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Abstract 
 

Massive amount of time series data are generated daily, in areas as diverse as astronomy, industry, 
sciences, and aerospace, to name just a few. One obvious problem of handling time series databases 
concerns with its typically massive size—gigabytes or even terabytes are common, with more and more 
databases reaching the petabyte scale. Most classic data mining algorithms do not perform or scale well 
on time series data. The intrinsic structural characteristics of time series data such as the high 
dimensionality and feature correlation, combined with the measurement-induced noises that beset 
real-world time series data, pose challenges that render classic data mining algorithms ineffective and 
inefficient for time series. As a result, time series data mining has attracted enormous amount of attention 
in the past two decades.  

In this chapter, we discuss the state-of-the-art techniques for time series pattern recognition, the 
process of mapping an input representation for an entity or relationship to an output category. Approaches 
to pattern recognition tasks vary by representation for the input data, similarity/distance measurement 
function, and pattern recognition technique. We will discuss the various pattern recognition techniques, 
representations, and similarity measures commonly used for time series. While the majority of work 
concentrated on univariate time series, we will also discuss the applications of some of the techniques on 
multivariate time series.  

1. INTRODUCTION 

Perhaps the most commonly encountered data type are time series, touching almost every aspect of 
human life, including astronomy. One obvious problem of handling time series databases concerns with 
its typically massive size—gigabytes or even terabytes are common, with more and more databases 
reaching the petabyte scale. For example, in telecommunication, large companies like AT&T produce 
several hundred millions long-distance records per day [Cort00]. In astronomy, time domain surveys are 
relatively new – these are surveys that cover a significant fraction of the sky with many repeat 
observations, thereby producing time series for millions or billions of objects.  Several such time domain 
sky surveys are now completed, such as the MACHO [Alco01], OGLE [Szym05], SDSS Stripe 82 
[Bram08], SuperMACHO [Garg08], and Berkeley’s Transients Classification Pipeline (TCP) [Star08] 
projects. The Pan-STARRS project is an active sky survey – it began in 2010, a 3-year survey covering 
three-fourths of the sky with ~60 observations of each field  [Kais04].  The Large Synoptic Survey 
Telescope (LSST) project proposes to survey 50% of the visible sky repeatedly approximately 1000 times 
over a 10-year period, creating a 100-petabyte image archive and a 20-petabyte science database 
(http://www.lsst.org/). The LSST science database will include time series of over 100 scientific 
parameters for each of approximately 50 billion astronomical sources – this will be the largest data 
collection (and certainly the largest time series database) ever assembled in astronomy, and it rivals any 
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other discipline’s massive data collections for sheer size and complexity.   
More common in astronomy are time series of flux measurements.  As a consequence of many 

decades of observations (and in some cases, hundreds of years), a large variety of flux variations have 
been detected in astronomical objects, including periodic variations (e.g., pulsating stars, rotators, pulsars, 
eclipsing binaries, planetary transits), quasi-periodic variations (e.g., star spots, neutron star oscillations, 
active galactic nuclei), outburst events (e.g., accretion binaries, cataclysmic variable stars, symbiotic 
stars), transient events (e.g., gamma-ray bursts (GRB), flare stars, novae, supernovae (SNe)), stochastic 
variations (e.g., quasars, cosmic rays, luminous blue variables (LBVs)), and random events with precisely 
predictable patterns (e.g., microlensing events).  Several such astrophysical phenomena are 
wavelength-specific cases, or were discovered as a result of wavelength-specific flux variations, such as 
soft gamma ray repeaters, X-ray binaries, radio pulsars, and gravitational waves.  Despite the wealth of 
discoveries in this space of time variability, there is still a vast unexplored region, especially at low flux 
levels and short time scales (see also Bloom & Richards chapter in this book).  Figure 1 illustrates the gap 
in astronomical knowledge in this time domain space. The LSST project aims to explore phenomena in 
the time gap.   

 

 
Figure 1. Discovery space of astronomical variability.  Numerous classes of flux variability have 
been identified through analysis of astronomical time series observations.  But there is still a vast 
unexplored region of this parameter space that the LSST survey aims to explore.  The axes on this 
plot are time scale of variability (abscissa) and the negative logarithm of the flux (ordinate), 
measured in magnitudes, where magnitudes decrease as an object gets brighter.  This figure is 
reproduced from the LSST Science Book [Lsst09] and adapted from [Rau09]. 

 

In addition to flux-based time series, astronomical data also include motion-based time series.  These 
include the trajectories of planets, comets, and asteroids in the Solar System, the motions of stars around 
the massive black hole at the center of the Milky Way galaxy, and the motion of gas filaments in the 
interstellar medium (e.g., expanding supernova blast wave shells).  In most cases, the motions measured 
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in the time series correspond to the actual changing positions of the objects being studied.  In other cases, 
the detected motions indirectly reflect other changes in the astronomical phenomenon, such as light 
echoes reflecting across vast gas and dust clouds, or propagating waves.   

For concreteness, we define time series below: 
 

Definition 1. Time Series: A time series T = t1,…,tm is an ordered set of m real-valued variables. 
 

Figure 2 shows examples of time series data on several types of variable stars (reproduced from 
Rebbapragada et al. [Rebb09]. 

 

 
 
Figure 2. Examples of time series data for 3 different types of variable stars – the left panel in each case is the 
measured data, and the right panel is the processed data (including smoothing, interpolation, and spike removal). 
These data and processing results are reproduced from Rebbapragada et al. [Rebb09]. 

 
Most classic data mining algorithms do not perform or scale well on time series data. The intrinsic 

structural characteristics of time series data such as the high dimensionality and feature correlation, 
combined with the measurement-induced noises that beset real-world time series data, pose challenges 
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that render classic data mining algorithms ineffective and inefficient for time series. As a result, time 
series data mining has attracted enormous amount of attention in the past two decades. Some of the areas 
that have seen the majority of research in time series data mining include indexing (query by content) 
[Agra93, Agra95, Came10, Chan99, Chen05, Ding08, Falo94, Keog01, Keog02b, Lin07, Yi00], 
clustering [Kalp01, Keog98, Keog04, Liao05, Lin04], classification [Geur01, Rado10, Wei06], anomaly 
detection [Dasg99, Keog02c, Keog05, Pres09, Yank08], and motif discovery [Cast10, Chiu03, Lin02, 
Minn06, Minn07, Muee09, Muee10, Tang08]. All tasks require that the notion of similarity be defined. 
As a result, similarity search has been an active research area in the last two decades.  

In all of the above astronomical cases, pattern recognition and mining of the time series data falls into 
the usual three categories: supervised learning (classification), unsupervised learning (pattern detection, 
clustering, class discovery, characterization, change detection, and Fourier, wavelet, or principal 
component decomposition), and semi-supervised learning (semi-supervised classification, 
outlier/surprise/novelty/anomaly detection).  For each of these applications, scientific knowledge 
discovery is the goal. Approaches to pattern recognition tasks vary by representation for the input data, 
similarity/distance measurement function, and pattern recognition technique.  In this chapter, we discuss 
the various supervised, semi-supervised, and unsupervised learning techniques, representations, and 
similarity measures commonly used for time series. While the majority of work concentrated on 
univariate time series, we will also discuss the applications of some of the techniques on multivariate time 
series.  

 

2.  Pattern Recognition Approaches  

Previous work on time series pattern recognition focuses on one of the three areas: pattern recognition 
algorithms, efficient time series representations and dimensionality reduction techniques, and similarity 
measures for time series data. 

2.1 Pattern Recognition Algorithms 
Pattern recognition is the process of automatically mapping an input representation for an entity or 

relationship to an output category. The recognition task is generally categorized based on how the 
learning procedure determines the output category. The learning procedure can be supervised (when a 
given pattern is assigned to one of the pre-defined classes, using labeled data to build a model or guide the 
pattern classification), unsupervised (when a given pattern is assigned to an unknown class), or 
semi-supervised (when a given pattern is assigned to one of the pre-defined classes, using both labeled 
and unlabeled data). For supervised learning, or classification, a functional model is often used to map 
observed inputs to output categories. A great deal of model construction techniques have been developed 
for this purpose [Duda00], including decision trees, rule induction, Bayesian networks, memory-based 
reasoning, Support Vector Machines (SVMs), and neural networks.  

Memory-based reasoning methods, such as nearest neighbor, have been successfully used for 
classification of time series data. The Nearest Neighbor (NN) classification algorithm works by 
computing the distance between the object to be classified and each member of the training set [Han00].  
The classification of the object to be classified is predicted to be the same as the classification of the 
nearest training set member.  A common variation of this algorithm predicts the classification of the test 
object to be the most common classification found among the “k” nearest neighbors in the training set 
(k-NN). The 1-NN classifier, with leaving-one-out cross validation, has become the standard method used 
to compare and evaluate the utilities of time series representations and similarity measures [Ding08]. 

Another common choice of classifier is decision tree. A decision tree [Han00] is classic machine 
learning tool that uses a flow-chart-like tree structure, in which an internal node denotes a test on an 
attribute, a branch denotes the outcome on a test, and a leaf node denotes the class label or class 
distribution. By placing the attribute that best distinguishes the data (i.e. the one resulting in the highest 
information gain) at the root, a decision tree induction process recursively partitions the data samples into 
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subsets of samples based on the attribute splitting criterion. The resulting tree can be used to classify 
future incoming samples, and it can also be easily converted to a set of rules that generalize the behaviors 
of the data. While decision trees are defined for real data, attempting to classify time series using the raw 
data would clearly be a mistake, since the high dimensionality and noise levels would result in a deep, 
bushy tree with poor accuracy [Lin07]. In an attempt to overcome this problem, Geurts [Geur01] 
suggested representing the time series as a Regression Tree  (RT), and training the decision tree directly 
on this representation. The technique shows great promise. 

Support Vector Machines (SVMs) [Duda00, Rodr05] are commonly used for constructing 
classification models for high-dimensional representations.  The observations from the training set which 
best define the decision boundary between classes are chosen as support vectors (they support/define the 
decision boundary).  A non-zero weight is assigned to each support vector.  The classification of a test 
object is predicted by computing a weighted sum of similarity function output between the new object 
and the support vectors for each class.  The predicted class is the class with the largest sum, relative to a 
bias (offset) for the decision boundary.  Kernel functions are used to measure the similarity between 
objects.  Common kernel functions for this purpose include the cosine similarity function and the 
Gaussian RBF. SVMs have been used for time series classification by several researchers. 
Chaovalitwongse and Pardalos used SVMs with dynamic time warping kernel for brain activity 
classification [Chao08]. Kampouraki et al. [Kamp09] extracted features from ECG time series using 
statistical methods and signal analysis techniques, and classified the data using SVMs. Eads et al. 
proposed to use genetic algorithms to extract time series features, which are then classified using SVMs 
[Eads02]. 

Artificial Neural Networks (ANN) [Lipp87], also known as neural networks or neural nets, are 
analogous to their namesake, biological neural networks, in that both receive multiple inputs and respond 
with a single output.  ANNs are comprised of connected nodes, called neurons, which are partitioned into 
layers.  Networks may contain an input layer, an output layer, and a hidden inner layer, and additional 
hidden layers may be added to increase the complexity of the network. Weights are assigned to each of 
the links between neurons, and they are updated as part of the learning process.  A simple example of an 
ANN is a perceptron [Rose58], which is a two-class linear classifier that is composed of a single-layered 
neural network.  During training, each example is fed through the network, and the weights are updated 
according to the difference between the actual and expected output.  During testing, the weighted sum of 
the network (the dot product of the instance and the vector of weights) is compared to a bias parameter to 
classify each instance as either a positive or negative instance.  ANNs generalize well to previously 
unseen instances because they map every possible input to some output.  Additionally, they are robust 
because even if a node is faulty or is removed, since the work is distributed across the network, it is still 
possible to achieve good results.  ANNs have been successfully applied to domains such as character 
recognition [Desa10], face detection [Aitk03], intrusion detection [Amin06], speech recognition 
[Dede10], autonomous driving [Pome89], and astronomy [Coll04, Wang09].  In recent years, research has 
shown that constructing an ensemble of neural networks, where the majority vote determines the 
classification, can improve the accuracy of ANNs [Kim07, Kras07, Mink08, Zhou02]. 

Semi-Supervised Learning 
All of the techniques described above are supervised learning techniques, for which training 

examples with known classification labels are used to construct a model to label test examples with 
unknown classification labels.  Semi-supervised learning on the other hand involves using both the 
training examples with known classification labels and the test examples with unknown classification 
labels to construct a model to label the examples with unknown classification labels.  While it’s possible 
to construct a model for labeling future test examples, it’s also possible to construct a model that focuses 
on the current test examples.  Vapnik referred to this as transduction [Vapn98], suggesting that it’s better 
to focus on the simpler problem of classifying the current test examples rather than trying to construct a 
model to future test examples. For time series, Wei and Keogh [Wei06] proposed a semi-supervised 
classification technique based on 1-NN. The algorithm starts by training the classifier using all labeled 
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data. It then classifies unlabeled data, and adds the most confidently classified unlabeled data into the 
training set [Wei06]. This process is repeated until some stopping criterion is reached. This algorithm is 
an example of self-training algorithms [Zhu05]. The authors have shown that their algorithm requires 
only a handful of labeled data to construct an accurate classifier.  

In addition to semi-supervised classification, semi-supervised learning is also applicable to anomaly 
detection and novelty discovery, since we often do not know what’s anomalous in advance. In fact, 
anomaly detection is often regarded as a binary classification problem. A simple idea for detecting 
anomalous behavior in time series is to examine previously observed normal data and build a model of it. 
Data obtained in the future can be compared to this model and any lack of conformity can signal an 
anomaly [Das99]. In order to achieve this, Keogh et al combined a statistically sound scheme with an 
efficient combinatorial approach [Keog02c]. The statistically scheme is based on Markov chains and 
normalization. Markov chains are used to model the “normal” behavior, which is inferred from the 
previously observed data. The time- and space-efficiency of the algorithm comes from the use of a suffix 
tree as the main data structure. Each node of the suffix tree represents a pattern. The tree is annotated with 
a score obtained comparing the support of a pattern observed in the new data with the support recorded in 
the Markov model. Model-free anomaly detection approaches have also been proposed. In a previous 
work, we defined time series discords to be subsequences of a longer time series that are maximally 
different from all the rest of the subsequences [Keog06b]. They thus capture the sense of the most unusual 
subsequence within a time series. Time series discords are superlative anomaly detectors, able to detect 
subtle anomalies in diverse domains. In fact, in a recent extensive empirical study, Vipin Kumar 
concluded “..on 19 different publicly available data sets, comparing 9 different techniques time series 
discord is the best overall technique among all techniques” [Chan09]. 
 

Unsupervised Learning 
Unlike supervised or semi-supervised learning, unsupervised learning (e.g. clustering) involves only 

unlabeled data. One of the most widely used clustering approaches is hierarchical clustering, due to the 
great visualization power it offers [Keog98]. Hierarchical clustering produces a nested hierarchy of 
similar groups of objects, according to a pairwise distance matrix of the objects.  One of the advantages of 
this method is its generality, since the user does not need to provide any parameters such as the number of 
clusters.  However, its application is limited to only small datasets, due to its quadratic (or higher order) 
computational complexity.  

A faster method to perform clustering is k-Means [McQu67, Brad98]. Table 1 summarizes the 
algorithm.  

Table 1. An outline of the k-Means algorithm 

Algorithm k-Means 

1 Decide on a value for k. 

2 Initialize the k cluster centers (randomly, if necessary). 

3 Decide the class memberships of the N objects by 
assigning them to the nearest   cluster center. 

4 Re-estimate the k cluster centers, by assuming the 
memberships found above are correct. 

5 If none of the N objects changed membership in the last 
iteration, exit. Otherwise goto 3. 

 
The basic intuition behind k-Means (and in general, iterative refinement algorithms) is the 

continuous reassignment of objects into different clusters, so that the within-cluster distance is minimized. 
Therefore, if x are the objects and c are the cluster centers, k-Means attempts to minimize the following 
objective function: 
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The k-Means algorithm for N objects has a complexity of O(kNrD) [McQu67], where k is the number of 
clusters specified by the user, r is the number of iterations until convergence, and D is the dimensionality 
of the points. The shortcomings of the algorithm are its tendency to favor spherical clusters, and its 
requirement for prior knowledge on the number of clusters, k. The latter limitation can be mitigated by 
attempting all values of k within a large range. Various statistical tests can then be used to determine 
which value of k is most parsimonious. Since k-Means is essentiality a hill-climbing algorithm, it is 
guaranteed to converge on a local but not necessarily global optimum.  In other words, the choices of the 
initial centers are critical to the quality of results. Nevertheless, in spite of these undesirable properties, 
for clustering large datasets of time-series, k-Means is preferable due to its faster running time.  

Another well-known partitional clustering algorithm is the EM (Expectation-Maximization) 
algorithm. The EM algorithm with Gaussian Mixtures is very similar to k-Means. As with k-Means, the 
algorithm begins with an initial guess as to the location of the clusters.  The steps are: (1) the data are 
apportioned into separate localized data elements weighted according to the cluster models (the "E" step); 
and then (2) the parameters of the cluster models (location, width, etc.) are fit to these data elements by 
maximizing some goodness-of-fit quantity (the "M" step); (3) steps (1) and (2) are repeated until the 
model converges.  In some cases convergence is slow or otherwise problematic.  

The major distinction between EM and k-Means is that k-Means attempts to model the data as a 
collection of k spherical regions, with every data object belonging to exactly one cluster. In contrast, EM 
models the data as a collection of k Gaussians, with every data object having some degree of membership 
in each cluster (in fact, although Gaussian models are most common, other distributions are possible). The 
major advantage of EM over k-Means is its ability to model a much richer set of cluster shapes. This 
generality has made EM (and its many variants and extensions) the clustering algorithm of choice in data 
mining [Demp77] and bioinformatics [Lawr90]. 

Specialized clustering algorithms have been proposed for time series. For example, Lin et al [Lin04] 
proposed an incremental and iterative version of the k-Means algorithm called i-kMeans. The algorithm 
works by leveraging off the multi-resolution property of wavelets, which mitigates the dilemma of initial 
centers selection for k-Means [Lin04]. They further extended the approach to a general framework, which 
works for any iterative refining clustering algorithms (such as EM), with any multi-resolution 
decomposition methods. Rodriguez et al [Rodr06] proposed a hierarchical clustering algorithm for time 
series data streams. The algorithm incrementally constructs a tree-like hierarchy of clusters, using a 
correlation-based dissimilarity measure between time series [Rodr06]. 
 
2.2  Time Series Representations and Symbolic Aggregate approXimation (SAX)  

With the rapid growth of storage technology, datasets from practical applications typically do not fit 
in main memory, and disk I/O tends to be the bottleneck for any data mining task. The sheer volume of 
time series databases makes sequential scanning of the databases infeasible for any data mining and 
retrieval tasks. A simple generic framework for time series data mining has thus emerged [Lin07]. It 
works by (1) approximating the time series data with some representation that typically fits in the main 
memory, (2) approximately solving the problem at hand using the representation, and (3) validating the 
results by making (hopefully) a small number of disk accesses. 

It is obvious that the quality of the framework heavily relies on the quality of the representation. If 
the representation is faithful to the original data, then the approximate solutions obtained from Step 2 will 
be close to the actual solutions. Towards this end, many high-level time series representations have been 
proposed, including Discrete Fourier Transform (DFT) [Agra93], Discrete Wavelet Transform (DWT) 
[Chan99], Piecewise Linear Aggregate (PLA) and Piecewise Constant models (PAA) [Keog01], and 
Adaptive Piecewise Constant Approximation (APCA) [Keog01]. Figure 3 illustrates a hierarchy of the 
various representations in the literature.  
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Figure 3. A hierarchy of all the various time series representations in the literature. 

 
These representations allow fast access to the “approximation” version of the data via some index 

structure, so as to relieve the burden associated with disk I/Os. In addition, since time series data are 
typically very high dimensional and noisy, it is essential to reduce its dimensionality via one of these 
representations. In fact, even though most of the representations use only a few coefficients to represent 
the data, they often result in better accuracy than the raw data due to the implicit noise removal.  

One important feature of most of the representations is that they are real valued. This limits the 
algorithms, data structures and definitions available for them. Such limitations have led researchers to 
consider using a symbolic representation for time series. In addition, there is an enormous wealth of 
existing algorithms and data structures that allow the efficient manipulations of strings, e.g. hashing, 
Markov models, suffix trees, decision trees etc. Such algorithms have received decades of attention in the 
text retrieval community, and more recent attention from the bioinformatics community.  

While many symbolic representations of time series have been introduced over the past decades, they 
suffer from two fatal flaws: (1) The dimensionality of the symbolic representation is the same as the 
original data, and virtually all data mining and indexing algorithms degrade exponentially with 
dimensionality. (2) Although distance measures can be defined on the symbolic approaches, these 
distance measures have little correlation with distance measures defined on the original signals. In our 
previous work, we introduced a symbolic representation for time series called Symbolic Aggregate 
approXimation (SAX) [Lin07] that remedies the problems mentioned above. More specifically, SAX is 
both time- and space-efficient, and we can define a distance measure that guarantees the distance between 
two SAX strings to be no larger than the true distance between the original time series. This 
lower-bounding property is at the core of almost all algorithms in time series data mining [Falo94]. It 
plays an important role in indexing and similarity search, since it’s the essential key to guarantee no false 
dismissal of results. In general, without a lower-bounding distance measure, one cannot meaningfully 
compute the approximate solution in the representation space, since the approximate solution obtained 
may be arbitrarily dissimilar to the true solution obtained from the original data.  

SAX performs the discretization by dividing a time series into w equal-sized segments. For each 
segment, the mean value for the points within that segment is computed. Aggregating these w coefficients 
forms the Piecewise Aggregate Approximation (PAA) representation of T. Each coefficient is then 
mapped to a symbol according to a set of breakpoints that divide the distribution space into α 
equiprobable regions, where α is the alphabet size specified by the user. If the symbols were not 
equiprobable, some of the symbols would occur more frequently than others. As a consequence, we 
would inject a probabilistic bias in the process. It has been noted that some data structures such as suffix 
trees produce optimal results when the symbols are of equiprobability [Croc94]. The discretization steps 
are summarized in Figure 4.  
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Figure 4: A time series is discretized by first obtaining a PAA approximation and then 
using predetermined breakpoints to map the PAA coefficients into SAX symbols. In the 
example above, with n = 128, w = 8 and a = 3, the time series is mapped to the word 
baabccbc 

 
Preliminary results show that SAX is competitive compared to other time series representations 

[Lin07]. SAX has had a large impact in both industry and academia. It has received a large number of 
references, and it has been used worldwide in many domains1. To name a few, Chen et al. convert 
palmprint to time series, then to SAX, and then perform biometric recognition [Chen05b]. Murakami et 
al. use SAX to find repeated patterns in robot sensors [Mura04]. Pouget et al. use SAX for the detection 
of multi-headed stealthy attack tools [Poug06]. McGovern et al. use SAX for the prediction of severe 
weather phenomena such as tornados, thunderstorms, hail, and floods [McGo10].  

Many researchers have introduced various time series data mining algorithms that use SAX as a 
representation. For example, Bakalov et al. use SAX to do spatiotemporal trajectory joins [Baka05]. 
Many motif discovery [Cast10, Chiu03, Lin02, Minn06, Minn07, Muee09, Muee10, Tang08] and 
anomaly detection [Dasg99, Keog02c, Keog05, Pres09, Yank08] algorithms have been proposed that 
utilize SAX as the representation. 

While there have been dozens of applications of SAX to diverse problems, there has been 
surprisingly little work to augment or extend the SAX representation itself. We attribute this to the 
generality of the original framework; it simply works very well for most problems. Nevertheless, there 
have been some SAX extensions, which we consider below. Lkhagva et al. augment each SAX symbol by 
incorporating the minimum and maximum value in the range [Lkha06]. Thus each SAX segment contains 
a triplet of information, rather than a single symbol. Very preliminary results are presented which suggest 
that this may be useful in some domains. Bernard Hugueney [Hugu06] has recently suggested that SAX 
could be improved by allowing SAX symbols to adaptively represent different length sections of a time 
series. Just as SAX may be seen as symbolic a symbolic version of the PAA representation, Dr. 
Hugueneys approach may be seen as a symbolic version of the APCA representation [Keog01]. In 
contrast to Hugueneys idea of allowing segment lengths to be adaptive, work by Morchen and Ultsch has 
suggested that the breakpoints should be adaptive [Morc05]. The authors make a convincing case that in 
some datasets this may be better than the Gaussian assumption. Shieh and Keogh introduced iSAX 
[Shie08], the generalization of SAX that allows multiresolution indexing and mining of massive time 
series data.  

To see how SAX compares to Euclidean distance, we ran an extensive 1-NN classification 
experiment and compared the error rates on 22 publicly available datasets2 [Lin07]. Each dataset is split 
to training and testing parts. We use the training part to search the best value for SAX parameters w 
(number of SAX words) and a (size of the alphabet): 

• For w, we search from 2 up to n/2 (n is the length of the time series). Each time we double the 
value of w. 

• For a, we search each value between 3 and 10. 

                                                

1 For a more complete list of papers that extend and use SAX, see http://www.cs.gmu.edu/~jessica/sax.htm 
2 Available online at http://www.cs.ucr.edu/~eamonn/time_series_data/ 
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• If there is a tie, we use the smaller values. 

The compression ratio (last column of next table) is calculated as: , because for SAX 

representation we only need  bits per word, while for the original time series we need 4 bytes (32 
bits) for each value. 

Then we classify the testing set based on the training set using one nearest neighbor classifier and 
report the error rate. The results are shown in Table 1 [Lin07]. From this experiment, we can conclude 
that SAX is competitive with Euclidean distance, but requires far less space. More experiments that 
compare different time series representations can be found in [Ding08]. 

Table 1. 1-NN classification results between SAX and raw data using Euclidean Distance 
Name Number 

of 
Classes 

Size of 
Training 

Set 

Size of 
Testing Set 

Time 
Series 
Length 

1-NN EU 
Error 

1-NN SAX 
Error 

w a Compression 
Ratio 

Synthetic 
Control  

6 300 300 60 0.12 0.02 16 10 3.33% 

Gun-Point  2 50 150 150 0.087 0.18 64 10 5.33% 
CBF 3 30 900 128 0.148 0.104 32 10 3.13% 
Face (all) 14 560 1690 131 0.286 0.330 64 10 6.11% 
OSU Leaf 6 200 242 427 0.483 0.467 128 10 3.75% 
Swedish Leaf 15 500 625 128 0.211 0.483 32 10 3.13% 
50Words 50 450 455 270 0.369 0.341 128 10 5.93% 
Trace 4 100 100 275 0.24 0.46 128 10 5.82% 
Two Patterns 4 1000 4000 128 0.093 0.081 32 10 3.13% 
Wafer 2 1000 6174 152 0.0045 0.0034 64 10 5.26% 
Face (four) 4 24 88 350 0.216 0.170 128 10 4.57% 
lightning-2 2 60 61 637 0.246 0.213 256 10 5.02% 
lightning-7 7 70 73 319 0.425 0.397 128 10 5.02% 
ECG 2 100 100 96 0.12 0.12 32 10 4.17% 
Adiac 37 390 391 176 0.389 0.890 64 10 4.55% 
Yoga 2 300 3000 426 0.170 0.195 128 10 3.76% 
Fish 7 175 175 463 0.217 0.474 128 10 3.46% 
Plane 7 105 105 144 0.038 0.038 64 10 5.56% 
Car 4 60 60 577 0.267 0.333 256 10 5.55% 
Beef 5 30 30 470 0.467 0.567 128 10 3.40% 
Coffee 2 28 28 286 0.25 0.464 128 10 5.59% 
Olive Oil 4 30 30 570 0.133 0.833 256 10 5.61% 

 

2.3  Similarity Measure  
Another active area of research in time series data mining is similarity measure, since all tasks, 

including classification and clustering, require that the notion of similarity be defined. As a result, many 
distance/similarity measures have been proposed for time series data. We start by defining Dist(A, B), the 
distance between two objects A and B. 

Definition 2. Distance: Dist is a function that has two objects A and B as inputs and returns a 
nonnegative value R, which is said to be the distance from A to B.  

Each time series is normalized to have a mean of zero and a standard deviation of one before calling 

⎡ ⎤
32
log2
×

×

n
aw

⎡ ⎤a2log



11 

  

the distance function, since it is well understood that in virtually all settings, it is meaningless to compare 
time series with different offsets and amplitudes [Keog02]. It should be noted that not all similarity 
measures are distance metrics. For a function calculating the similarity/dissimilarity between the time 
series A and B to qualify as a distance metric, it must satisfy the following conditions [Keog04b]: 

 
1. Symmetry  D(A,B) = D(B,A)  
2. Constancy  D(A,A) = 0  
3. Positivity  D(A,B) = 0 if and only if A = B  
4. Triangle Inequality D(A,B) <= D(A,C) + D(B,C)  

If a similarity measure satisfies the requirements to be a distance metric, then it can be used to index 
the time series in a database, which makes queries (e.g. searching for the nearest neighbor) more efficient.  

Similarity measures can be categorized, based on how features are extracted and how similarity is 
determined, into shape-based similarity and structure-based similarity. The former determines the 
similarity of two time series by comparing their individual point values, whereas the latter looks at the 
higher-level structures. We discuss the two kinds of similarity in more details in the following sections. 
 
2.3.1 Shape-Based Similarity 

Given two time series Q and C, their shape-based similarity can be determined by comparing local 
point values. By far the most common distance measure for time series is the Euclidean distance. 
Assuming that Q and C are of the same length n, Eq. 2 defines their Euclidean distance. 

                                           (2) 

The simplicity and efficiency of Euclidean distance makes it the most popular distance measure in 
data mining, and it has the advantage of being a distance metric. However, a major drawback for 
Euclidean distance is that it is very brittle. It requires that both input sequences be of the same length, and 
it is sensitive to distortions, e.g. shifting, along the time axis. Such a problem can generally be handled by 
elastic distance measures such as Dynamic Time Warping (DTW) [Keogh02b] and Longest Common 
SubSequence (LCSS) [Vlac02]. 

DTW searches for the best alignment between two time series, attempting to minimize the distance 
between them. It is typically implemented using dynamic programming, and an example implementation 
is given below: 
 

Table 2. An algorithm that calculates the DTW similarity between two time series, A[0..n] and 
B[0..m], using some distance measure, D(x,y). 

Algorithm DTW(A, B) 
1. Initialize a matrix dtw[0...n][0..m] with all values 0 
2. for i = 1 to n 
3.      for j = 1 to m 
4.           dtw[i][j] = D(A[i],B[j]) + min(dtw[i-1][j], dtw[i][j-1], dtw[i-1][j-1]) 
5.      endfor 
6. endfor 
7. return dtw[n][m] 

 
Figure 5 demonstrates the difference between Euclidean distance and DTW. Note that with 

Euclidean distance, the dips and peaks in the pair of time series are mis-aligned and therefore not 
matched, whereas with DTW, the dips and peaks are aligned with their corresponding points from the 
other time series.  

Some global constraint on the warping path is typically specified to restrict the warping paths. The 
advantages of using a global constraint are two-fold: (1) it produces more intuitive alignment, and (2) it 
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speeds up the computation by narrowing the search space. A large warping window causes the search to 
become prohibitively expensive, as well as possibly allowing meaningless matching between points that 
are far apart. On the other hand, a small window might prevent us from finding the best solution. It has 
been shown by Ratanamahatana and Keogh [Rata04] that by learning the best size and shape of the global 
constraint for different datasets, higher accuracy can be achieved. 

While DTW is a more robust distance measure than Euclidean Distance, it is also a lot more 
computationally intensive than Euclidean Distance, even with the presence of a global constraint. Keogh 
proposed an indexing scheme for DTW that allows faster retrieval [Keog02b]. Nevertheless, DTW is still 
at least several orders slower than Euclidean distance. 

 
Figure 5. (Left) Alignment for Euclidean distance between two sequence data. (Right) 
Alignment for Dynamic Time Warping distance between two sequence data. 

 
Notice that DTW requires a distance measure for comparing two observations, one from each time 

series; typically the L1 or L2 norm is used. 
LCSS, as its name suggests, finds the length of the longest matching subsequence. Originally created 

for discrete values, it can be adapted to continuous values in time series by redefining a “match” to be 
whenever the difference between two observations in the time series is below a given threshold. Also 
typically implemented using dynamic programming, the algorithm is given below: 

 
Table 3. An algorithm that calculates the LCSS between two time series, A[0..n] and B[0..m], using 
some distance measure, D(x,y), and a threshold, δ. 

Algorithm LCSS(A, B) 
1. Initialize a matrix lcss[0...n][0..m] with all values 0 
2. for i = 1 to n 
3.      for j = 1 to m  
4.           if (D(A[i],B[j]) < δ)  
5.                lcss[i][j] = lcss[i-1][j-1] + 1 
6.           else 
7.                lcss[i][j] = max(lcss[i][j-1], lcss[i-1,j]) 
8.           endif 
9.      endfor 
10. endfor 
11. return 1 - lcss[n][m] / min(n,m) 

 
Compared to Euclidean distance, DTW and LCSS are more elastic, supporting local time shifts and 

variations in lengths of pairs of time series, but they are also more expensive to compute. Of the three 
measures, LCSS is the least sensitive to noise because it includes a threshold to define a “match.”   

Note that the above definition of LCSS works well for univariate time series, where there are 
observations through time of only one variable. However, multivariate time series can encounter a 
situation where one threshold does not hold well across all variables.  Thus, we introduce a variation on 
LCSS, which we call LCSS Relaxed, in our experimental results.  In this variation, to constitute a 
“match” for multivariate time series, only a percentage of variables must “match” according to the given 
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threshold. 
Since DTW and LCSS do not satisfy the triangle inequality, they are not distance metrics. Other 

elastic distance metrics such as Edit distance with Real Penalty (ERP) [Chen04] and Time-Warp Edit 
Distance (TWED) [Mart09] have been proposed. Both ERP and TWED have their roots in the classic 
string edit distance, which calculates the minimum number of insertions, deletions, and substitutions 
required to transform one string into another. ERP calls an inserted or deleted element to be a ‘gap’ in the 
opposing time series and it defines a constant, g, to use in calculating the penalty for gaps. 

Given two time series, A[0..n] and B[0..m], and a constant g, ERP is determined by using Eq. 3 as 
the recursive formula for dynamic programming.  
 

                  (3) 
 

A feature of particular interest for TWED is that it can account for time stamp differences between 
each observation. That is, each observation in the time series is taken at a different moment in time, and 
while other measures assume observations were taken at a consistent sampling rate, TWED can account 
for inconsistent observations. This makes it possible to compare time series with irregular or inconsistent 
sampling rates or missing values. In addition to using a similar gap penalty as ERP, TWED also defines a 
constant, λ, which controls the stiffness of elastic matching. 

Using dynamic programming, TWED is determined by Eq. 4, where Dist is a distance measure (e.g. 
Dist(a, b) = | a – b | + λ | ta – tb | , where ti is the timestamp for observing instance i in time series I) 

 

     (4) 
 
 
Experimental Results. Several studies that compare time series similarity measures have been performed 
[Ding08, Keog02, Keog06a]. Most of them focus on univariate time series. In this chapter, we compare 
the various similarity measures discussed above on multivariate time series classification. Five time series 
datasets were chosen, and Table 4 shows the characteristics of the datasets. 
 

Table 4. Important Features of Datasets 

 AUSLAN3 Japanese 
Vowels4 

Wafer5 ECG6 Star Light 
Curve7 

                                                

3 M. Kadous. Australian Sign Language Signs (High Quality) Data Set. The UCI KDD Archive, 26 February 2002. 
http://archive.ics.uci.edu/ml/databases/auslan2/ 
4 M. Kudo, J. Toyama, M. Shimbo. Japanese Vowels. The UCI KDD Archive, 13 June 2000. 
http://archive.ics.uci.edu/ml/databases/JapaneseVowels/ 
5 R. Olszewski.  Wafer Database. Carnegie Mellon University, 8 October 2001. http://www.cs.cmu.edu/~bobski/ 
6 R. Olszewski.  ECG Database. Carnegie Mellon University, 8 October 2001. http://www.cs.cmu.edu/~bobski/ 
7 Dragomir Yankov, Eamonn Keogh, and Umaa Rebbapragada. 2008. Disk aware discord discovery: finding 
unusual time series in terabyte sized datasets. Knowl. Inf. Syst. 17, 2 (November 2008), 241-262. 
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Number of 
variables 

22 12 6 2 1 

Length of 
time series 

57 (avg) 7-29 104-198 39-152 1024 

Number of 
classes 

20 (subset of 
original) 

9 2 2 3 

Size of 
Training set 

540 270 1194 200 1024 

Size of Test 
set8 

(use 9 fold cross 
validation) 

370 (use 10 fold 
cross validation) 

(use 10 fold 
cross validation) 

(use 10 fold 
cross validation) 

 
 
For each dataset, classification was performed using the k-NN algorithm with k=3, and the error rate (the 
percentage of incorrectly recorded instances) was recorded and shown in the table below. For each 
dataset, the numbers in bold face denote the best (smallest) error rate. 
 

Table 5. Error Rates for each Similarity Measure by Dataset 

 AUSLAN  Japanese 
Vowels 

Wafer   ECG Star Light 
Curve 

Euclidean .1722 .3838 .08333   .1778 .1767 

DTW (full) .1556 .1063 .0909   .1889 .1647 

DTW (window) .1444 .1063 .0656   .1722 .1566 

EDR .4167 .1417 .3131   .2000 .1606 

ERP .2778 .2970 .0556   .1944 .3936 

LCSS .4185 .1226 .1363   .1278 .1687 

LCSS Relaxed  .2259 .1172 .1091   .1278 .1687 

TWED .1741 .1063 .0318   .1278 .1606 
 

Varations on the DTW and LCSS algorithms were compared. Specifically, DTW was performed both 
with and without a specified warping window size. Consistent with the observation made by 
Ratanamahatana and Keogh [Rata04], the results indicate that imposing a window constraint on the 

                                                

8 Note that some data sets already had the training and test sets divided.  The others used cross validation (divide the 
data into groups and leave one group out for testing and train on the other groups). 
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search for the best alignment not only increases the algorithm’s efficiency but has the same or better 
performance. Additionally, the results for the variation on LCSS (LCSS Relaxed), described in the 
previous section, demonstrate that relaxing the definition of a “match” has beneficial results. 

As it turns out, Euclidean distance is indeed just as good as other more complex measures, and it is 
the fastest, giving it an added advantage. In fact, it had similar performance to DTW (with a window 
constraint) for four out of five datasets. Thus, it is recommended as a valid and computationally 
inexpensive option for measuring similarity. Our results are consistent with those reported for univariate 
time series by other researchers [Keog06a, Ding08]. 

The error rates for DTW with a warping window were consistently less than or equal to the full DTW 
(no window).  This shows that allowing any observation to match any other observation leads to 
misclassification.  The intuition behind this is that while there may be time shifts between two similar 
time series, this time shift is local.  That is, if the two time series are truly similar, then an observation at 
the beginning of the first should not be matching up with an observation at the end of the second. 
Otherwise, the two time series are not truly similar, but DTW (without a window) will still give these 
series an advantage by minimizing the penalty. Therefore, DTW should be used with a window 
constraint. Again, the results we obtained on multivariate time series are consistent with those reported by 
Ratanamahatana and Keogh [Rata04], for univariate time series.  

For the similarity measures of the edit distance variety (i.e. EDR, ERP, and TWED), TWED appears 
to be the best measure. In fact, for multivariate time series, it appears that TWED is a better option than 
the non-constraint DTW in most cases. This is most likely due to the fine-tuned penalty system TWED 
provides. However, constrained DTW performs just as well as TWED (best case for three out of five 
datasets).  
 
2.3.2 Structural Similarity 

Shape-based similarities work well for short signals or subsequences; however, for long time series 
data (generally speaking, with a length of hundreds or more), they produce poor results. To illustrate this, 
we extracted subsequences of length 2048 from six different records on PhysioNet [Goldberger97], an 
online medical archive containing digital recordings of physiological signals. Signals #1~3 are 
measurements on respiratory rates, and signals #4~6 are ECG signals. Visually, these two vital signs 
readouts are readily distinguishable (Figure 6), however, if we try to cluster them using Euclidean 
distance as the distance measure, the result is disappointing. Figure 6 shows the hierarchical clustering 
results using Euclidean distance. The dendrogram illustrates that the only datasets that are correctly 
clustered are datasets #5 and #6 (i.e. they share a common parent node).  
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Figure 6.  Result of hierarchical clustering using Euclidean distance on raw data. In fact, using DTW produces 
the same result. 

This is a surprising result, as these two sets of signals are visually very different. One reason for the 
poor clustering result could be due to the imperfect alignment of data points between signals from the 
same set. In addition, the presence of anomalous points, as shown in the beginning of dataset #4, could 
also throw off the distances computed. Dynamic time warping may be used to mitigate the first issue to a 
certain extent. However, in this example, DTW does not seem to offer any improvement; clustering using 
DTW produces a similar dendrogram as the one shown in Figure 5. Furthermore, the high computational 
cost for dynamic time warping makes it a less than desirable choice of distance measure for large datasets. 

A more appropriate alternative to determine similarity between long time series is to measure their 
similarity based on higher-level structures. Compared to the large amount of work on shape-based 
similarity, there is relatively little work on finding structural similarity. This is an unfortunate oversight, 
as the structural approach is particularly useful in applications where domain experts compare signals 
based on the arrangement of morphological events present in the signals [Olsz01c], e.g., radar signal 
detection and speech recognition. In addition, while some of the shape-based approaches work well for 
short time series data, they typically fail to produce satisfactory results when the time series are long.  

Several structure- or model-based similarity measures have been proposed that extract global features 
such as autocorrelation, skewness, and model parameters from data [Nano01, Wang06]. Deng et al 
[Deng97] proposed learning ARMA model on the time series, and using the model coefficients as the 
feature. Ge and Smyth [Ge00] proposed a deformable Markov Model template for temporal pattern 
matching, in which the data is converted to a piecewise linear model. Nanopoulos et al [Nano01] 
proposed extracting statistical features of time series, and classifying the data using multi-layer 
perceptron (MLP) neural network.  

Keogh et al. [Keog04] proposed a compression-based distance measure that compares the 
co-compressibility between datasets. Motivated by Kolmogorov Complexity [Keog04, Li97] and 
promising results shown in similar work in bioinformatics and computational theory, the authors devised 
a new dissimilarity measure called CDM (Compression-based Dissimilarity Measure). Given two datasets 
(strings) x and y, their compression-based dissimilarity measure can be formulated as follows: 
 

      (5)
 

 
where C(x) and C(y) are the compressed sizes of the string x and y, respectively, and C(xy) is the 

€ 

CDM(x,y) =
C(xy)

C(x)+C(y)
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compressed size of the concatenated string x+y. The compression-based distance measure is shown to 
produce superior results compared to other existing structural similarity approaches [Keog04].  
 
Bag-of-Patterns Representation (BOP) 
 

In a previous work, we proposed a histogram-based representation that allows computation of 
similarity between data based on high-level structure, using a representation similar to the one widely 
used for text data [Lin09]. In the Vector Space Model [Salt75], a document is represented as a vector: 
each dimension of the vector corresponds to one word in the vocabulary, and its value is the (relative) 
frequency of occurrences for the corresponding word in the document. As a result, a p-by-q 
term-document matrix X is constructed, where p is the number of unique terms in the corpus, q is the 
number of documents, and each element Xi,j is the frequency of the ith word occurring in the jth document. 
This “bag of words” representation works well for documents. It is able to capture the structure of a 
document, without knowing the exact locations or ordering of the words within. 

We proposed to represent time series data in a similar fashion, i.e., as a combination of patterns. 
However, there are two challenges for representing real-valued time series as a “bag of patterns”: (1) how 
to define patterns, and (2) how to find these patterns. Since time series are composed of real-valued data 
points, unlike textual data, there are no clear “delimiters” between patterns. In our work, we used a simple 
sliding-window scheme and the SAX representation to overcome these two challenges.  

The algorithm works as follows. First, we construct the pattern “vocabulary” for our time series 
database. The easiest way to achieve this is to extract subsequences of a fixed length n, normalize the 
subsequences so they have a mean of zero and standard deviation of one, and then convert them to SAX 
strings. As a result, we obtain a set of strings, each of which corresponds to a subsequence in the time 
series. (Recall that SAX has two parameters, α and w.) If we choose α = 4 and w = 8, the resulting 
dictionary size is αw = 48 = 65,536. Despite its apparent size, the matrix is likely to be sparse, as with 
textual data. In our experiments, we find that only about 10% of all strings have some subsequence 
mapped to them [Lin09]. Therefore, we can eliminate words that never occur in any data, or store only the 
list of occurring SAX strings for each time series.  

The construction of the bag-of-patterns matrix is straightforward. The matrix M is a SAX-sequence 
matrix, analogous to term-document matrices used for information retrieval and text mining. Each row i 
denotes a SAX string (that is, a pattern) from the pattern vocabulary; each column j denotes a time series; 
and each Mi,j stores the frequency of string i occurring in time series j. The matrix is a histogram of all 
pattern counts, which provides a summary for the time series dataset. Once we build the matrix M, we can 
then use any applicable distance measures, typically Euclidean distance, or dimensionality reduction 
techniques to compute the similarity between them.  

In Figure 6, we showed a simple example where both Euclidean Distance and Dynamic Time 
Warping on the raw data fail to find the correct clusters. Figure 7 shows the clustering results on the same 
datasets, using the bag-of-patterns approach. Note we are now clustering on the transformed time series, 
or the “histogram” of the patterns. For clarity, the original, corresponding time series are also plotted on 
the left of the dendrogram. We can see clearly that the time series clustered together have similar pattern 
distribution, which explains why certain datasets are grouped together. 
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Figure 7. New clustering result on the same data shown in Figure 6. This time, we use our frequency-based, bag-of-patterns 
approach, and combine it with Euclidean distance. The two clusters are well separated. 

  
To see how the algorithm does on long time series, and on datasets with less diverse structures, 

Figures 8 and 9 below shows the hierarchical clustering results on 20 ECG records obtained from 
PhysioNet [Gold97]. This dataset, containing data from patients with various heart conditions, forms four 
clusters. Each record is of length 15,000. Figure 7 show the clustering results using Euclidean distance. 
We also tried using DTW on the raw data, as well as using Euclidean distance on DFT coefficients, with 
DFT dimensionality ranging from 100 to 1000, and obtained similarly dissatisfactory results. 

 
 
Figure 8. Clustering result on raw ECG data using Euclidean Distance. Only 9 datasets are correctly clustered (#11, 
#12, #14, #15, #16-#20). 

For comparison, the clustering results using the bag-of-patterns approach are shown in Figure 9 
below. As the figure illustrates, all four clusters are cleanly and well separated. In addition, the histograms 
(of the pattern counts, shown in the middle of the plot) reveal the structure of the data, and provide insight 
for the clustering results. Note that Keogh et al. reported similar results using the compression-based 
algorithm, CDM [Keog04]. 
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Figure 9. Clustering result on the same ECG datasets, using our bag-of-patterns approach. All data are clustered 
correctly. This figure is best viewed in color. 
 

To demonstrate the effectiveness on 1-nearest-neighbor classification, we extracted 250 records from 
the PhysioNet archive [Gold97]. Each record contains 2048 points. These records are extracted from 
various databases containing different vital signs, or patients with different heart conditions. We separated 
the records into 5 classes, and labeled them according to the databases that they are extracted from. We 
use the leave-one-out cross validation, and count the number of misclassified objects, mc. The error rate is 
the ratio of mc and the total number of objects (i.e. 250). For this experiment, we also compared with 
Dynamic Time Warping. The improvement is astounding. The error rate of 0.004 means that there is only 
1 misclassified object, out of 250 objects. 
 

Table 6. Classification error rates on three different methods. Our method shows a drastic improvement. 

 Raw data + Euclidean 
distance 

Raw data + 
DTW 

Bag of Patterns representation + 
Euclidean distance 

Error rate 0.56 0.272 0.004 
  

The results shown above demonstrate that the structure-based similarity measure has the potential of 
distinguishing different datasets, even when the differences in structures are subtle. Unlike a distance 
measure that computes point-to-point distances, it captures the global structure of the data consisting of an 
unordered set of local features, rather than just local differences. This time-invariant feature is useful if 
we are interested in the overall structures of the time series. At the same time, some orderings are 
preserved within subsequences.  
 
3. Astronomical Applications: Current and Future 
 
 As described in Section 1, astronomical time series mining includes supervised, unsupervised, and 
semi-supervised learning applications (see Bloom & Richards chapter in this book).  Classification of 
stars and other phenomena into one of the known types of variability (described in Section 1) is a very 
common and traditional astronomy application [Bloo08].  Usually the first step is to determine the type of 
variability (e.g., periodic, transient, stochastic) and then to determine the specific astrophysical class of 
object within that variability type.  For example, classification of supernovae of different types is a very 
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important science objective of many large sky surveys, since distant supernovae in far away galaxies 
assist in the measurement of the Dark Energy content of the Universe and thereby contribute to our 
understanding of the origin and ultimate fate of the cosmos.  Pattern recognition and detection are critical 
steps in identifying and classifying observed supernovae into known classes, since supernovae of a 
specific type (Type Ia) are most useful for the cosmological studies.  

Unsupervised learning applications are also critical.  These include early characterization and 
description of transients (e.g., early detection of an exploding supernova), discovery of new classes of 
variability, component decomposition and analysis, and changes in the stationarity of a source.  Class 
discovery is one of the great promises of large astronomical sky surveys – the massive quantity of objects 
to be studied and of data to be collected should enable the discovery of a grand number of new classes of 
objects and of astrophysics behaviors.  As in most unsupervised learning applications, the same is true 
here:  similarity measures between different time series are crucial ingredients to the learning and 
discovery phase. 

Semi-supervised learning is applicable to anomaly detection and novelty discovery.  This is an 
enormously important aspect of the large sky surveys, especially the petascale surveys of the future (e.g., 
LSST), since these surveys will generate tens of billions of individual objects’ time series.  These 
enormous time series databases will enable the detection and discovery of extremely rare one-in-a-billion, 
maybe one-in-a-trillion, types of phenomena.  The huge discovery space that remains to be explored 
(Figure 1) bodes well for a vast number of new discoveries in time domain astronomy. 

The LSST will present an unprecedented time series data mining challenge.  The project anticipates 
the detection of approximately one million astronomical events each and every night for 10 years.  These 
events include objects that have changed in brightness since their previous observation, or changed in 
position since their previous observation, or have appeared for the very first time in the night sky.  The 
rapid characterization and probabilistic classification of each of these million events is not only critical to 
the success of the scientific mission of the LSST, but it is a scientific requirement – i.e., the project is 
required to send an event notification to the worldwide astronomical research community within 60 
seconds of detection of an event.  Since there are roughly 1000 image pairs obtained nightly, one pair 
every 40 seconds, each of which containing tens of millions of sources, therefore the project must 
characterize and classify (roughly, probabilistically) about 1000 new events every 40 seconds throughout 
the night, on every night, for 10 years, while also analyzing the time series of all of the tens of millions of 
sources in each image (in order to determine if any of them have changed in brightness or position).  The 
resulting characterizations and classifications are critical inputs to the next phase of scientific discovery – 
astronomical facilities worldwide will conduct follow-up observations on the most scientifically 
interesting objects in the LSST event stream.  Since there are not enough astronomers or astronomical 
facilities in the world to follow up on each of the one million events each night, then intelligent sorting, 
filtering, and prioritizing are required.  The application of informative and scalable time series pattern 
detection and recognition algorithms is consequently essential to the success of the LSST project 
[Born08].  

Finally, we note that the human eye and the human mind are very good at detecting patterns and 
anomalies in data, and time series data are no exception.  So, it is feasible to conceive of a Citizen Science 
project that addresses astronomical time series data.  Such a project has been conceived and it has been 
tentatively named “Light Curve Zoo” (after Galaxy Zoo; see the chapter by Fortson et al. in this book).  In 
Light Curve Zoo, citizen science volunteers would be asked to identify known pre-specified patterns 
(characterizations) or unusual features in light curves (i.e., time series observations of an astronomical 
object).  The database of characterizations and features aggregated from this citizen science project may 
then be subjected to mining and exploration by the research community. The application of the 
similarity-based mining and pattern recognition techniques presented in this chapter will then yield a rich 
harvest of astronomical discovery from the massive LSST event stream and its billions of individual 
source’s time series data. 
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4  Summary  
In this chapter, we discuss different approaches for time series pattern recognition. Approaches to pattern 
recognition tasks vary by representation for the input data, similarity/distance measurement function, and 
pattern recognition technique. We discuss the various pattern recognition techniques, representations, and 
similarity measures commonly used for time series. While most existing time series representations 
proposed in literature are real-valued, in the recent years, the discretization of time series, in particular, 
using SAX, has become a common practice. Many SAX-based algorithms have been proposed. We 
discuss two different types of similarity measures: shape-based and structure-based similarity. While the 
majority of work concentrated on univariate time series, we perform an experimental study on using 
different similarity measures to classify multivariate time series. We conclude that for classifying short 
time series, simple techniques, e.g. k-NN as classifier, Euclidean distance as distance measure, and SAX 
as representation, are just as good as the other more complex approaches, and their efficiency and 
simplicity offer added advantages. For classifying long time series, a structure-based similarity measure 
such as CDM or BOP should be considered. We discuss the applicability of time series pattern 
recognition techniques on astronomy data, as well as the current and future directions for data mining in 
astronomy. 
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