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1 Introduction

| will discuss the emerging area of algorithms for procegsiata streams and associated applications, as an
applied algorithms research agenda. That has its benefxaw be inspired by any application to study
novel problems, and yet be not discouraged by the confinespafticular one. The discussion will be
idiosyncratic. My personal agenda is to beaentist, mathematiciaand engineer all in one. That will
be reflected, some times one more than the others. Art, Nafioreeland Security and other elements will
make a cameo. The tagline is IMAGINE, THINK and DO: one imagimpossibilities and asks questions,
one seeks provable solutions and finally, one builds saigtioThis writeup will present a little of each
in data streaming. (See Barry Mazur’s book for the imagireargl Math [65].) The area has many open
problems.

Let me begin with two puzzles.

1.1 Puzzle 1l: Finding Missing Numbers

Let 7 be a permutation of1,...,n}. Further, letr_; bew with one element missing. Paul shows Carole
elements from set_[i] in increasing ordei, one after other. Carole’s task is to determine the missing
integer. This is trivial to do if Carole can memorize all thembers she has seen thus far (formally, she has
ann-bit vector), but ifn is large, this is impractical. Let us assume she has only afeay O (log n)—bits
of memory. Nevertheless, Carole must determine the misaieger. This starter has a simple solution:
Carole stores

NI S

J<i

which is the missing integer in the end. Each input integéaiiEnone subtraction. The total number of bits
stored is no more thallog n. On the other hand, Carole needs at léast: bits in the worst case. (In fact,
Carole has an optimal algorithm. Sayis a power of2 for convenience. For eadh store the parity sum
of theith bits of all numbers seen thus far. The final parity sum higstae bits of the missing humber.)
Similar solution will work even ifn is unknown, for example by letting = max;<; 7_;[j] each time.
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Paul and Carole have a history. It started with the “twentgsgions” problem solved in [25]. Paul,
which stood for Paul Erdos, was the one who asked questicam®leCis an anagram for Oracle. Aptly, she
was the one who answered questions. Joel Spencer and Patdemdsed Paul and Carole to coincide with
Pusher and Chooser respectively in studying certain chapegan which Carole chose which groups the
chips falls into and Paul determined which group of chipsustp Joel introduced them to me during my
thesis work. | used them in a game in which Paul put coins omghwey pans (panned them!) [6]. In the
puzzle above, Paul permutes and Carole cumulates. IneaMittlle, they will play other P/C roles.

Generalizing the puzzle a little further, let , be = with two elements missing. Most of the students
in my graduate Algorithms class suggested Carole now stote ”(”“) — Y <im2[j] andp = n! —
< m—2[j], giving two equations with two unknown numbers, but Car@la ase far fewer bits tracking

n(n + 1)

g Un+1) ZW il & 5= (n+1)6(2n+1) _Z(ﬂ_ﬂj])Q

J<i J<ti

In general, what is the smallest number of bits needed tdifgahe £ missing numbers im_,? Fol-
lowing the approach above, the problem may be thought of\dadipower sums

Sp(xla ce 7$k’) = Z (xi)pv
i=1--k
forp =1,...,kand solving forz;’s. A different but provably equivalent method usdsmentary symmetric
polynomials Theith such polynomialr;(z1,...,x) is the sum of all possiblé term products of the

parameters, i.e.,
oi(x1,...,x8) = Z Tjy oo Xy,
J1<.<Ji
Carole continuously maintai;’s for the missingk items in fieldF, for primeg > n (and < 2n suffices),
as Paul presents the numbers one after the other (the detaienitted). Since

k
H (z —x;) = Z(—l)laz-(xl, )2

i=1,....k i=0
Carole needs to factor this polynomial #) to determine the missing numbers. No deterministic algort
are known for this problem, but randomized algorithms takeghly O(k? log n) bits and time [23]. The
power sum method is what colleagues typically propose anered The elementary symmetric polynomial
approach comes from [24] where the authors solvestitereconciliation problenin the communication
complexity model. Thesubsetreconciliation problem is related to our puzzle.

Readers may have guessed that they may be a different effsmdution for this puzzle using in-
sights from error correcting codes or combinatorial groesting. Indeed true. We will later reference
anO(klog klog n) bits and time solution; in contrast, no algorithm can v§elog(n/k)) bits in the worst
case.

It is no coincidence that this puzzle contains elements tf daeam algorithms. Generalize it: Paul
presents a multiset of elemerits - - , n with a single missing integer, i.e., he is allowedderesent integers
he showed before; Paul presents updates showing whiclemstéginsert and which to delete, and Carole’s
task is to find the integers that are no longer present; etofhese problems are no longer (mere) puzzles;
they are derived from motivating data stream applications.

1.2 Puzzle 2: Fishing

Doubtless it will be a more inspiring introduction to dateeams if the puzzle was derived from nature. So,
say Paul goes fishing. There are many different fish spéties{1, - - -, u}. Paul catches one fish at a time,
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a; € U being the fish species he catches at time,[j] = [{ai|a; = j, i < t}| is the number of times he
catches the specigsup to timet. Specieg is rare at timet if it appears precisely once in his catch up to
timet. Therarity p[t] of his catch at time is the ratio of the number of raggs to u:

el =1}

u

plt] =

Paul can calculatp|t] precisely with &U-bit vector and a counter for the current number of rare geci
updating the data structure (1) operations per fish caught. However, Paul wants to storeamiyany
bits as will fit his tiny suitcase, i.eo(U), preferablyO(1) bits.

Suppose Paul has a deterministic algorithm to compliteprecisely. Feed Paul any sgtC U of fish
species, and say Paul’s algorithm stores arfhf|) bits in his suitcase. Now we can check if ahg S
by simply feeding Paul and checking[t + 1]: the number of rare itemdecreases by one if and only if
1 € S. This way we can recover entite from his suitcase by feeding differefis one at a time, which is
impossible in general if Paul had only storedsS|) bits. Therefore, if Paul wishes to work out of his one
suitcase, he can not compuyig| exactly. This argument has elements of lower bound proafadan the
area of data streams.

However, proceeding to the task at hand, Paulaaproximatep[t]. Paul picksk random fish species
each independently, randomly with probabilityu at the beginning and maintains the number of times each
of these fish types appear in his bounty, as he catches fishftena@aother. Say [t],..., Xy[t] are these
counts after time. Paul output$|t] = w as an estimator fgs. Since

pr(xll = 1) = L= oy

, we have

Pr(pft] € [plt] — € plt] +€]) = > <k> (p[t])" (L — plt])* .
i€lk(plt]—e) K (pl)+o)

If p[t] is large, say at least/k, p[t] is a good estimator fop[t] with arbitrarily smalle and significant
probability.

As an exercise in doing mathematics while fishing, this nsisseingredienty is unlikely to be large
because presumablyis much larger than the species found at any spot Paul fishiesoshig a random
species froml..u and waiting for it to be caught seems an exercise in, wellifishwe can make it more
realistic by redefining rarity wrt the species Paul in fagssim his catch. Let

_Hilalil=1}
[{J | celd] # 0}
As before, Paul would have to approximatk| because he can not compute it exactly using small number

of bits. Following [88], define a family of hash functiof$ C [n] — [n] (Where[n] = {1,...,n}) to be
min-wise independeritfor any X C [rn] andx € X, we have

v[t]

1
Pr [h(z) = min h(X)] = —
Py, () = min h(X)) =
Paul chooses min-wise independent hash functiohs hs, .. . , b for some parametét to be determined
later and maintaing (t) = min,,, j<¢ hi(a;) at each timef, that is, min hash value of the multi-set
{-..,at—2,a4—1,a;}. He also maintairk countersCi(t),Ca(t),...,Cx(t); Ci(t) counts the number of
times the item with hash value (¢) appears if{. . ., a;—2, a;—1, a; }. Itis trivial to maintain bothh} (¢) and
C;(t) ast progresses and new items are seen. Let
X i1<i<k Cit)=1
Jg = 1 hy G0 =1)]




Notice thatPr(C;(t) = 1) is the probability that;(¢) is the hash value of one of the items that appeared
precisely once imy, ..., a; which equals% = v[t]. Hence,4[t] is a good estimator foty|t]
provided~(t] is large, say at leadt/k. That completes the sketch of Paul’s algorithm.

Itis ironic that Paul has adapted the cumulating task in dhaisn above, which is traditionally Carole’s
shtick. But we are not done. Paul needs to gigk. If Paul resorts to his tendency to permute, i.e., picks
a randomly chosen permutatianover [u] = {1,...,u}, thenh;’s will be min-wise hash functions. And
he will be done. However, it requiré3(u log u) bits to represent a random permutation from the set of all
permutations oveju]. Thus the number of bits needed to store the hash functidmatifit his suitcase!

To overcome this problem, Paul has to do some math. He piclksndyf of approximatemin-hash
functions. A family of hash functiong{ C [n] — [n] is callede-min-wise independeritfor any X C [n]
andz € X, we have .

Pr, 1h(@) = min h(X0)] = 2
Indyk [18] presents a family—set of polynomials ov&F'(u) of degreeO (log(1/¢))—of e-min-wise inde-
pendent hash functions such that any function from thislfaoain be represented usiigflog ulog(1/¢))
bits only and each hash function can be computed efficiently (log(1/¢)) time. Plugging this into the
solution above, Paul us&3(k log ulog(1/¢)) bits and estimates[t] € (1 & ¢)v[t], providedy(t] is large,
that is, at least /k. It will turn out that in applications of streaming intereste need to only determine if
~[t] is large, so this solution will do.

(As an aside, the problem of estimating the rarity is reldted different problem. Consider fishing
again and think of it as a random sampling process. There umkmown probability distributiorP on the
countable set of fish types with being the probability associated with fish typeA catchis a sampleS
of f fishes drawn independently from fish types according to theilution P. Let c[¢] be the number of
timest appears ir5 ands|k| be the number of fish types that appédaimes inS. Consider estimating the
probability of fish typet being the next catch. Elementary reasoning would indidzdeé this probability
is c[t]s[c[t]]/ f. However, it is unlikely that all (of the large number of) fislpes in the ocean are seen in
Paul’'s catch, or even impossible if fish types is infinite. Elnthere are fish typesthat donot appear
in the sample (i.e¢[t] = 0) and they would have probability of being caught next, a conundrum in the
elementary reasoning ffis present in the ocean. Let = 3~,,¢ p;. The problem of estimating: is called
the missing mass problemnin a classical work by Good (attributed to Turing too) [3B]s shown thatn
is estimated by[1]/f, provably with small bias; recall that our rarityis closely related ta[1]/f. Hence,
our result here on estimating rarity in data streams is cépeeident interest in the context of estimating the
missing mass. Those interested in convergence propeftibe Good-Turing estimator should see David
McAllester’s work.)

Once you generalize the fishing—Iletting the numerator beergenerallyl{ j | ¢;[j] < « }| for some
«, letting Carole go fishing too, or letting Paul and Carol@thfish back into the sea as needed—there are
some real data streaming applications [19].

Honestly, the fishing motif is silly: the total number of fighegies in the sea is estimated to be roughly
22000 and anyone can afford an array of as many bits. In the rediitiata streams which | will describe
next, one is confronted with fishing in a far more numerous aiom

1+e).

1.3 Lessons

I have noticed that once something is called a puzzle, pdopleupon the discussion less than seriously.
The puzzle in Section 1.1 shows the case of a data strearreprdbht can be deterministically solved pre-
cisely with O(log n) bits (whenk = 1,2 etc.). Such algoritms—deterministic and exact—are uncomm

in data stream processing. In contrast, the puzzle in Settis solved only up to an approximation using



a randomized algorithm in polylog bits. This—randomized approximate solutions—is more represen-
tative of currently known data stream algorithms. Furthiee, estimation ofy in Section 1.2 is accurate
only when it is large; for smally, the estimatey is arbitrarily bad. This points to a feature that generally
underlies data stream algorithmics. Such features whipheapalgorithmicists need to keep in mind while
formulating problems to address data stream issues willdmeisised in more detail later.

2 Map

Section 3 will describe the data stream phenomenon. | halileedstely avoided specific models here
because the phenomenon is real, models are the means andhamge @ver time. Section 4 will present
currently popular data stream models, motivating scesaiual other applications for algorithms in these
models beyond dealing with data streams.

Section 5 abstracts mathematical ideas, algorithmic tqaks as well as lower bound approaches for
data stream models; together they comprise the foundafitiredheory of data streams that is emerging.
This section is right now skimpy, and | will add to it over timBection 6 discusses applied work on data
streams. It is drawn from different systems areas, and | bemaped them into three categories which may
be useful for a perspective.

Section 7 contains new directions and open problems thed ariseveral research areas when the data
streaming perspective is applied. Some traditional area®igriched, new ones emerge. Finally, in my
concluding remarks in Section 8, | will invoke Proust, shawuystreaming Art, history, and some notes on
the future of streaming. The most important part of this euit is Section 9.

3 Data Stream Phenomenon

The web sitehttp://www.its.bldrdoc.gov/projects/devglossaddta stream.htmbefines a data stream to be
a “sequence of digitally encoded signals used to represémmation in transmission”. We will be a little
more specific. Data stream to me represents input data theat<at a very high rate. High rate means it
stresses communication and computing infrastructure, reay be hard to

e transmit(T) the entire input to the program,
e computg(C) sophisticated functions on large pieces of the inputatate it is presented, and
e store(S), capture temporarily or archive all of it long term.

Most people typically do not think of this level of stress i€@3F capacity. They view data as being stored in
files. When transmitted, if links are slow or communicatiererroneous, we may have delays but correct
data eventually gets to where it should go. If computing pasvemited or the program has high complexity,
it takes long (long longs!) time to get the desired respohsein principle, we would get it. Also, we save
almost all the data we need. This simplified picture of TCSumr@mnents is reasonable because need has
balanced resources: we have produced the amount of dat@¢hablogy could ship, process, store, or we
have the patience to manipulate.

There are two recent developments that have confluenceddoqe new challenges to the TCS infras-
tructure.

¢ Ability to generate automatic, highly detailed data feedsprising continuous updates.

This ability has been built up over the past few decades bheginwith networks that spanned bank-
ing and credit transactions. Other dedicated network mysteow provide massive data streams:



satellite based, high resolution measurement of earthegiesd 118, 113], radar derived meteoro-
logical data [119}, continuous large scale astronomical surveys in optiofiaied and radio wave-
lengths [117], atmospheric radiation measurements [1@8]Ehe Internet is a general purpose net-
work system that has distributed both the data sources dsawéhe data consumers over millions
of users. It has scaled up the rate of transactions tremstydganerating multiple streams: browser
clicks, user queries, IP traffic logs, email data and traffigs| web server and peer-to-peer downloads
etc. Internet also makes it to easier to deploy special Ea;poontinuous observation points that
get aggregated into vast data streams: for example, fiatata comprising individual stock, bond,
securities and currency trades can now get accumulatedrfroltiple sources over the internet into
massive streams. Wireless access networks are now in #shtiid of scaling this phenomenon even
more. In particular, the emerging vision of sensor netwardshbines orders of more observation
points (sensors) than are now available with wireless amwarking technology and is posited to
challenge TCS needs even more. Oceanographic, bio, seaswhigecurity sensors are such emerging
examples.

¢ Need to do sophisticated analyses of update streams inreahtime manner.

With traditional datafeeds, one modifies the underlyingadat reflect the updates, and real time
queries are fairly simple such as looking up a value. Thisue for the banking and credit transac-
tions. More complex analyses such as trend analysis, fetiagaetc. are typically performed offline
in warehouses. However, the automatic data feeds that ajenerodern data streams arise out of
monitoring applications, be they atmospheric, astronamitetworking, financial or sensor-related.
They need to detect outliers, extreme events, fraud, ioimusinusual or anomalous activity, etc.,
monitor complex correlations, track trends, support esgitiry analyses and perform complex tasks
such as classification, harmonic analysis etc. These aeediitical tasks in each of these applica-
tions, more so in emerging applications for homeland sgguand they need to be done in near-real
time to accurately keep pace with the rate of stream updattsecurately reflect rapidly changing
trends in the data.

These two factors uniquely challenge the TCS needs. We inpQten Science community have tradi-
tionally focused on scaling wrt to size: how to efficiently miyaulate large disk-bound data via suitable data
structures [15], how to scale to databases of petabyteg, [8¥ithesize massive datasets [7], etc. However,
far less attention has been given to benchmarking, studyamfprmance of systems under rapid updates
with near-real time analyses. Even benchmarks of datab@seactions [115] are inadequate.

There are ways to build workable systems around these TARrhes. TCS systems are sophisticated
and have developed high-level principles that still apmgke things parallel A lot of data stream process-
ing is highly parallelizable in computing (C) and storagé ¢8pacity; it is somewhat harder to parallelize
transmission (T) capacity on demar@@ontrol data rate by sampling or shedding updateggh energy par-
ticle physics experiments at Fermilab and CERN [120] witisproducel0TBytes/s which will be reduced
by real time hardware int800Gb/s data stream: is it careful sampling or carefree shg@dfBtatisticians
have the sampling theory: it is now getting applied to IP mekistreams [12, 3, 13]Round data struc-
tures to certain block boundarieszor example, the “Community of Interest” approach to findiragid in
telephone calls uses a graph data structure up to and ingltitle previous day to perform the current day’s
analysis, thereby rounding the freshness of the analygisriod of a day [14]. This is an effective way to
control the rate of real-time data processing and use pipeli Use hierarchically detailed analysidJse
fast but simple filtering or aggregation at the lowest level alower but more sophisticated computation at

1John Bates, the Chief of Remote Sensing Applications Dimisbf USNOAANDCC, gives a nice exposition at
http://www7.nationalacademies.org/bms/BatesPowetRmt and http://www?7.nationalacademies.org/bms/kstz$BATES.html.



higher levels with smaller data. This hierarchical thimkstacks up against memory hierarchy nicely. Fi-
nally, oftenasking imaginative questioman lead to effective solutions within any given resouraest@int,
as applied algorithms researchers well know.

Nevertheless, these natural approaches are ultimateiynign They may meet ones’ myopic expecta-
tions. But we need to understand the full potential of datesns for the future. Given a certain amount of
resources, a data stream rate and a particular analysjsshaakcan (not) we do? Most natural approaches
to dealing with data streams discussed above involves gippations: what are algorithmic principles for
data stream approximation? One needs a systematic thedatatreams. To get novel algorithms. To
build data stream applications with ease, and proven pagoce.

What follows is an introduction to the emerging theory ofedstreams.

Before that, here is a note. The previous few paragraphemtext a case for data stream research. |
could have done it

e Using anecdotics.

Paul, now a network service Provider, has to convince CanidgeCustomer, that IP hosts connecting
to her website get high quality real time media service. Hedsgo monitor IP traffic to her web site

and understand per-packet performance for each hostinglatich statistics in real time is a good
way to convince Carole.

e Or using numerics.

A single OC48 link may transmit few hundred GBytes per houpatket header information, which
is more thark00Mbps. It takes an OC3 link to transfer this streaming log @msla challenge to write
it into tapes or process it by the new 3GHz P4 Intel processibraarate.

Or | could have used a limerick, haiku or a Socratic dialog.t Bahose to describe data stream as a
phenomenon in words. Sometimes | think words have becorsarieaningful to us than greek symbols or
numerals. Nevertheless, | hope you would use your imaginatnd intuit the implications of data streaming.
Imagine we can (and intend to) collect so much data that welmedgrced to drop a large portion of it, or
even if we could store it all, we may not have the time to scéreibre making judgements. That is a new
kind of uncertainty in computingeyondrandomization and approximation: it should jar us, one wae
other.

4 Data Streaming: Formal Aspects

This section will be more formal: define various models foalde with data streams and present a moti-
vating application to internalize.

4.1 Data Stream Modes

Input streamay, as, . . . arrives sequentially, item by item, and describes an uyiterisignal A, a one-
dimensional functiom : [1... N] — R.2 Models differ on howu;’s describeA.

e Time Series ModelEacha; equalsA[i] and they appear in increasing order:ofThis is a suitable
model for time series data where, for example, you are obmggeithe traffic at an IP link each
minutes, or NASDAQ volume of trades each minute, etc.

2Input may comprise of multiple streams or multidimensiasighals, but we do not consider those variations here.



e Cash Register ModelHerea;’s are increments ta\[j]'s. Think of a; = (j,1;), I; > 0, to mean
A;[j] = Ai-1[j] + I, where A, is the state of the signal after seeing title item in the stream.
Much as in a cash register, multiplg's could increment a giveA [j] over time. This is perhaps the
most popular data stream model. It fits applications such @storing IP addresses that access a
web server, source |IP addresses that send packets overeadiitecause the same IP addresses may
access the web server multiple times or send multiple paakethe link over time. This model has
appeared in literature before, but was formally christeind@7] with this name.

e Turnstile Modef Herea;'s are updates ta [j]'s. Think ofa; = (5, U;), to meanA;[j] = A;_1[j] +
U; whereA,; is the signal after seeing thith item in the stream, and; may be positive or negative.
This is the most general model. It is mildly inspired by a bbby subway train station where the
turnstile keeps track of people arriving and departing ioowiusly. At any time, a large number of
people are in the subway. This is the appropriate model tystuly dynamic situations where there
are inserts as well deletes, but it is often hard to get isterg bounds in this model. This model too
has appeared before under different guises, but it getstehad here with its name.

There is a small detail: in some casas[j] > 0 for all i. We refer to this as thstrict Turnstile model.
Intuitively this corresponds to letting people only exiahe turnstile they entered the system in: it
is a unrealistic intuition, but it fits many applications.rlexample, in a database, you can only delete
a record you inserted. On the other hand, there are instavioels streams may beon-strict that

is, A;[j] < 0 for somei. For example, when one considers a signal over the differertwveen two
cash register streams, one obtains a non-strict Turnstidem We will avoid making a distinction
between the two Turnstile models unless necessary.

The models in decreasing order of generality are as folldwsnstile, Cash Register, Time Series. (A
more conventional description of models appears in [27{]dnfa theoretical point of view, of course one
wishes to design algorithms in the Turnstile model, but frampractical point of view, one of the other
models, though weaker, may be more suitable for an apmitakurthermore, it may be (provably) hard to
design algorithms in a general model, and one may have te satialgorithms in a weaker model.

We wish to compute various functions on the sigAaht different times during the stream. There are
different performance measures.

e Processing time per itemy in the stream. (Proc. Time)
e Space used to store the data structuré\grat timet. (Storage)
e Time needed to compute functions An (Compute time)

Here is a rephrasing of our solutions to the two puzzles asti#w in terms of data stream models and
performance measures.

Puzzle Model Function Proc. Time Storage Compute Time
Section 1.1 cash registerk = 1, {j|A[j] = 0} O(logn) O(logn) 0O(1)
Section 1.2  cash register ~[t] O(klog(1/e)) O(klogulog(1/e)) O(k)

We can now state the ultimatiesideratahat is generally accepted:

3l remember the exhilaration we felt when Martin Farach-@oland | coined the namBisk Access Machinenodel or the
DAM model during a drive from New York city to Bell labs. The DAmodel is catching on.

“There is also the work space needed to compute the functierddMot explicitly discuss this because typically this ishef
same order as the storage.



At any timet in the data stream, we would like the per-item processing,tistorage as well as the
computing time to be simultaneousl{V, t), preferably,polylog(N,t).

Readers can get a sense for the technical challenge thidedssi sets forth by contrasting it with a
traditional dynamic data structure like say a balancedcbetaee which processes each updatéiog V)
time and supports query iR(log N) time, but uses linear space to store the input data. Dat@nstadgo-
rithms can be similarly thought of as maintaining a dynandtadstructure, but restricted to use sublinear
storage space and the implications that come with it. Sonestithe desiderata is weakened so that:

At any timet in the data stream, per-item processing time and storagel nede simultaneously
o(N,t) (preferably,polylog(N,t)), but the computing time may be larger.

This was proposed in [10], used in few papers, and applieagses where computing is done less
frequently than the update rate. Still, the domairand inputt being so large that they warrant using only
polylog(N,t) storage may in fact mean that computing time even linear endibmain or input may be
prohibitive in applications for a particular query.

A comment or two about the desiderata.

First, why do we restrict ourselves to only a small (subliheanount of space? Typically, one says
this is because the data stream is so massive that we may rmtiido¢o store all of what we see. That
argument is facetious. Even if the data stream is massiitejéfscribes a compact signal (i.&/,is small),
we can afford space linear iN, and solve problems within our conventional computing fearork. For
example, if we see a massive stream of peoples’ IDs and tgeitmayears, and all we wish to calculate
were functions on peoples’ age distribution, the signalisrdv less thanl 50, which is trivial to manage.
What makes data streams unique is that there are applisatibere data streams describe signals over a
very large universe. For exampl®, may be the number of source, destination IP address paiiishigh
potentially2%4 now), or may be the number of time intervals where certairentagions were made (which
increases rapidly over time), or may be the http addresséseomeb (which is potentially infinite since web
gueries get sometimes written into http headers). Morermgéipeand this is significantly more convincing,
data streams are observations over multiple attribute@apdubset of attributes may comprise the domain
of the signal in an application and that leads to potentiallge domain spaces even if individual attribute
domains are small.

Second, why do we use the polylog function? Well, log in theuinsize is the lower bound on the
number of bits needed to index and represent the signal, @gdjjves us a familiar room to play.

Finally, there is a cognitive analogy that explains the diysita qualitatively, and may appeal to some
of the readers (it did, to Mikkel Thorup). As human beings,peeceive each instant of our life through an
array of sensory observations (visual, aural, nervou$, Etlmwever, over the course of our life, we manage
to abstract and store only part of the observations, andibtmeadequately even if we can not recall every
detail of each instant of our lives. We are data stream psingsnachines.

4.2 A Motivating Scenario

Let me present a popular scenario for data streaming. Thmkitcomprises routers connected to each other
that forward IP packets. Managing such networks needsimalunderstanding of faults, usage patterns,
and unusual activities in progress. This needs analysigffictand fault data in real time. Consider traffic
data. Traffic at the routers may be seen at many levels.

1. At the finest level, we have theacket log each IP packet has a header that contains source and
destination IP addresses, ports, etc.
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2. At a higher level of aggregation, we have floav log each flow is a collection of packets with same
values for certain key attributes such as the source anthdésh IP addresses and the log contains
cumulative information about number of bytes and packets, s¢art time, end time, protocol type,
etc. per flow.

3. At the highest level, we have tt8NMP log which is the aggregate data of the number of bytes sent
over each link every few minutes.

Many other logs can be generated from IP networks (faultmedarCPU usage at routers, etc), but the
examples above suffice for our discussion. You can collegstore SNMP data. (I stoemonths worth of
this data of a large ISP in my laptop for the IPSOFACTO toolll veiference later. | could store data up to a
year or two without stressing my laptop.) The arguments wesgmted for data streaming apply to flow and
packet logs which are far more voluminous than the SNMP logioke detailed description and defense of
streaming data analysis in IP network traffic data is preskint [26], in particular, in Section 2.

Here are some queries one may want to ask on IP traffic logs.

1. How much HTTP traffic went on a link today from a given ranfiéPoaddresses? This is an example
of a slice and dice query on the multidimensional time sesfabhe flow traffic log.

2. How many distinct IP addresses used a given link to sendtthéfic from the beginning of the day,
or how many distinct IP addresses are currently using a dimkron ongoing flow?

3. What are the tog heaviest flows during the day, or currently in progress? t&wldo this problem in
flow logs indirectly provides a solution to the puzzle in $aetl. 1.

4. How many flows comprised one packet only (i.e., rare flowS)8sely related to this is the ques-
tion: Find TCP/IP SYN packets without matching SYNACK patskeT his query is motivated by the
need to detect denial-of-service attacks on networks &g aspossible. This problem is one of the
motivations for the fishing exercise in Section 1.2.

5. How much of the traffic yesterday in two routers was commmusirailar? This is a distributed query
that helps track the routing and usage in the network. A nurobeotions of “common” or “similar”
apply. The IPSOFACTO system supports such similarity @sesn the SNMP logs for an operational
network provider [57].

6. What are the tog correlated link pairs in a day, for a given correlation measin general a number
of correlation measures may be suitable. Those that reljgoalsanalysis—wavelet, fourier etc.—of
the traffic pattern prove effective. We will later descrilbgogithms for computing wavelet or fourier
representation for data streams.

7. For each source IP address and each five minute intervaif e number of bytes and number of
packets related to HTTP transfers. This is an interestirgygunow do we represent the output which
is also a stream and what is a suitable approximation in Hee2

The questions above are simple slice-and-dice or aggregajeoup by queries. This is but a sparse
sample of interesting questions. Imagine the setup, andagibuliscover many more relevant questions.
Some of the more complex queries will involj@ns between multiple data stream sources. For example,
how to correlate

Let me formalize one of the examples above in more detailegaynple two.

First, how many distinct IP addresses used a given link td slegir traffic since the beginning of the
day? Say we monitor the packet log. Then the input streams., ... is a sequence of IP packets on the
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given link, with packet:; having the source IP address Let A[0... N — 1] be the number of packets sent
by source IP addressfor 0 < i < N — 1, initialized to all zero at the beginning of the day. (Thigral is
more general for reasons that will be clear in the next pagy) Each packet; adds one td\ [s;]; hence,
the model is Cash Register. Counting the number of distir@ddresses that used the link during the day
thus far can be solved by determining the number of nonAdifs at any time.

Second, now, consider how many distinct IP addresses arentiyrusing a given link? More formally,
at any timet, we are focused on IP addressgsuch that some flow; began at time beforeand will end
aftert, and it originates at;. In the packet log, there is information to identify the fiastwell as the last
packets of a flow. (This is an idealism; in reality, it is somnets to hard to tell when a flow has ended.) Now,
let A[0... N —1] be the number of flows that source IP addrgsscurrently involved in, fob < i < N —1,
initialized to all zero at the beginning of the day. If packets the beginning of a flow, add one #][s;]
if s; is the source of packet;; if it is the end of the flow, subtract one frof[s;] if s; is the source of
packeta;; else, do nothing. Thus the model is Turnstile. Countingrilmmber of distinct IP addresses that
are currently using a link can be solved by determining thalmer of nonzeraA [i]’s at any time.

Similarly other examples above can be formalized in termghefdata stream models and suitable
functions to be computed.

A note: There has been some frenzy lately about collectinfaaalyzing IP traffic data in the data
stream context. Analyzing traffic data is not new. In telaphand cellular networks, call detail records
(CDRs) are routinely collected for billing purposes, andyttare analyzed for sizing, forecasting, trou-
bleshooting, and network operations. My own experienceitis eellular CDRs and there is a lot you can
do to discover engineering problems in a network in nedrireee with the live feed of CDRs from the
cellular network. The angst with IP traffic is that the datéaismore voluminous, and billing is not usage
based. The reason to invest in measurement and analysistifrture is mainly for network maintenance
and value-added services. So, the case for making thissmees has to be strong, and it is now being made
across the communities and service providers. Both Sdrift][and AT&T [30] seem to be engaged on this
topic. That presents the possibility of getting suitableaddream sources in the future, at least within these
companies.

At this point, | am going to continue the theme of being imagive, and suggest a mental exercise.
Consider a data streaming scenario from Section 3 thatfexelift from the IP traffic log case. For example,

Exercise 1 Consider multiple satellites continuously gathering npldt terrestial, atmospheric and ocean-
surface observations of the entire earth. What data anslggestions arise with thespatialdata streams?

This is a good homework exercise if you are teaching a courke.queries that arise are likely to be
substantially different from the ones listed above for fa¢raffic logs case. In particular, problems naturally
arise in the area of Computational Geometry. Wealth of (Us&indamental) research remains to be done.

Those who want a mental exercise more related to the Comfuaience concepts can consider the
streaming text scenario [110].

Exercise 2 We have distributed servers each of which processes a stoédext files (instant messages,
emails, faxes, say) sent between users. What are integetdia analysis queries on sutgxtdata streams?

For example, one may now look for currently popular topiceafversation in a subpopulation. This
involves text processing on data streams which is quitemfft from the IP traffic logs or the satellite-based
terrestial or stellar observation scenarios.

We need to develop the two examples above in great detailhrasiave have done with the IP traffic
analysis scenario earlier. We are far from converging otésec characteristics of data streams or a building
block of queries that span different application scenaasMartin Strauss quips, hope this is not a case of
“insurmountable opportunities”.
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4.3 Other Applicationsfor Data Stream Models

The data stream models are suitable for other applicatiesglés managing rapid, automatic data feeds.
In particular, they find applications in the following twoestarios (one each for cash register and Turnstile
models).

One pass, Sequential /0. Besides the explicit data stream feeds we have discusseddhithere are
implicit streams that arise as an artifact of dealing withsanee data. It is expensive to organize and access
sophisticated data structures on massive data. Prografes o process them in one (or few) scans. This
naturally maps to theT{me Series or Cash Registatata stream model of seeing data incrementally as a
sequence of updates. Disk, bus and tape transfer ratessaresdaone sees rapid updates (inserts) when
making a pass over the data. Thus the data stream modelsapplie

Focus on one (or few) pass computing is not new. Automataryhstadied the power of one versus
two way heads. Sorting tape-bound data relied on making f&sggs. Now we are seeking to do more
sophisticated computations, with far faster updates.

This application differs from the data streaming phenomeme saw earlier in a number of ways. First,
in data streaming, the analysis is driven by monitoring i@pfibns and that determines what functions you
want to compute on the stream. Here, you may have in mind tgatrany common function (transitive
closure, eigenvalues, etc) and want to do it on massive datae or more passes. Second, programming
systems that support scans often have other supportirgsinficture such as a significant amount of fast
memory etc. which may not exist in IP routers or satelliteg tienerate data streams. Hence the one pass
algorithms may have more flexibility. Finally, the rate atigfhdata is consumed can be controlled and
smoothed, data can be processed in chunks etc. In convast, & the data streams are more phenomena-
driven, and can potentially have higher and more variabtiaterates. So, the data stream model applies to
one pass algorithms, but some of the specific concerns deeefit.

Monitoring database contents. Consider a large database undergoing transactions: sfdslgtes and
queries. In many cases, we would like to monitor the databasgtents. As an example, consigetectivity
estimation.Databases need fast estimates of result sizes for simpteegure order to determine an efficient
query plan for complex queries. The estimates for simpleigsiéave to be generated fast, without running
the queries on the entire database which will be expensiiis. i the selectivity estimation problem. Here
is how it maps into the data stream scenario. The insertsletedein the database are the updates in the
(Turnstile model of a dadastream, and the signal is the database. The selectivitpasbn query is the
function to be computed on the signal. Data sream algorittimasefore have the desirable property that
they represent the signal (i.e., the database) in smalkespad the results are obtained without looking at
the database, in time and space significantly smaller thawddkabase size and scanning time. Thus, data
stream algorithms in the Turnstile model naturally find usalgorithms for selectivity estimation.

Other reasons to monitor database contentsyppeoximate query answerirgnddata quality monitor-
ing, two rich areas in their own right with extensive literatared work. They will not be discussed further,
mea culpa. Again data stream algorithms find direct appdicatin these areas.

Readers should not dismiss the application of monitoringlzlese content as thinly disguised data
streaming. This application is motivated even if updatesceed at a slow rate; it relies only on small

SAnecdotics. John Batef US National Oceanographic and Atmospheric Administrathttp://www.etl.noaa.gov/ jbates/)
faces the task of copying two decades worth of data from letmmes into current tapes, which will take a couple of yedrs o
continuous work on multiple tape readers. His questioninguthis intensive copying process, blocks of data resideisk for
a period of time. In the interim, can we perform much-needetissical analyses of historic data? This is apt for dataash
algorithms.
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space and fast compute time aspect of data stream algorithexid rescanning the database for quick
monitoring.

5 Foundations

The main mathematical and algorithmic techniques used tm steeam models are collected here, so the
discussion below is technique-driven rather than prohdieiren. It is sketchy at this point with pointers to
papers.

5.1 Basic Mathematical |deas
5.1.1 Sampling

Many different sampling methods have been proposed: dogsaanpling, universe sampling, reservoir sam-
pling, distinct sampling etc. Sampling algorithms are kndat:

e Find the number of distinct items in a Cash Register datastré&See [85].
¢ Finding the quantiles on a Cash Register data stream. Sgff88ost recent results.
e Finding frequent items in a Cash Register data stream. 3ée [8

Each of these problems has nice applications (and many othalts besides the ones we have cited
above). Further, itis quite practical to implement sangpbraen on high speed streams. (In fact, some of the
systems that monitor data streams—specially IP packdessif-end up sampling the stream just to slow
the rate down to a reasonable level, but this should be doaepimcipled manner, else, valuable signals
may be lost.) Also, keeping a sample helps one estimate nifiagedt statistics, and additionally, actually
helps one return certain sample answers to non-aggregateeguConsider:

Problem 3 Say we have data streams over two observed varidbleg;). An exampleorrelated aggregate
is{g(yt) | z¢ < f(x1---z¢)}, thatis, computing some aggregate functiprSUM, MAX, MIN—on those
y+'S when the corresponding;’s satisfy certain relationshipf. For what f’'s and g's (by sampling or
otherwise) can such queries be approximated on data stre&@ae [87] for the motivation.

There are two main difficulties with sampling for data strgammblems. First, sampling is not a pow-
erful primitive for many problems. One needs far too many@asfor performing sophisticated analyses.
See [86] for some lower bounds. Second, sampling methodalypidoes not work in the Turnstile data
stream model: as stream unfolds, if the samples maintaipéaebalgorithm get deleted, one may be forced
to resample from the past, which is in general, expensivenposgsible in practice and in any case, not
allowed in data stream models.

5.1.2 Random Projections

This approach relies on dimensionality reduction, usingjgmtion along random vectors. The random
vectors are generated by space-efficient computation dbranvariables. These projections are called the
sketchesThis approach typically works in the Turnstile model antherefore quite general.

Building on the influential work [1], Indyk [89] proposed ugi stable distributions to generate the
random variables. Sketches with different stable distiims are useful for estimating varioils, norms on
the data stream. In particular, sketches using Gaussiaomamariables get a good estimate of fhenorm
of data streams, using Cauchy distributions one gets a gsiodate for thel.; norm etc. | have not found a
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lot of motivation for computing thé.; or L, norm of a data stream by itself, although these methods prove
useful for computing other functions. For example,

e Using L, sketches fop — 0, we can estimate the number of distinct elements at any tntke
Turnstile data stream model [90].

e Using variants ofl; sketches, we can estimate the quantiles at any time in thesfilerdata stream
model [91].

e Using variants ofl,; sketches and other algorithmic techniques, we can dyn#yntcack most fre-
quent items [92], wavelets and histograms [93], etc. in then3tile data stream model.

e Using Ly sketches, one can estimate the self-join size of datab&séns [97]. This is related to
estimating inner product of vectors, which is provably h@rdio in general, but can be estimated to
high precision if the inner product is large.

There are many variations of random projections which astropler ilk. For example, Random subset
sums [27], counting sketches [28] and also Bloom filters .[28] detailed discussion of the connection
between them is needed.

Problem 4 Design random projections using complex random variablestloer generalizations, and find
suitable streaming applications.

There are instances where considering random projectidhsamplex numbers or their generalization
have been useful. For example, létbe a0,1 matrix and B be obtained fromA by replacing each
uniformly randomly with+1. ThenE|(det(B))?] = per(A) wheredet(A) is the determinant of matrix
andper(A) is the permanent of matrid. While det(A) can be calculated in polynomial timger(A) is
difficult to compute or estimate. The observation abovegrsa method to estimaper(A) in polynomial
time usingdet(A), but this procedure has high variance. Howeve¢, ifs obtained fromA by replacing
each1 uniformly randomly by41, i, then E[(det(C))?] = per(A) still, and additionally, the variance
falls significantly. By extending this approach using quaitsn and clifford algebras, a lot of progress
has been made on decreasing the variance further, andrdeeni effective estimation procedure for the
permanent [58].

A powerful concept in generating a sequence of random Vasaach drawn from a stable distribution is
doing so with the property that any given range of them canubased fast, on demand. Such constructions
exist, and in fact, they can be generated fast and using spaik. Number of constructions are now known:
preliminary ones in [94], Reed-Muller construction in [2gEneral construction in [93] witlh; and L,
sketches, and approach in [95] for stable distributioné wit— 0. They work in the Turnstile model and
find many applications including histogram computation graph algorithms on data streams.

5.2 Basic Algorithmic Techniques

There are a number of basic algorithmic techniques: binasych, greedy technique, dynamic program-
ming, divide and conquer etc. that directly apply in the dataam context, mostly in conjunction with
samples or random projections. Here are a few other algaigttechniques that have proved powerful.
521 Group Testing

This goes back to an earlier Paul and Carole game. Paul hategei/ betweenl andn in mind. Carole
has to determine the number by asking I'ls< z?”. Carole determines variouss, and Paul answers them

15



truthfully. How many questions does Carole need, in the ia@se? There is an entire area of Combinatorial
Group Testing that produces solutions for such problem¢hdrdata stream case, each question is a group
of items and the algorithm plays the role of Carole. This geapplies to a number of problems in data
streams. (It may also be thought of as coding and decodingatl space.) Examples are found in:

e Finding B most frequent items in Turnstile data streams [92].
e Determining the highesB Haar wavelet coefficients in Turnstile data streams [93].

e Estimating topB fourier coefficients by sampling [96].

Problem 5 Paul sees data stream representidg- and Carole sees data stream representifag, both
on domainl, ..., N. Design a streaming algorithm to determine certain numkiefowith the largest
Apli]
max 11,3Ac[i} )
Monika Henzinger and Jennifer Rexford posed this problerméoat various times. It has a strong
intuitive appeal: compare today’s data with yesterdayd famd the ones that changed the most. Certain
relative norms similar to this problem are provably hard][95

5.2.2 TreeMethod

This method applies nicely to the Time Series model. Herdyawe a (typically balanced) tree atop the data
stream. As the updates come in, the leaves of the tree araledvia the left to right order. In particular,
the path from the root to the most currently seen item is thlet fhoundary of the tree we have seen. We
maintain small space data structure on the portion of tleesieen thus far, typically, some storage per level;
this can be updated as the leaves get revealed by updatimg thie right boundary. This overall algorithmic
scheme finds many applications:

e Computing theB largest Haar wavelet coefficients of a Time Series datarst{e#].

¢ Building a histogram on the Time Series data stream [98]s @ls0 has applications to finding certain
outliers called the deviants [105].

e Building a parse tree atop the Time Series data stream searstagg [81]. This has applications
to estimating string edit distances as well as estimating sf the smallest grammar to encode the
string.

Here is a problem of similar ilk, but it needs new ideas.

Problem 6 Given a signal of sizéV as a Time Series data stream and parametgrand %, the goal is
to find k£ points @eviant3 to remove so that finding thB largest coefficients for the remaining signal has
smallest sum squared error. This is the wavelet versioneopthblem studied in [99].

There are other applications, where the tree hierarchy p@&®d as an artifact of the problem solving
approach. Thé&-means algorithm on the data stream [100] can be seen asmétbed: building clusters
on points, building higher level clusters on their repréatives, and so on up the tree.

Finally, I will speculate that Yair Bartal’s fundamentalktdt of embedding arbitrary metrics into tree
metrics will find applications in data streams context, ljueng difficult problems to ones where the tree
method can be applied effectively.
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5.2.3 Robust Approximation

This concept is a variation on the local minima/maxima, loitiesl for approximations. Consider construct-
ing a near-optimalB bucket histogram for the signal. An approximatiéhto the optimal histogrant*

is calledrobustif it has the property that when refined further with a few letsk the resulting histogram
is only a little better tharf{ itself as an approximation t&*. This is a powerful concept for constructing
histograms: to get & bucket optimal histogram, we first pull oupaly (B, log V) bucket histogram that is
robust and then cull & bucket histogram from it appropriately which is provalhly ¢ approximate. The
details are in [93]. We suspect that robust approximatioitifind many applications.

In a recent result [101] on an improved algorithm for thenedian problem on data streams, in the first
phase, & (k polylog(n)) facility solution is obtain from which the algorithm cullse facilities which is
provably1 + ¢ accurate. This is reminiscent of robust approximation tierte is a technical distinction: the
O(k polylog(n)) facility solution does not seem to have the robustness pope

5.2.4 Exponential Histograms

To algorithms designers, it is natural to think of exporantistograms—dividing a line into regions with
boundaries at distan@ from one end or keep dividers after points of r@&kwhen one is restricted to use
a polylog space data structure. This technigue has beeriruseé dimensional nearest neighbor problems
and facility location [46], maintaining statistics withemwindow [36], and from a certain perspective, for
estimating the number of distinct items [34]. It is a simptel aatural strategy which is likely to get used
seamlessly in data stream algorithms.

5.3 Lower Bounds
A powerful theory of lower bounds is emerging for data streaotels.

e Compressibility argument.

In Section 1.2 there is an example. One argues that if we Hewady seen a portio§ of the data
stream and have stored a data structiren S for solving a problemP, then we can design the
subsequent portion of the stream such that solvihgn the whole stream will help us recovsr
precisely fromD. Since not everys can be compressed into small spdeethe lower bound on size
of D will follow.

e Communication Complexity.

Communication complexity models have been used to estaloliger bounds for data stream prob-
lems. In particular, see [1]. Estimating set disjointness ¢lassical, hard problem in Communication
Complexity that underlies the difficulty in estimating somfethe basic statistics on data streams.
See [102] for a few different communication models in disited stream settings.

e Reduction.

One reduces problems to known hard ones. Several suchsresaltknown. See [95] for some
examples.

An information-based approach to data stream lower bowns[103].

54 Summary and Data Stream Principles

The algorithmic ideas above have proved powerful for sghanvariety of problems in data streams. On
the other hand, using the lower bound technology, it folldkxat many of these problems—finding most
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Figure 1: Decay of SSE of top wavelet coefficients on IP data.

frequent items, finding small error histograms, clusterietg.—have versions that are provably hard to
solve exactly or even to approximate on data streams. Hoywstat makes us successful in solving these
problems is that in real life, there are two main principlesttseem to hold in data stream applications.

e Signals in real life have “few good terms” property.

Real life signalsA[0- - - N — 1] have a small numbeB of coefficients that capture most of the trends
in A even if N is large. For example, Figure 1 shows the sum squared ern@cimstructing a
distribution with B highest coefficients for various values Bf and two different distributions: the
number of bytes of traffic involving an IP address as the soamd as the destination. So, here
N = 232, total number of IP addresses possible. Still, with= 800 or so, we get the error to drop by
more tharb0%. For capturing major trends in the IP traffic, few hundredfitcients prove adequate.

In IP traffic, few flows send large fraction of the traffic [3]hat is, of the2%* possible(src, dest) IP
flows, if one is interested in heavy hitters, one is usualgufed on a small number (few hundreds?)
of flows. This means that one is typically interested in tiagkk most frequent items, for smat,
even if N is large inA.

This phenomenon arises in other problems as well: one isdilpiinterested in small numbér of
facilities or clusters, etc.
e During unusual events in data streams, exceptions ardisamtly large.

The number of rare flows—flows involving a small number of gask-and the number of distinct
flows is significantly large during network attacks.

When there are data quality problems in data streams—santariaice is polled more often than
expected—the problem is abundant, eg., the number of palisba far more than expected.

These two principles are used implicitly in designing mafhe useful data stream algorithms. Applied
algorithmicists need to keep these principles in mind wallstracting the appropriate problems to study.
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6 Streaming Systems

There are systems that (will) process data streams. | tHithem in three categories.

First, is the hands-on systems approach to data streamsugeaeperating system support to capture
streams, and perhaps use special hooks in standard progrgriamguages lik&€' to get additional facility
in manipulating streams. The work at AT&T Research on Cathid&ecords analysis falls in this category;
Hancock [67] is a special-purpose language. Researckerafidrew Moore [124] work in this framework,
and quite successfully process large data sets. Ultimatelgver, | do not know of such work that processes
data at the stream rate generated by IP network routers.

Second, there are systems that let a high performance datpbacess updates using standard technol-
ogy like bulk loading, or fast transaction support. Then boéds applications atop the database. IPSO-
FACTO [57] is such a system that lets Daytona database h&i&P log updates and provides application
level support for visualizing and correlating traffic patie on links between IP routers. This works well
for SNMP logs and is used on production quality datafeedwilitoe highly stressed for packet or flow
logs. Bellman [66] which monitors data quality problems @tabases takes this approach as well, capturing
transactions from a generic database and performingtatatianalysis on relationships between attributes
in various database tables. It needs further work to scdide transaction rates.

Finally, there are database systems where the internatliractly modified to deal with data streams.
This is an active research area that involves new streanatopey SQL extensions, novel optimization tech-
niques, scheduling methods, the continuous query paradtom the entire suite of developments needed
for a data stream management system (DSMS). Projects ausaniniversities of this type include Nia-
garaCQ [70], Aurora [72], Telegraph [73], Stanford Stre&th][etc. They seem to be under development,
and demos are being made at conferences (see SIGMOD 200&8hekrsystem | know of in this category
is Gigascope [74] which is operationally deployed in an IRvoek. It does deal with stream rates generated
in IP networks, but at this point, it provides only featuresuged towards IP network data analysis. It is not
yet suitable for general purpose data stream managemeatfoiety of data streams.

One of the outstanding questions with designing and buyl@$MSs is whether there is a need. One
needs multiple applications, a well-defined notion of streasommon to these applications, and powerful
operators useful across applications in order to justifyetfiort needed to actualize DSMSs. At this fledgling
point, the IP network traffic monitoring is a somewhat weleleped application. But more work needs to
be done—in applications like text and spatial data streamastos—to bolster the need for DSMSs.

To what extent have the algorithmic ideas been incorporatirthe emerging streaming systems?
Both Bellman and IPSOFACTO use some of the approximatioaréhgns including sampling and random
projections. Most of the systems in the third category hawekk for sampling. There is discussion of
testing random projection based estimations using Gigescand reason to believe that simple, random
projections technique will be useful in other systems too.

7 New Directions

This section presents some results and areas that did notajetied above. The discussion will reveal
open directions and problems: these are not polished gamgsare uncut ideas. Sampath Kannan has an
interesting talk on open problems in streaming [17].

7.1 Related Areas

In spirit and techniques, data streaming area seems rétated following areas.
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e PAC learning:In [47] authors studied sampling algorithms for clusterimghe context of PAC learn-
ing. More detailed comparison needs to be done for otheldgmubsuch as learning fourier or wavelet
spectrum of distributions between streaming solutionsR&d learning methods.

e Online algorithms:Data stream algorithms have an online component where isipeiealed in steps,
but they have resource constraints that are not typicatlgrporated in competitive analysis of online
algorithms.

e Property testing: This area focuses typically on sublinear time algorithmstésting objects and
separating them based on whether they are far from havingieedeproperty, or not. Check out
Ronitt Rubinfeld’s talk on what can be done in sublinear t{&23]. Typically these results focus on
sampling and processing only sublinear amount of data. Agtiored earlier, sampling algorithms
can be simulated by streaming algorithms, and one can doimsteeaming models.

e Markov methods.Some data streams may be thought of as intermixed states lopleumarkov
chains. Thus we have to reason about maximum likelihoodratpa of the markov chains [49],
reasoning about individual chains [48], etc. under resmeonstraints of data streams. This outlook
needs to be developed a lot further.

7.2 Functional Approximation Theory

One of the central problems of modern mathematical appratiém theory is to approximate functions
concisely, with elements from a large candidateIBeglled adictionary, D = {¢; }icr Of unit vectors that
spanRV. Our input is a signaA € RY. A representatiorR of B terms for inputA € R" is a linear
combination of dictionary elementR, = >, a;¢;, for ¢; € D and some\, |A| < B. Typically, B < N,
so thatR is a concise approximation to signAl. The error of the representation indicates by how well it
approximatesA, and is given by| A — R||, = />, |A[t] — RJ[t]]?. The problem is to find the be&-term
representation,e., find aR that minimizes|A — R||,. | will only focus on theL, error here. A signal has
aR with error zero ifB = N sinceD spansR” .

Many of us are familiar with a special case of this problenind tlictionary is a Fourier basis, i.e;'s
are appropriate trigonometric functions. Haar waveletafmise another special case. Both these special
cases are examples ofthonormaldictionaries: ||¢;|| = 1 and¢; L ¢;. In this case|/D| = N. For
orthonormal dictionaries wheB = N, Parseval’s theorem holds:

S A=Y a2

For B < N, Parseval’'s theorem implies that the b&sterm representation comprises tBdargest inner
product| (A, ¢) | over¢ € D.

In functional approximation theory, we are interested ngés—redundant—dictionaries, so called be-
cause wherD > N, input signals have two or more distinct zero-error repreg®n usingD. Different
applications have different natural dictionaries thattlbepresent the class of input signals they generate.
There is a tradeoff between the dictionary size and the tyuaflirepresentation when dictionary is properly
chosen. Choosing appropriate dictionary for an applicatioan art. So, the problem of determining an
approximate representation for signals needs to be stwdtbdlifferent redundant dictionaries.

There are two directions: studying specific dictionariesvee from applications or studying the prob-
lem for an arbitrary dictionary so as to be completely genera

Studying specific dictionarieOne specific dictionary of interest Wavelet PacketsLet Wy(x) = 1 for
0 <z < 1. DefineWy, W, ... as follows.

Won(z) = Wp(2z) — W, (22 — 1)
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Wont+1(xz) = Wp(2z) — W, (22 — 1)

Wavelet packets comprises vectors definedy, () = 27/2W,,(27x — k) for different values ofj, n, k.
They are richer than the well known Haar wavelets, and hewntengially give better compression. As
before, the problem is to represent any given funct®dras a linear combination aB vectors from the
wavelet packets. Two such vectarsandw’ are not necessarily orthogonal, hence merely choosingthe
largest| (A, wj k) |'S.

A gem of a result on this problem is in [80]: the author proves the best representation Afusing B
terms can be obtained usiay B2 log n) orthogonal terms. (Representing signals using orthogeaetlet
packet vectors is doable.) Presumably this result can beowed by allowing some approximation to the
bestB term representation.

Problem 7 There are a number of other special dictionaries of interelséamlets, curvelets, ridgelets,
segmentlets, etc.—each suitable for classes of applitatiDesign efficient algorithms to approximate the
best representation of a given function using these diaties.

Studying general dictionariesA paper that seems to have escaped the attention of appitxnibeory
researchers is [63] which proves the general problem to bé&ldhd. This was reproved in [60]. In addi-
tion, [63] contained the following very nice result. Say tot@in a representation with errerone needs
B(e) terms. LetD be theN x |D| matrix obtained by having; as theith column for eacti. Let D be the
pseudoinverse ab. (The pseudoinverse is a generalization of the inverse sistsdor any(m, n) matrix.

If m > n and A has full rankn, thenA* = (A7 A)~1AT") The author in [63] presents a greedy algorithm
that finds a representation with error no more théat using

O(B(¢/2)||D*[[3 10g(||Al]2))
terms. [63] deserves to be revived: many open problems remai

Problem 8 Improve [63] to use fewer terms, perhaps by relaxing thereachieved. Is there a nontrivial
non-greedy algorithm for this problem?

Problem 9 A technical problem is as follows: The algorithm in [63] také>| time for each step of the
greedy algorithm. Using dictionary preprocessing, desigfaster algorithm for finding an approximate
representation for a given signal using the greedy algonithThis is likely to be not difficult: instead of
finding the “best”, find the “near-best” in each greedy stepdaprove that the overall approximation does
not degrade significantly.

Both these questions have been addressed for a fairly d€hetanot fully general) dictionaries. Dic-
tionary D hascoherence. if ||¢;|| = 1 for all 7 and for all distincti andj, | (¢;, ¢;) | < p. (For orthogonal
dictionaries,;s = 0. Thus coherence is a generalization.) Nearly exponentsatied dictionaries can be
generated with small coherence. For dictionaries with bowerence, good approximation algorithms
have been shown:

Theorem 10 [64] Fix a dictionary D with coherence:. Let A be a signal and suppose it hasiterm
representation oveP with error ||A — Ry || = 6, whereB < 1/(32p). Then, in iterations polynomial in
B, we can find a representation with error at mqgt1 + 2064, B2)0.

This line of research is just being developed; see [68] far developments.
Further in [64], authors used approximate nearest neighlgmrithms to implement the iterations in
Theorem 10 efficiently, and proved that approximate impletai#gon of the iterations does not degrade the
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error estimates significantly. | think this is a powerfulfrework, and efficient algorithms for other problems
in Functional Approximation Theory will use this framewarkthe future. Recently, Ingrid Daubechies
spoke some of these results at the AMS-MAA joint meeting$.[69

Functional approximation theory has in general focused lmracterizing the class of functions for
which error has a certain decay &5 — oo. See [62] and [61] for many such problems. But from an
algorithmicists point of view, the nature of problems | dissed above are more clearly more appealing.
This is a wonderful area for new algorithmic research; distarecipe is to study [62] and [61], formulate
algorithmic problems, and to solve them.

Let me propose two further, out-there directions: Can weagdesew wavelets based on general two
dimensional tiling (current wavelet definitions rely onfvatt restricted set of two dimensional tiling)? Can
we design new wavelets based on the 3 tree decomposition a la ESP in [81]? In both cases, this gives
vectors in the dictionary defined over intervals that are juost dyadic as in Haar wavelets. Exploring
the directions means finding if there are classes of funstibat are represented compactly using these
dictionaries, and how to efficiently find such representetio

7.3 Data Structures

Many of us have heard of the puzzle that leaves Paul at sonitoopds a singly linked list, and he needs
to determine if the list has mop. He can only remembe? (log ) bits, wheren is the number of items
in the list. The puzzle is a small space exploration of a &st] has been generalized to arbitrary graphs
even [22]. One of the solutions relies on leaving a “fingemind, doing2’ step exploration from the finger
eachi, i = 1,...; the finger is advanced after each iteration. This puzzlditefiavor of finger search trees
where the goal is to leave certain auxiliary pointers in thtadstructure so that a search for an item helps
the subsequent search. Finger search trees is a rich areseafch. Richard Cole’s work on dynamic finger
conjecture for splay trees is an example of deep problems found [21].

Recently, a nice result has appeared [20]. The authorsraeh§)(logn) space finger structure for an
n node balanced search tree which can be maintained undetianseand deletions; searching for item of
rank j after an item of rank only takesO(log |j — i|) time. (Modulo some exceptions, most finger search
data structures prior to this work needeh)) bits.) | think of this as a streaming result. | believe andéop
this result will generate more insights into streaming datactures. In particular, two immediate directions
are to extend these results to external memory or to geandta structures such as segment trees, with
appropriate formalization, of course.

Let me present a specific data structural traversal problem.

Problem 11 We have a grapli- = (V, E') and a memon/, initially empty. Vertices have to be explicitly
loaded into memory/; at mostk vertices may reside i/ at any time. We say an edge;,v;) € E'is
evaluatedvhen bothy; andv; are in the memory/ at the same time. What is the minimum number of loads
needed to evaluate all the edges of the gréfth

For k = 2, a caterpillar graph can be loaded optimally easily. Fot 3, Fan Chung pointed out that
the dual of the graph obtained by looking at trianglesofnay have certain structure for it to be loaded
optimally. 1 think this problem arises in query optimizatifor tertiary databases from Sunita Sarawagi’'s
thesis work.

7.4 Computational Geometry

Computational Geometry is a rich area. Problems in comipuiat geometry arise because there are
applications—earth observations for example—that nlyuganerate spatial data streams and spatial queries.
Also, they arise implicitly in modeling other real life s@tos. For example, flows in IP networks may be
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thought of intervals [state time, end time], text documeggs mapped to high dimensional vector spaces,
etc.

Consider the problem of estimating the diameter of poingsg@nted on a data stream. Two results are
interesting.

Indyk considers this problem in the cash register model @/peints ind dimensions arrive over time.
His algorithm usesi)(dnl/(c2‘1)) space and compute time per item and producapproximation to the
diameter, for: > /2. The algorithm is natural. Chooseandom vectors, . .. , v; and for eachy;, maintain
the two points with largest and smallesp over all pointp’s. For sufficiently largd, computing diameter
amongst these points will givecaapproximation.

Ford = 2, a better algorithm is known. Take any point in the streamhascenter and draw sectors
centered on that point of appropriate angular width. Witkaich sector, we can keep the farthest point from
the center. Then diameter can be estimated from the aras lgyvihese points. One gets aapproximation
to the diameter wittD(1/¢) space and(log(1/¢)) compute time per inserted point [45].

| know of other results in progress, so more computationalrgery problems will get solved in the data
stream model in the near future.

Let me add a couple of notes. First, in small dimensionaliepibns liked = 2 or 3, keeping certain
radial histogramsi.e., histograms that emanate in sectors from centers sadbwcketing within sectors,
will find many applications. This needs to be explored. Sd¢bdo not know of many nontrivial results for
the computational geometry problems in the Turnstile mod@elunderstand the challenge, consider points
on a linebeing inserted and deleted, all insertions and deletiomsraponly at the right end (the minimum
point is fixed). Maintaining the diameter reduces to mamir the maximum value of the points which
is impossible witho(n) space when points may be arbitrarily scattered. Insteadndesay the points are
in the rangel - - - R: then, usingO(log R) space, we can approximate the maximuni tp e factor. This
may be an approach we want to adopt in general, i.e., have rdbmmubox around the objects and using
resources polylog in the area of the bounding box (or in tesfribe ratio of min to the max projections of
points along suitable set of lines). Finally:

Problem 12 (Facility location) Say Paul tracksa potential sites on the plane. Carole continuously either
adds new client points or removes an existing client poorhfthe plane. Paul can use spaceolylog(n),

but onlyo(m), preferablypolylog(m), wherem is the total number of points at any time. Solve thmeans

or k-medians facility location problem on the setro$ites.

This problem arises in a study of sensors on highways [46].

7.5 Graph Theory

The graph connectivity problem plays an important role ip $gpace complexity. See [41] for some de-
tails. However, hardly any graph problem has been studi¢tkeimlata stream model where (poly)log space
requirement comes with other constraints.

In [42], authors studied the problem of counting the numbetriangles in the cash register model.
GraphG = (V, E) is presented as a series of edgesv) € E in no particular order. The problem is to
estimate the number of triplds:, v, w) with an edge between each pair of vertices. Tgt= 0,1,2,3,
be the number of triples with total edges between the pairs of vertices. Consider thelsiyrover the
triples (u, v, w), u,v,w € V, whereA[(u,v,w)] is the number of edges in the triple, v, w). Let F; =
> (w00) (Al(w, v, w)])". Itis simple to observe that

Fy 111 T
Bl=|123]|.|mn
F 149 T
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Solving, T35 = Fy — 1.5F; + 0.5F5. Now, F; can be computed precisely. B&y and F» can only be
approximated. This needs a trick of considering the doméihe signal in a specific order so that each
item in the data stream, ie., an edge, entails updating damnsumber ointervalsin the signal. Using
appropriate rangesum variables, this can be done effigiestlwe find a use for the rangesum variables
from Section 5.1. As a resulf; can be approximated. In fact, this method works in the Tilenstodel as
well even though the authors in [42] did not explicitly stuty

The general problem that is interesting is to count othegsaghs, say constant sized ones. Certain
small subgraphs appear in web graphs intriguingly [43], esttmating their number may provide insights
into the web graph structure. Web crawlers spew nodes of #iegraph in data streams. So, it is a nicely
motivated application.

Many graph problems need to be explored in data stream moéeisthey appear to be difficult in
general. One has to find novel motivations and nifty varrediof the basic graph problems.

Let me propose a direction.

Problem 13 Consider thesemi-streamingnodel, ie., one in which we have space to store vertices, say
O(|V|polylog(|V'|) bits, but not enough to store the edges. So we lag\€|) bits. Solve interesting (in
particular, dense) graph problems in this model.

7.6 Databases

Databases research has considered streaming extenfveto much to be summarized here. | will high-
light a few interesting directions.
Consider approximate query processing.

Problem 14 Consider a signalA whereA[i] is a subset of, - - - U. Each query is aange query..j| for
which the response i4J;<,<; A[k]|. Build a histogram of53 buckets that is “optimal” for this task. First
consider a staticA and later streaming signals.

A lot has to be formalized in the problem above (See [79] fonsaelated details). Histograms have
been studied extensively in Statistics and find many agj@ics in commercial databases. In general they
study signals wherd [¢] is the number of tuples in a database with valumstead, if we interpreA [i] as
the set of pages that contain tuples with valubistogram described in the problem above is relevant. To
those with the background, | can say, this is an attempt aefmgdthepage selectivityf queries.

A somewhat related problem concerns multidimensionaladggn

Problem 15 Consider two dimensional signd.[i][j], i, 7 € [1..n]. Design algorithms for building (near)
optimal two dimensional histogram with partitions.

Readers should not think of this as a straightforward gdimat®mn of one dimensional problem to
multiple dimensions. The problem is, but the details aréeqiifferent. There are many ways to partition two
dimensional arrays. While one dimensional problem is patyial time solvable, two dimensional problems
are NP-hard for most partitions. Further, as | argued eadien if one-dimensional domains are small
enough to fit in to given memory, streaming algorithms may Wwelappropriate for the multidimensional
version.

In [75], authors proposed efficient approximation algengifor a variety of two dimensional histograms
for a static signal. Some preliminary results were preskmté76] for the streaming case: specifically, the
authors proposed a polylog spate;e approximation algorithm usin@ (B log N) partitions, taking2(N?)
time. Using the ideas in [75] and robustness, | believe thatla streaming algorithm can be obtained, i.e.,
one that is a3 partitions,1 + e approximation usindpoth polylog space as well as polylog time, but details
will be published soon.
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Both the questions above are rather technical. From a dsgglmant of view, there are many conceptual
guestions to be resolved: How to scale continuous quer@s it develop a notion of stream operator that
is composable so complex stream queries can be expressedaaradied, etc. Let me propose a direction
that is likely to be interesting.

Problem 16 What is an approximation for &tream In, Stream OUWSISO) query? Can one develop a
theory of rate of input stream and rate of output stream faioues SISO queries? Both probabilistic and
adversial rate theories are of relevance.

7.7 Hardware

An important question in data streaming is how to deal with thte of updates. Ultimately, the rate of
updates may be so high that it is not feasible to capture therstarage media, or to process them in
software. Hardware solutions may be needed where updatdhew are generated, are fed to hardware
units for per-item processing. This has been explored iméteorking context for a variety of per-packet
processing tasks (see eg. [5]) previously, but more neelks ttone. There is commercial potential in such
hardware machines. Consider:

Problem 17 Develop hardware implementation of the inner product baaslgdrithms described in Sec-
tion 5 for various data stream analyses.

Here is a related topic. The trend in graphics hardware isdwigle a programmable pipeline. Thus,
graphics hardware that will be found in computing systemg bethought of as implementing a stream
processing programming model. Tasks will be accomplishechultiple passes through a highly parallel
stream processing machine with certain limitations on vifgttuctions can be performed on each item at
each pixel in each pass. See [38] for an example, [39] for taldei model, and [82] for stream-related
results. Generic graphics hardware may not be suitablerémegsing data streams coming in at a high rate,
but stream algorithms may find applications in using graph&rdware as a computing platform for solving
problems. Lot remains to be explored here; see overview [40]

7.8 Streaming Models

Models make or mar an area of foundational study. We havewaritprset of streaming models already, but
some more are likely, and are needed.

7.8.1 Permutation Streaming

This is a special case of the cash register model in whichsit@onnot repeat. That is, the input stream is a
permutation of some set, and items may arrive in a unordessd (Whis fits Paul’s avocation of permuting
from Section 1.1.)

A number of problems have already been studied in this mdal¢B7], authors studied how to estimate
various permutation edit distances. The problem of estilpahe number of inversions in a permutation
was studied in [33]. Here is an outline of a simple algorittmestimate the number of inversions [31]. Let
A, is the indicator array of the seen items before seeingtthieem, andl; be the number of inversions so
far. Say theth item isi. Then

Lian=L+|{j|j>1& Aj] =1}

The authors in [31] show how to estimatg | j > i & A;[j] = 1}| for any, up to1 + e accuracy
using exponentially separated quantiles. They use raratiomn, and an elegant idea of oversampling (and
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retaining certain smallest number of them) for identifyihg exponentially separated quantiles. An open
problem here is what is the best we can do deterministicadlyy the Turnstile model.

A deeper question is whether there is a compelling motiwatiostudy this model, or the specific prob-
lems. There is some theoretical justification: permutatiare special cases of sequences and studying
permutation edit distance may well shed light on the notmlip hard problem of estimating the edit dis-
tance between strings. However, | have not been able to fiosd@mvhelming inspiration for these problems
and this model. Yet, here is a related problem that does iarjzectice.

Problem 18 Each TCP flow comprises multiple consecutively numberekigieic\We see the packets of the
various flows in the Cash Register model. Packets get trateshout of order because of retransmissions in
presence of errors, ie., packets may repeat in the streatim&t® the number of flows that have (significant
number of) out of order packets at any time. Space used shewdhaller than the number of distinct TCP
flows.

7.8.2 Windowed Streaming

It is natural to imagine that the recent past in a data strsamare significant than distant past. How to
modify the streaming models to reemphasize the data froentguast? There are currently two approaches.

First iscombinatorial Here, one specifies a window size and explicitly focuses only on the most
recent stream of size, i.e., at timet, only consider updates;_,,+1,...,a;. ltems outside this window
fall out of consideration for analysis, as the window slidger time. The difficulty of course is that we can
not store the entire window, only(w), or typically only o(polylog(w)) bits are allowed. This model was
proposed in [36] and is natural, but it is somewhat synthetigut a hard bound afy on the window size,
for example, irrespective of the rate of arrival of the stnea

The other model iselescopic Here, one considers the signal as fixed size blocks ofisiaad A-ages
the signal. LetA,; represent the signal from blogk We (inductively) maintaing; as the meta-signal after
seeing: blocks. When thé + 1th block is seen, we obtain

Bit1 = (L = Xit1)Bi + Xigy10541-

If we unravel the inductive definition, we can see that thealidgrom a block affects the meta-signal expo-
nentially less as new blocks get seen. This model has ceéiaiar algebraic appeal, and it also leverages
the notion of blocks that is inherent in many real life dateatns. The original suggestion is in [32] where
the block amounted to a days worth of data, and were kept mostly fixed. The drawback of this model
is clearly that it is difficult to interpret the results in shinodel in an intuitive manner. For example, if we
computed the rangesum of the metasighét - - - b], what does the estimate mean for the data stream at any
given time?

Let me propose another natural modelhiararchical block modeldescribed by Divesh Srivastava.
Informally, we would like to analyze the signal for the cuntelay at the granularity of a few minutes,
the past week at the granularity of hours, the past montheagtanularity of days, the past year at the
granularity of weeks, etc. That is, there is a natural hamarin many of the data streams, and we can
study the signals at progressively higher level of aggiegats we look back in to the past. There are very
interesting research issues here, in particular, how tcaé a fixed amount of space one has amongst the
different signal granularities, etc. that is being invgated now.

7.8.3 Synchronized Streaming

A puzzle, due to Howard Bergerson, is as follows. Imaginefitts¢ one thousand vigintillion minus one
natural numbers arranged in two lists, one in numerical roathel the other in lexicographic order. How
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many (if any) numbers have their positions same in both?@igtkere is nothing special about vigintillion,
anyn will do.

This has a Paul-Carole North American version. Carole couptl, ..., n. Paul counts too, but in
permuted order given by the lexicographic position of nurabehen written in English. For example, if
n = 4, Carole goeq, 2, 3,4 but Paul goes-our , One, Thr ee, Two. Both count in lock step. When, if
ever, do they say “Jinx!"?

Answer of course depends anand not by a formula. See [116] for some answers.

This puzzle contains the elements of what | call fiyachronized streaming modefay we wish to
compute a function on two signals; and A, given by a data stream. All updates to both the signals are
simultaneous and identical except possibly for the updaliges. That is, if théth item in the data stream
that specifieA; is (i, C1 (7)), then thefth item in the data stream that specifis is (i, C2(i)), too. Both
these updates are seen one after the other in the data st@angoal as before is to compute various
functions of interest oA ; and A, satisfying the desiderata of streaming algorithms.

In the synchronized streaming model, one can do whatevebbeaone in the generic streaming model
in which one of the signals is presented before the otheheoith updates of the two signals are arbitrarily
separated. The interest is if synchronized model can adistmpore. We believe that to be the case. For
example, if the two signals are two strings read left to righdynchronized streaming, one can estimate if
their edit distance if at most, usingO(k) space. In contrast, this is difficult to do in a generic striegm
model. Synchronized streaming is quite natural; more rebdéa needed on this model.

7.9 Data Stream Quality Monitoring.

Any engineer having field experience with data sets will camthat one of the difficult problems in reality
is dealing with poor quality data. Data sets have missingeslrepeated values, default values in place
of legitimate ones, etc. Researchers study ways to detebtmoblems (data quality detection) and fixing
them (data cleaning). This is a large area of research, sdmthk [77].

In traditional view of databases, one s@tiegrity constraintsand any violation is considered a data
quality problem and exceptions are raised. Bad quality (kda age of a person being more ti#0) is
never loaded into the database. This is a suitable paradiguaiatabases that are manually updated by an
operator.

In emerging data streams, data quality problems are likelyet manifold. For example, in network
databases, data quality problems have to do with missing, gduble polls, irregular polls, disparate traffic
at two ends of a link due to unsynchronized measurementxfarder values, etc. Now it is unrealistic
to set integrity constraints and stop processing a highdsgata feed for each such violation; furthermore,
appearance of such problems in the feed might by itself aidian abnormal network phenomena and
cleaning it off in the database may hide valuable evidenced&tecting such phenomena. Developing
algorithms to detect one data quality problem after anathemply not a scalable or graceful approach,
one needs a different principled approach.

| am a believer irdata quality monitoringools. They operate as database applications, monitaisng i
state by measuring statistics: strong deviation from ebguestatistics may be projected as a ping for the
database administrator or the user to react to. To be usbéutpol has to be configured to monitor most
suitable statistics and thresholds need to be set to redeéisdle number of pings while suppressing false
alarms. This is an engineering challenge. There are manyg thaydatabase and users may deal with these
pings: writing their queries in an informed way is my choi&e [78] for related discussions.

Bellman [66] is such a tool for traditional database systeinsionitors the structure in the database
tables using various statistics on the value distributiothe tables. PACMAN [78] is another tool; it uses
probabilistic, approximate constrain{ffACs) to monitor SNMP data streams and works operatioriatly
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a large ISP. PACs are also a principled way to determine wigadi@a quality problems. More needs to be
done.

In general, our communities have approached data qualiiglgms as “details” and dealt with indi-
vidual problems as the need arises. (In Computational Byofor example, one deals with noisy data by
redefining a particular problem.) | think there is a need teett®o more principled methods—theory and
systems—for dealing with poor quality data.

Here is a specific technical problem not restricted to steeam

Problem 19 Given a setS of stringssy, ..., s, and setl’ of stringsty, ..., t,, find amatching(ie., one-
to-one mapping)f : S — T such that}", d(s;, f(s;)) is (approximately) minimized. Lelx,y) be the
edit distance between stringsand y. This problem can be done by computig;, t;) for all pairs 7, j
and finding min cost matching, but the goal is to get a substiyntsubquadratic (say near linear) time
approximate algorithm. The underlying scenarigsignd 7" are identical lists of names of people, but with
some errors;f is our posited (likely) mapping of names of people in onddishe other.

7.10 Fish-eyeView

Let me do a fish-eye view of other areas where streaming praédound. The discussion will be elliptical:
if you mull over these discussions, you can formulate irstéeng technical open problems.

7.10.1 Linear Algebra

Many matrix functions need to be approximated in data stneerdel. Let me propose a specific problem.

Problem 20 Given a matrixA[l---n,1---n] in the Turnstile Model (i.e., via updates 1), find an ap-
proximation to the best-rank representation té\; at any timet. More precisely, find)* such that

A, — D*|| < ‘ A, —D
|| A H_f(DmaIrIlel?D)ng ¢ 1)

using suitable nornf|.|| and functionf.

Similar result has been proved in [51] using appropriatepdizug for a fixedA , and recent progress is in [50]
for similar problem using a few passes, but there are notsesuthe Turnstile Model. A lot of interesting
technical issues lurk behind this problem. One may have tm@vative in seeking appropriate|| and

f. Other linear algebraic functions are similarly of intéresstimating eigenvalues, determinants, inverses,
matrix multiplication, etc.

7.10.2 Statistics

We saw how to estimate simple statistical parameters onstisdams. We need vastly more sophisticated
statistical analyses in data stream models, for examptagkmethods, scan statistics, kurtosis parameters,
data squashing, etc., the whole works. In statistics, resees seem to refer to “recursive computing” which
resonates with the cash register model of computation.€lisem inspiring article by Donoho [52] which is

a treasure-tove of statistical analyses of interest witbsiva data. Another resource is http://www.kernel-
machines.org/. Any of the problems from these resourcddwilnteresting in data stream models. Let me
propose a general task:

Problem 21 Assume a model for the signAland estimate its parameters using one of well known methods
such as regression fitting or maximum likelihood estimateio. on the data stream.
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7.10.3 Complexity Theory

Complexity theory has already had a profound impact onsiieg Space-bounded pseudorandom generators—
developed chiefly in the complexity theory community—playimportant role in streaming algorithms. No
doubt more of the tools developed for small space compustall find applications in data streaming.

In a recent lunk talk with David Karger, the question aroseetlibr quantum phenomenon can com-
press computations into much smaller space than convahttomputations, i.e., quantum memory is more
plentiful than conventional memory.

Let me propose a question, which is likely to have been inareders’ minds; Sivakumar has some
notes.

Problem 22 Characterize the complexity class given by a deterministispace verifier with one-way
access to the proof.

7.10.4 Privacy Preserving Data Mining

Peter Winkler gives an interesting talk on the result in [&B]ch is a delightful read. Paul and Carole each
have a secret name in mind, and the problem is for them torditerif their secrets are the same. If not,
neither should learn the other’s secret. The paper [53fptssnany solutions, and attempts to formalize
the setting. (In particular, there are solutions that imedboth Paul and Carole permuting the domain, and
those that involve small space pseudorandom generataae’$ %two millionaires” problem [54] is related

in which Paul and Carole each have a secret number and thieprabto determine whose secret is larger
without revealing their secrets.

These problems show the challenge in the emerging areavefcgrpreserving data mining. We have
multiple databases (sets or multisets). Owners of thesbhds¢s are willing to cooperate on a particular
data mining task such as determining if they have a commaetseay for security purposes or because it
is mandated. However, they are not willing to divulge theitathase contents in the process. This may be
due to regulatory or proprietary reasons. They need prigaegerving methods for data mining.

This is by now a well researched topic with positive results/éry general settings [56]. However,
these protocols have high complexity. But there is a demandfficient solutions, perhaps with provable
approximations, in practice. In [55] authors formalized tiotion of approximate privacy preserving data
mining and presented some solutions, using techniquesasitoiones we use in data stream algorithms.
Lot remains to be done.

The database community is researching general, efficietiiate to make databases privacy-preserving.
Let me propose a basic problem.

Problem 23 Paul hasm secrets, and Carole hassecrets. Find an approximate, provably privacy-presegvin
protocol to find the common secrets. As before, the uniquetsenf Paul or Carole should not be revealed
to each other.

Other problems arise in the context of banking, medicalldegas or credit transactions. This gives new
problems, for example, building decision trees, deteabuijers, etc. For example:

Problem 24 Paul, Carole and others have a list of banking transactiothsposits, withdrawal, transfers,
wires etc.), each ofheir customers. Say the customers have common IDs across the D&tsign an
approximate, provably privacy-preserving protocol to fthd “heavy hitters”, i.e., customers who executed
the largest amount in transactions in thembinedlist of all transactions.
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8 Concluding Remarks

In How Proust can Change Your Ljfélain de Botton wrote about “the All-England Summarise &to
Competition hosted by Monty Python ... that required cdates to précis the seven volumes of Proust’s
work in fifteen seconds or less, and to deliver the resultsifira swimsuit and then in evening dress.” |
have done something similar with data stream algorithmshHatvmounts to an acadeniié seconds sans
a change of clothes.

| think data streams are more than the topic de jour in Com@gdience. Data sources that are massive,
automatic (scientific and atmospheric observations, eehmsunication logs, text) data feeds with rapid
updates are here to stay. We need the TCS infrastructure magaeaand process them. That presents
challenges to algorithms, databases, networking, sysaechkanguages. Ultimately, that translates into new
guestions and methods in Mathematics: approximation yhetatistics and probability. New mindset—say,
seeking only the strong signals, working with distributearmmaries—are needed, and that means a chance
to reexamine some of the fundamentals.

8.1 DataStream Art
Trend or not, data streams are now Art.

e There are ambient orbs [121] dubbed “News that Glows” by thes Nork Times Magazine, Dec 15
2002, pages 104-105, that indicate fluctuations in Dow Jbwhsstrial Average using continuously
modulated glow. Clearly they are useful for more than vgtfinancial obsessions.

¢ Dangling Stringcreated by (wonderful techno-)artist Natalie Jeremijeriga live wire connected to
a Ethernet cable via a motor; traffic level in the cable is show the range of motions from the tiny
twitch to a wild whirl, with associated sounds [111].

e Mark Hansen and Ben Rubin have thistening Posexhibit [114] at various locations including the
Brooklyn Academy of Music and the Whitney Museum of Conterapp Art in New York where
they convert the live text information in Internet chat raamd message boards into light and sound,
described by NY Times as a “computer-generated opera”.

Besides being Art, ambient information displays like the®above are typically seen as Calming Technol-
ogy [2]; they are also an attempt to transcode streamingini@ta processible multi-sensory flow.

8.2 Short Data Stream History

Data stream algorithms as an active research agenda hageehoey over the past few years. The concept
of making few passes over the data for performing computatltas been around since the early days of
Automata Theory. Making one or few passes for selection [&jpoting [9] got early attention, but the area
seems to have evolved slowly. Computer architecture relsé¢was long considered data flow architectures
which may be thought of as an approach to data streaminghéuatrea did not address complex operations
on each data item.

There was a gem of a paper by Munro and Paterson [8] in 1988ykatfically defined multi-pass algo-
rithms and presented one pass algorithms and multi-pass lowunds on approximately finding quantiles
of a signal.

In early90’s, | remember Raghu Ramakrishnan of U. Wisconsin, Madiasking me what | can do if
| was allowed to make only one pass over the data. Presum#igyschad this question in their mind too.
“Not much”, | told Raghu then, but that has changed in the pgstars.
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Phil Gibbons and Yossi Matias at Bell Labs synthesized tka if Synopsis Data Structures [59] that
specifically embodied the idea of small space, approximaltgisn to massive data set problems. The in-
fluential paper [1] used limited independence for small epgEimulation of sophisticated, one-pass norm
estimation algorithms. This is a great example of ideas ¢hagérged from complexity-theoretic point of
view—pseudo random generators for space-bounded corigngatgetting applied to algorithmic prob-
lems that are motivated by emerging systems. The paper bgiktgr, Raghavan and Rajagoplan [10] for-
mulated one (and multiple) pass model of a data stream arsémteri a complexity-theoretic perspective;
this is also an insightful paper with several nuggets of nlage®ns some of which are yet to be developed.
Joan Feigenbaum, working with researchers at AT& T Rese&lehtified, developed and articulated the
case for the network traffic data management as a data stigalinadion. This was a great achievement
and it is now widely accepted as one of the (chief?) inspiapglications for the area. Significant work was
done at research labs—IBM Research and Bell Labs— and seie@rsities about the same time.

Since these early developments, a lot has been done in Tieab@omputer Science community and in
others including programming languages, KDD, Databasesybdking, etc. Hancock, a special purpose C
based programming language that supports stream hangbnthe best paper award in KDD 2000. There
is focus on decision trees on data streams in KDD communigjed¥ Motwani gave a thoughtful plenary
talk at PODS 2002 on data stream systems focusing on therherdal challenges of building a general-
purpose data stream management system. The associated e well worth reading, in particular,
for a database perspective. There have been tutorials inR@&MOD and VLDB in year 2002. [107]
DIMACS gathered working groups on data streams. Georgehéaraddressed the problem of computing
at link speed in router line card and focused on simple dataist problems at a SIGCOMM 2002 tutorial.
Sprint Labs work on IP monitoring was presented at the SIGREZS 2002 tutorial [4]. Jiawei Han has
tutorials and talks on data mining problems in data stredd4][

The wonderful website [122] has a lot of information.

8.3 Perspectives

Doubtless more tutorials, workshops and other academierddres will happen over time; the main point
is that data stream agenda now pervades many branches ofu@n§eience. Industry is in synch too:
several companies are promising to build special hardwa@eal with incoming data at high speed. |
was at a National Academy of Sciences meeting recently [Mi2¢re data stream concerns emerged from
physicists, atmospheric scientists and statisticiang,is@preading beyond Computer Science.

Unlike a lot of other topics we—algorithmicists—poured egyeinto, data streams is an already accepted
paradigm in many areas of CS and bey8ntlthink if we keep the spirit of stream data phenomenon in
mind, and be imaginative in seeking applications and mogeitential for new problems, algorithms and
mathematics is considerable. | hope the perspective | hagepted in this writeup helps you ideate.

I have mixed exposition with reflections. Thanks to the SOMA2 PC for giving me the opportunity.
| have left out image, audio and video streams, XML streares, e
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days. | am happy to find new roles for them. Sampath Kannan sharéd a new boyhood in Madison, NJ;
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There was a researcher called Muthu
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Live out his dreams
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And if you could, wouldn'’t you too?

Talking about fishing: that puzzle is from my work with Mayuatar, who helped me with comments
and suggestions on this writeup.

Sometime in 1999, Anna Gilbert, Yannis Kotidis, Martin $ia and | formed a (cross-functional!)
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