stream. Since there are not enough astronomers or astronomical
facilities in the world to follow up on each of the one million events each night, then intelligent sorting,
filtering, and prioritizing are required. The application of informative and scalable time series pattern
detection and recognition algorithms is consequently essential to the success of the LSST project
[Born08].

Finally, we note that the human eye and the human mind are very good at detecting patterns and
anomalies in data, and time series data are no exception. So, it is feasible to conceive of a Citizen Science
project that addresses astronomical time series data. Such a project has been conceived and it has been
tentatively named “Light Curve Zoo” (after Galaxy Zoo; see the chapter by Fortson et al. in this book). In
Light Curve Zoo, citizen science volunteers would be asked to identify known pre-specified patterns
(characterizations) or unusual features in light curves (i.e., time series observations of an astronomical
object). The database of characterizations and features aggregated from this citizen science project may
then be subjected to mining and exploration by the research community. The application of the
similarity-based mining and pattern recognition techniques presented in this chapter will then yield a rich
harvest of astronomical discovery from the massive LSST event stream and its billions of individual
source’s time series data.

21

4 Summary
In this chapter, we discuss different approaches for time series pattern recognition. Approaches to pattern
recognition tasks vary by representation for the input data, similarity/distance measurement function, and
pattern recognition technique. We discuss the various pattern recognition techniques, representations, and
similarity measures commonly used for time series. While most existing time series representations
proposed in literature are real-valued, in the recent years, the discretization of time series, in particular,
using SAX, has become a common practice. Many SAX-based algorithms have been proposed. We
discuss two different types of similarity measures: shape-based and structure-based similarity. While the
majority of work concentrated on univariate time series, we perform an experimental study on using
different similarity measures to classify multivariate time series. We conclude that for classifying short
time series, simple techniques, e.g. k-NN as classifier, Euclidean distance as distance measure, and SAX
as representation, are just as good as the other more complex approaches, and their efficiency and
simplicity offer added advantages. For classifying long time series, a structure-based similarity measure
such as CDM or BOP should be considered. We discuss the applicability of time series pattern
recognition techniques on astronomy data, as well as the current and future directions for data mining in
astronomy.

References

[Agra93] Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami (1993). Efficient Similarity Search In
Sequence Databases. In Proceedings of the 4th International Conference on Foundations of Data
Organization and Algorithms (FODO '93), David B. Lomet (Ed.). Springer-Verlag, London, UK, 69-84

[Agra95] R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zait. Querying Shapes of Histories. In
proceedings of the 21st Int'l Conference on Very Large Databases. Zurich, Switzerland. Sept 11-15, 1995.
pp. 502-514

[Aitk03] M. J. Aitkenhead, A. J. S. McDonald, A neural network face recognition system, Engineering
Applications of Artificial Intelligence, Volume 16, Issue 3, April 2003, Pages 167-176.

[Alco01] Alcock, C. et al. (2001). The MACHO Project: Microlensing Detection Efficiency. ApJS
136-439.

[Amin06] Morteza Amini, Rasool Jalili, Hamid Reza Shahriari, RT-UNNID: A practical solution to
real-time network-based intrusion detection using unsupervised neural networks, Computers & Security,
Volume 25, Issue 6, September 2006, Pages 459-468.

[Baka05] P. Bakalov, M. Hadjieleftherious, and V. J. Tsotras. Time Relaxed Spatiotemporal Trajectory.
In proceedings of the ACM International Symposium on Advances in Geographic Information Systems.
Bremen, Germany. Nov 4-5, 2005.

[Beye99] Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1999. When Is
''Nearest Neighbor'' Meaningful?. In Proceedings of the 7th International Conference on Database
Theory(ICDT '99), Catriel Beeri and Peter Buneman (Eds.). Springer-Verlag, London, UK, 217-235.

[Bloo08] Bloom, J. S., et al. Towards a Real-time Transient Classification Engine. Astronomische
Nachrichten, 329, 284, 2008.

22

[Born08] Borne, K. D., A Machine Learning Classification Broker for the LSST Transient Database.
Astronomische Nachrichten, 329, 255, 2008.

[Bram08] Bramich, D. M., et al. Light and motion in SDSS Stripe 82: the catalogues. Monthly Notices of
the Royal Astronomical Society, 386, 887-902, 2008.

[Brad98] Bradley, P., Fayyad, U., & Reina, C. (1998). Scaling Clustering Algorithms to Large Databases.
In proceedings of the 4th Int'l Conference on Knowledge Discovery and Data Mining. New York, NY, Aug
27-31. pp 9-15.

[Came10] Alessandro Camerra, Themis Palpanas, Jin Shieh, Eamonn Keogh, "iSAX 2.0: Indexing and
Mining One Billion Time Series," icdm, pp.58-67, 2010 IEEE International Conference on Data Mining,
2010

[Cast10] Nuno Castro, Paulo J. Azevedo: Multiresolution Motif Discovery in Time Series. SDM 2010:
665-676

[Chan99] K. Chan and A. W. Fu. Efficient Time Series Matching by Wavelets. In proceedings of the 15th
IEEE Int'l Conference on Data Engineering. Sydney, Australia. Mar 23-26, 1999. pp. 126-133

[Chan09] V. Chandola, D. Cheboli, and V. Kumar, Detecting Anomalies in a Timeseries Database. CS
Technical Report 09-004, January 2009, Computer Science Department, University of Minnesota

[Chao08] W. A. Chaovalitwongse and P. M. Pardalos. 2008. On the time series support vector machine
using dynamic time warping kernel for brain activity classification. Cybernetics and Sys. Anal. 44, 1
(January 2008), 125-138.

[Chen04] L. Chen, R. Ng. 2004. On the marriage of Lp-norms and edit distance. In Proceedings of the
Thirtieth international conference on Very large data bases - Volume 30 (VLDB '04), 792-803.

[Chen05] L. Chen. Similarity Search Over Time Series and Trajectory Data. Ph.D. Dissertation. 2005.
University of Waterloo, Waterloo, Ont., Canada, Canada. AAINR03008.

[Chen05b] J. S. Chen, Y. S. Moon, and H. W. Yeung. Palmprint Authentication Using Time Series. In
proceedings of the 5th International Conference on Audio- and Video-Based Biometric Person
Authentication. Hilton Rye Town, NY. July 20-22, 2005.

[Chiu03] Chiu, B., Keogh, E., and Lonardi, S. 2003. Probabilistic discovery of time series motifs.
InProceedings of the Ninth ACM SIGKDD international Conference on Knowledge Discovery and Data
Mining (Washington, D.C., August 24 - 27, 2003). KDD '03. ACM Press, New York, NY, 493-498.

[Coll04] Collister, A. A., Lahav, O. ANNz: estimating photometric redshifts using artificial neural
networks, astro-ph, 0311058, 2003

[Cort00] C. Cortes, K. Fisher, D. Pregibon, and A. Rogers. Hancock: a language for extracting signatures
from data streams. In ACM SIGKDD Intl. Conf. on Knowledge Discoveryand Data Mining, pages 9-17,
2000.

[Croc94] M. Crochemore, A. Czumaj, L. Gasjeniec, S. Jarominek, T. Lecroq, W. Plandowski, and W.
Rytter. Speeding Up Two String-Matching Algorithms. Algorithmica. vol. 12. pp. 247-267. 1994.

23

[Dasg99] D. Dasgupta and S. Forrest. Novelty Detection in Time Series Data Using Ideas from
Immunology. In proceedings of the 8th Int'l Conference on Intelligent Systems. Denver, CO. Jun 24-26,
1999.

[Dede10] Gulin Dede, Murat Husnu Sazli, Speech recognition with artificial neural networks, Digital
Signal Processing, Volume 20, Issue 3, May 2010, Pages 763-768.

[Demp77] Dempster, A., Laird, N., & Rubin, D. (1977). Maximum Likelihood from Incomplete Data via
the EM Algorithm. Journal of the Royal Statistical Society, Series B. Vol. 39, No. 1, pp. 1-38.

[Deng97] K. Deng, A. Moore, and M. Nechyba, "Learning to Recognize Time Series: Combining ARMA
models with Memory-based Learning," IEEE Int. Symp. on Computational Intelligence in Robotics and
Automation, Vol. 1, 1997, pp. 246 – 250.

[Desa10] Apurva A. Desai, Gujarati handwritten numeral optical character reorganization through neural
network, Pattern Recognition, Volume 43, Issue 7, July 2010, Pages 2582-2589.

[Ding08] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh.
2008. Querying and mining of time series data: experimental comparison of representations and distance
measures. Proc. VLDB Endow. 1, 2 (August 2008), 1542-1552.

[Duda00] Richard O. Duda, Peter E. Hart, and David G. Stork. 2000. Pattern Classification (2nd Edition).
Wiley-Interscience.

[Eads02] D. Eads, D. Hill, S. Davis, S. Perkins, J. Ma, R. Porter, and J. Theiler. "Genetic Algorithms and
Support Vector Machines for Time Series Classification." Proc. SPIE 4787. pp. 74-85. July, 2002

[Falo94] C. Faloutsos, M. Ranganathan, and Y. Manolopulos. Fast Subsequence Matching in Time-Series
Databases. SIGMOD Record. vol. 23. pp. 419-429. 1994.

[Garg08] Garg, A. (2008). Microlensing candidate selection and detection efficiency for the
SuperMACHO Dark Matter search. PhD Thesis. Harvard University.

[Ge00] Ge, X. & Smyth, P. Deformable Markov model templates for time-series pattern matching. In
proceedings of the 6th ACM SIGKDD. Boston, MA, Aug 20-23, 2000. pp 81-90.

[Geur01] P. Geurts. Pattern Extraction for Time Series Classification. In proceedings of the 5th European
Conference on Principles of Data Mining and Knowledge Discovery. Freiburg, Germany. 2001. pp.
115-127

[Gold97] Goldberger, A.L., Amaral, L., Glass, L, Hausdorff, J.M., Ivanov, P.Ch., Mark, R.G., Mietus,
J.E., Moody, G.B., Peng, C.K., Stanley, H.E.. PhysioBank, PhysioToolkit, and PhysioNet: Circulation
101(23):e215-e220. Discovery, 1(3), 1997.

[Han00] Jiawei Han and Micheline Kamber. 2000. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[Hugu06] B. Hugueney. Adaptive Segmentation-Based Symbolic Representation of Time Series for
Better Modeling and Lower Bounding Distance Measures. In proceedings of the 10th European
Conference on Principles and Practice of Knowledge Discovery in Databases. Berlin, Germany. Sept
18-22, 2006. pp. 545-552

24

[Kado02] M. Kadous. Australian Sign Language Signs (High Quality) Data Set. The UCI KDD Archive,
26 February 2002. http://archive.ics.uci.edu/ml/databases/auslan2/

[Kais04] Kaiser, N. Pan-STARRS: A wide-field optical survey telescope array. Proceedings of the SPIE,
5489, 11-22, 2004.

[Kamp09] Argyro Kampouraki, George Manis, and Christophoros Nikou. 2009. Heartbeat time series
classification with support vector machines. Trans. Info. Tech. Biomed. 13, 4 (July 2009), 512-518.

[Kalp01] K. Kalpakis, D. Gada, and V. Puttagunta. Distance Measures for Effective Clustering of
ARIMA Time-Series. In proceedings of the 2001 IEEE In'l Conference on Data Mining. San Jose, CA.
Nov 29-Dec 2, 2001. pp. 273-280

[Keog98] E. Keogh and M. Pazzani. An Enhanced Representation of Time Series Which Allows Fast and
Accurate Classification, Clustering and Relevance Feedback. In proceedings of the 4th In'l Conference on
Knowledge Discovery and Data Mining. New York, NY. Aug 27-31, 1998. pp. 239-241

[Keog04] Keogh, E., Lin, J. & Truppel, W. (2004). Clustering of Time Series Subsequences is
Meaningless: Implications for Past and Future Research. Knowledge and Information Systems (KAIS),
Springer-Verlag.

[Keog01] E. Keogh, K. Chakrabarti, and M. Pazzani. Locally Adaptive Dimensionality Reduction for
Indexing Large Time Series Databases. In proceedings of ACM SIGMOD Conference on Management of
Data. Santa Barbara. May 21-24, 2001. pp. 151-162

[Keog02] Keogh, E. & Kasetty, S. (2002). On the Need for Time Series Data Mining Benchmarks: A
Survey and Empirical Demonstration. In proceedings of the 8th ACM SIGKDD International Conference
on Knowledge Discovery. Edmonton, Alberta, Canada. pp 102-111.

[Keog02b] E. Keogh. Exact Indexing of Dynamic Time Warping. In Proceedings of the 28th international
Conference on Very Large Data Bases. Hong Kong, China, August 20 - 23, 2002.

[Keog02c] E. Keogh, S. Lonardi, and B. Chiu. Finding Surprising Patterns in a Time Series Database in
Linear Time and Space. In proceedings of the 8th ACM SIGKDD Int'l Conference on Knowledge
Discovery and Data Mining. Edmonton, Alberta, Canada. Jul 23-26, 2002. pp. 550-556

[Keog04] Keogh, E., Lonardi, S., and Ratanamahatana, C. A. 2004. Towards parameter-free data mining.
In Proceedings of the Tenth ACM SIGKDD international Conference on Knowledge Discovery and Data
Mining (Seattle, WA, USA, August 22 - 25, 2004). KDD '04.

[Keog04b] Keogh, E. Tutorial in SIGKDD 2004. Data Mining and Machine Learning in Time Series
Databases

[Keog05] E. Keogh, J. Lin, and A. W. Fu. HOT SAX: Efficiently Finding the Most Unusual Time Series
Subsequence. In proceedings of the 5th IEEE International Conference on Data Mining. Houston, TX.
Nov 27-30, 2005. pp. 226-233

[Keog06a] Keogh, E., Xi, X., Wei, L. & Ratanamahatana, C. A. (2006). The UCR Time Series
Classification/Clustering Homepage: www.cs.ucr.edu/~eamonn/time_series_data/

25

[Keogh06b] Keogh, E., Lin, J. & Fu, A. (2006). Finding the Most Unusual Time Series Subsequence:
Algorithms and Applications. Knowledge and Information Systems (KAIS). Springer-Verlag.

[Kim07] Kyung-Joong Kim, Sung-Bae Cho, Evolutionary ensemble of diverse artificial neural networks
using speciation, Neurocomputing, Volume 71, Issues 7-9, Progress in Modeling, Theory, and
Application of Computational Intelligenc - 15th European Symposium on Artificial Neural Networks
2007, 15th European Symposium on Artificial Neural Networks 2007, March 2008, Pages 1604-1618.

[Kras07] Vladimir M. Krasnopolsky, Reducing uncertainties in neural network Jacobians and improving
accuracy of neural network emulations with NN ensemble approaches, Neural Networks, Volume 20,
Issue 4, Computational Intelligence in Earth and Environmental Sciences, May 2007, Pages 454-461.

[Lawr90] Lawrence, C. & Reilly, A. (1990). An Expectation Maximization (EM) Algorithm for the
Identification and Characterization of Common Sites in Unaligned Biopolymer Sequences. Proteins, Vol.
7, pp 41-51.

[Li97] Li, M. & Vitanyi, P. An Introduction to Kolmogorov Complexity and Its Applications. Second
Edition, Springer Verlag, 1997.

[Liao05] T. Warren Liao. 2005. Clustering of time series data-a survey. Pattern Recogn. 38, 11
(November 2005), 1857 1874.

[Lin02] J. Lin, E. Keogh, P. Patel, and S. Lonardi, Finding Motifs in Time Series, the 2nd Workshop on
Temporal Data Mining, the 8th ACM Int'l Conference on Knowledge Discovery and Data Mining.
Edmonton, Alberta, Canada, 2002, pp. 53-68.

[Lin04] Lin, J., Vlachos, M., Keogh, E., & Gunopulos, D. (2004). Iterative Incremental Clustering of
Time Series. IX Conference on Extending Database Technology (EDBT). March 14-18, 2004.

[Lin07] Jessica Lin, Eamonn J. Keogh, Li Wei, Stefano Lonardi: Experiencing SAX: a novel symbolic
representation of time series. Data Min. Knowl. Discov. 15(2): 107-144 (2007)

[Lin09] Lin J, Li Y. Finding structural similarity in time series using bag-of-patterns representation. In
proceedings of the 21st International Congress on Scientific and Statistical Database Management. New
Orleans, LA, June 2-4, 2009

[Lipp87] Lippmann, R.; , "An introduction to computing with neural nets," ASSP Magazine, IEEE , vol.4,
no.2, pp. 4- 22, Apr 1987.

[Lkha06] B. Lkhagva, Y. Suzuki, and K. Kawagoe. New Time Series Data Representation ESAX for
Financial Applications. In proceedings of the 22nd International Conference on Data Engineering
Workshops. Atlanta, GA. Apr 3-8, 2006. pp. 115

[Lsst09] LSST Science Collaborations and LSST Project, LSST Science Book, version 2.0,
arXiv:0912.0201, http://www.lsst.org/lsst/scibook, 2009

[Mart09] P. Marteau. Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching.
IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 2 (February 2009), 306-318.

[McGo10] Amy McGovern, Derek H. Rosendahl, Rodger A. Brown, and Kelvin K. Droegemeier,
Identifying Predictive Multi-Dimensional Time Series Motifs: An application to severe weather

26

prediction. To appear in Data Mining and Knowledge Discovery, 2010.

[McQu67] McQueen, J. (1967). Some Methods for Classification and Analysis of Multivariate
Observation. L. Le Cam and J. Neyman (Eds.), In proceedings of the 5th Berkeley Symposium on
Mathematical Statistics and Probability, Berkeley, CA. Vol. 1, pp 281-297.

[Mink08] Fernanda L. Minku, Teresa B. Ludermir, Clustering and co-evolution to construct neural
network ensembles: An experimental study, Neural Networks, Volume 21, Issue 9, November 2008.

[Minn06] D. Minnen, T. Starner, I. Essa, C. Isbell. Activity Discovery: Sparse Motifs from Multivariate
Time Series. Snowbird Learning Workshop, Snowbird, Utah, April 4-7, 2006.

[Minn07] D. Minnen, C.L. Isbell, I. Essa, and T. Starner. Discovering Multivariate Motifs using
Subsequence Density Estimation and Greedy Mixture Learning. Twenty-Second Conf. on Artificial
Intelligence (AAAI-07), Vancouver, B.C., July 22-26, 2007.

[Morc05] F. Morchen and A. Ultsch. Optimizing Time Series Discretization for Knowledge Discovery. In
proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. Chicago, IL. Aug 21-24, 2005. pp. 660-665

[Muee09] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and B. Westover. Exact Discovery of Time Series
Motifs. In proceedings of the 2009 SIAM International Conference on Data Mining (SDM09). April
30-May 2, 2009. Sparks, NV.

[Muee10] Abdullah Mueen and Eamonn Keogh. 2010. Online discovery and maintenance of time series
motifs. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and
data mining (KDD '10)

[Mura04] K. Murakami, Y. Yano, S. Doki, and S. Okuma. Behavior Extraction from a Series of Observed
Robot Motion. In proceedings of JSME Conference on Robotics and Mechatronics. Nagoya, Japan. June,
2004.

[Nano01] Nanopoulos, A., Alcock, R., and Manolopoulos, Y. 2001. Feature-based classification of
time-series data. In information Processing and Technology, N. Mastorakis and S. D. Nikolopoulos, Eds.
Nova Science Publishers, Commack, NY, 49-61.

[Olsz01c] R. Olszewski. Generalized Feature Extraction for Structural Pattern Recognition in Time-Series
Data. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 2001.

[Pres09] Dan Preston, Pavlos Protopapas, Carla Brodley. Event Discovery in Time Series. SDM 2009.

[Pome89] D.A. Pomerleau, “ALVINN: An Autonomous Land Vehicle in a Neural Network,” Technical
Report CMU-CS-89-107, Carnegie Mellon Univ., 1989.

[Poug06] F. Pouget, G. Urvoy-Keller, and M. Dacier. Time Signature to Detect Multi-Headed Stealthy
Attack Tools. In proceedings of the 18th Annual FIRST Conference. Baltimore, MD. June 25-30, 2006

[Rado10] Milos Radovanovic, Alexandros Nanopoulos, Mirjana Ivanovic: Time-Series Classification in
Many Intrinsic Dimensions. SDM 2010: 677-688

27

[Rata04] Ratanamahatana, C. A. and Keogh. E. (2004). Making Time-series Classification More
Accurate Using Learned Constraints. In proceedings of SIAM International Conference on Data Mining
(SDM '04), Lake Buena Vista, Florida, April 22-24, 2004. pp. 11-22.

[Rau09] Rau, A., et al. Exploring the Optical Transient Sky with the Palomar Transient Factory.
Publications of the Astronomical Society of the Pacific, 886, 1334-1351, 2009.

[Rebb09] Umaa Rebbapragada, Pavlos Protopapas, Carla E. Brodley, Charles R. Alcock: Finding
anomalous periodic time series. Machine Learning 74(3): 281-313 (2009)

[Rodr05] Juan José Rodríguez, Carlos J. Alonso, José A. Maestro: Support vector machines of
interval-based features for time series classification.Knowl.-Based Syst. 18(4-5): 171-178 (2005)

[Rodr06] P.P. Rodrigues, J. Gama, and J.P. Pedroso, “ODAC: Hierarchical Clustering of Time Series
Data Streams,” Proc. Sixth SIAM Int'l Conf. Data Mining, pp. 499-503, Apr. 2006.

[Rose58] Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological Review, Vol 65(6), Nov 1958, 386-408

[Salto75] Salton, G., Wong, A., and Yang, C. S. 1975. A vector space model for automatic indexing.
Commun. ACM 19, 11 (Nov. 1975), 613-620.

[Shie08] Jin Shieh and Eamonn Keogh. 2008. iSAX: indexing and mining terabyte sized time series. In
Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining
(KDD ’08). ACM, New York, NY, USA, 623-631.

[Star08] Starr, D., Bloom, J. and Brewer, J. (2008). Realtime Astronomical Time-series Classification and
Broadcast Pipeline. In proceedings of the 7th Python in Science Conference.

[Szym05] Szymanski, M. K. The Optical Gravitational Lensing Experiment. Internet Access to the OGLE
Photometry Data Set: OGLE-II BVI maps and I-band data. Acta Astronomica 55, 43-57, 2005.

[Tang08] H. Tang and S.S. Liao. Discovering original motifs with different lengths from time series.
Know.-Based Syst. 21, 7 (Oct. 2008), 666-671.

[Vapn98] Vapnik, V. “Estimating the Values of Function at Given Points”, Statistical Learning Theory,
Wiley-Interscience, New York, 1998.

[Vlac02] Michail Vlachos, Dimitrios Gunopoulos, and George Kollios. 2002. Discovering Similar
Multidimensional Trajectories. In Proceedings of the 18th International Conference on Data
Engineering (ICDE '02).

[Wang06] Wang, X., Smith, K., and Hyndman, R. 2006. Characteristic-Based Clustering for Time Series
Data. Data Min. Knowl. Discov. 13, 3 (Nov. 2006), 335-364.

[Wang09] Wang, T., Huang, J.-S., & Gu, Q.-S. (2009). Photometric redshifts of galaxies from SDSS and
2MASS. Research in Astronomy and Astrophysics, 9(4), 390-400.

[Wei06] Li Wei and Eamonn Keogh. 2006. Semi-supervised time series classification. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD '06).
ACM, New York, NY, USA, 748-753.

28

[Yi00] B. K. Yi and C. Faloutsos. Fast Time Sequence Indexing for Arbitrary Lp Norms. In proceedings
of the 26th Int'l Conference on Very Large Databases. Cairo, Egypt. Sep 10-14, 2000. pp. 385-394

[Zhou02] Zhi-Hua Zhou, Jianxin Wu, Wei Tang, Ensembling neural networks: Many could be better than
all, Artificial Intelligence, Volume 137, Issues 1-2, May 2002, Pages 239-263.

[Zhu05] Zhu, X. (2005). Semi-supervised learning literature survey. Technical report, no. 1530,
Computer Sciences, University of Wisconsin-Madison, 2005.

