
Anytime Algorithms
for Stream Data Mining

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften

der RWTH Aachen University zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Philipp Kranen

aus Willich, Deutschland

Berichter: Universitätsprofessor Dr. rer. nat. Thomas Seidl

Visiting Professor Michael E. Houle, PhD

Tag der mündlichen Prüfung: 14.09.2011

Diese Dissertation ist auf den Internetseiten

der Hochschulbibliothek online verfügbar.

Contents

Abstract / Zusammenfassung 1

I Introduction 5

1 The Need for Anytime Algorithms 7

1.1 Thesis structure . 16

2 Knowledge Discovery from Data 17

2.1 The KDD process and data mining tasks 17

2.2 Classification . 25

2.3 Clustering . 36

3 Stream Data Mining 43

3.1 General Tools and Techniques 43

3.2 Stream Classification . 52

3.3 Stream Clustering . 59

II Anytime Stream Classification 69

4 The Bayes Tree 71

4.1 Introduction and Preliminaries 72

4.2 Indexing density models . 76

4.3 Experiments . 87

4.4 Conclusion . 98

i

ii CONTENTS

5 The MC-Tree 99

5.1 Combining Multiple Classes 100

5.2 Experiments . 111

5.3 Conclusion . 116

6 Bulk Loading the Bayes Tree 117

6.1 Bulk loading mixture densities 117

6.2 Experiments . 122

6.3 Conclusion . 127

7 The Classifier Family: Learn from your Relatives 129

7.1 Introduction . 129

7.2 Learning from Relatives . 131

7.3 Experiments . 141

7.4 Conclusion . 150

8 Application: Anytime Classification in HealthNet Scenarios 151

8.1 Scenario and Prototype . 152

8.2 Summary . 157

9 Anytime Algorithms on Constant Streams 159

9.1 Introduction . 160

9.2 Novel Approaches for Constant Data Streams 161

9.3 Experiments . 169

9.4 Conclusion . 180

10 Future Work 181

III Anytime Stream Clustering 183

11 Self-adaptive Anytime Stream Clustering 185

11.1 The ClusTree Algorithm . 186

11.2 Analysis and experiments 196

11.3 Conclusion . 205

CONTENTS iii

12 Exploiting additional time in the ClusTree 207

12.1 Alternative descent strategies 207

12.2 Evaluation of descent strategies 213

12.3 Conclusion . 215

13 Robust Anytime Stream Clustering 217

13.1 The LiarTree . 217

13.2 Experiments . 229

13.3 Conclusion . 235

14 Application: Using Modeling for Anytime Outlier Detection 237

14.1 Introduction . 237

14.2 Related work . 238

14.3 Detecting outliers in streaming data 240

14.4 Experiments . 243

14.5 Conclusion . 250

15 MOA and CMM 251

15.1 The MOA Framework . 252

15.2 Evaluation Measures for Stream Clustering 260

16 Future Work 263

IV Summary and Outlook 265

V Appendices I

Bibliography III

Statement of Originality XLI

List of Publications XLIII

Curriculum Vitae XLVII

Abstract

Data is collected and stored everywhere, be it images or audio files on

private computers, customer data in traditional or electronic businesses, per-

formance or control data in production sites, web traffic and click streams

at internet providers, statistical data at government agencies, sensor mea-

surements in scientific experimentation, surveillance data, etc. There are

countless examples, and the amount of data is tremendous. Data mining is

the process of finding useful and previously unknown patterns in data. In the

examples listed above, data mining can be used for automated recommen-

dation of audio files, business analysis and target marketing, or performance

optimization and hazard warnings. While early mining algorithms only con-

sidered static data sets, research and practice in data mining must nowadays

deal with continuous, possible infinite streams of data, which are prevalent

in most real world applications and scenarios.

Anytime algorithms constitute a special type of algorithm that is well

suited to work on data streams. They inherit their name from their ability

to provide a result after any amount of processing time. The amount of

time available is not known to the algorithm in advance: anytime algorithms

quickly compute an initial result and strive to improve it as long as time

remains. When interrupted they deliver the best result obtained until that

point in time.

In this thesis anytime classification is studied in depth for the Bayesian

approach. New algorithmic solutions for anytime classification are devel-

oped and evaluated in extensive experimentation. The first anytime stream

clustering algorithm is proposed, and an application to anytime outlier de-

tection is presented. In addition to the algorithmic contributions, new meta-

approaches are described that significantly widen the area of applications for

anytime algorithms. The solutions and results of this thesis contribute to the

state of the art in anytime algorithms and stream data mining research.

1

Zusammenfassung

Die rasante Entwicklung der Informationstechnologie hat zur Folge, dass

in allen Bereichen der Gesellschaft und des täglichen Lebens große Mengen

an Daten erzeugt und gespeichert werden. Beispiele reichen von Multimedia-

Daten auf privaten Computern bis hin zu Messdaten in wissenschaftlichen

Experimenten. Data Mining beschreibt die Aufgabe, in solchen Daten neue

und interessante Muster zu finden. Diese können beispielsweise zur automa-

tischen Empfehlung von Filmen genutzt werden oder helfen neue Zusam-

menhänge aufzudecken und Prozesse zu verstehen. Seit Beginn der Data

Mining Forschung wächst die Größe der zu verarbeitenden Datensätze.

Während Datensätze zunächst als statisch und vollständig gegeben angenom-

men wurden, generieren viele Anwendungen heute kontinuierliche und teil-

weise unendliche Datenströme.

Anytime-Algorithmen stellen eine Klasse von Algorithmen dar, welche

sich besonders gut zum Einsatz auf Datenströmen eignet. Ihr Name rührt

von ihrer Eigenschaft her, zu jeder Zeit ein Ergebnis liefern zu können. Die

zur Verfügung stehende Zeit ist dem Algorithmus dabei nicht bekannt: er

berechnet ein initiales Ergebnis und verbessert dieses solange zusätzliche

Rechenzeit vorhanden ist. Wird der Algorithmus unterbrochen, so liefert er

das beste Ergebnis zurück, welches bis zu diesem Zeitpunkt erzielt wurde.

In dieser Dissertation werden neue Anytime-Verfahren für die Bayes

Klassifikation entwickelt, intensiv untersucht und evaluiert. Der erste

Anytime-Algorithmus zum Clustern von Datenströmen wird vorgestellt und

eine Anwendung für die Erkennung von Ausreißern wird diskutiert. Neben

neuen Algorithmen werden zwei übergeordnete Verfahren entwickelt, die

den Anwendungsbereich für Anytime-Algorithmen signifikant erweitern. Die

in dieser Dissertation vorgestellten Ansätze und Resultate tragen zum Stand

der Forschung im Bereich Anytime-Algorithmen und Data Mining auf Daten-

strömen bei.

3

Part I

Introduction

5

Chapter 1

The Need for Anytime Algorithms

The rapid development of computer and information technology fundamen-

tally changed many processes in science, industry and daily life. Systems for

collecting, storing and managing data evolved from primitive file processing

systems to sophisticated and powerful database systems. The tremendous

amounts of data soon exceeded the human ability of comprehension and

thus called for advanced tools for analysis, compression and exploration.

Knowledge discovery from data bases (KDD), or data mining, emerged as an

interdisciplinary research field from the areas of data bases, machine learn-

ing, statistics, visualization and other areas. Many mining algorithms were

invented that helped reducing data, automatically classifying new objects

based on historical data or extracting rules and correlations that exhibit novel

patterns and useful knowledge.

In early days of data mining research data sets were often considered

static and given as a whole. This assumption allowed mining algorithms to

perform random access on the data and to process objects multiple times

during execution. With ever growing amounts of data the need for efficient

processing yielded single pass algorithms and general solutions for fast ac-

cess to large data sets were developed.

A data stream is a continuous, possibly endless sequence of data items

that must be processed as they arrive. Many real world applications can be

associated with data streams as large amounts of data must be processed

7

8 The Need for Anytime Algorithms

every day, hour, minute or even second. Examples include business/market

data in companies, medical data in hospitals, statistical data in governmental

institutions, experimental data in scientific laboratories, click streams in the

world wide web, traffic/network data at web hosts or telecommunications

companies, financial/stock market data in banking institutions, transaction/

customer profile data in e-commerce companies, etc.

Mining on data streams can basically perform the same tasks as mining on

static data sets. Summarization or clustering are important tasks in stream

mining, since they help to reduce the amount of data and can provide an

overview of the data distribution. Other major tasks are stream classification
and outlier detection on data streams. Figure 1.1 shows real world examples

of data stream applications where such mining tasks are crucial. Sorting

items on a conveyor belt is an application for stream classification (cf. top

left of Figure 1.1). In the example the bottles correspond to the data items

and the classifier must sort out the broken or dirty bottles while usable bottles

can pass. Similar applications are continuous quality checks in production

sites such as surface inspection in paper, fabric or foil production (cf. top row

of Figure 1.1, middle and right).

The first example in the second row of Figure 1.1 shows an application for

both classification and outlier detection. The image shows an offshore wind

farm and is associated with remote monitoring of machinery in general. In

these applications measurements such as temperature, pressure or frequency

spectra are taken at regular intervals and sent to a remote monitoring center,

where the data is analyzed. The analysis can facilitate classification of the

current status, detection of abnormalities or prediction of future measure-

ments for hazard warnings. The center image shows a buoy of a tsunami

warning system, the image right to it illustrates a network of sensors spread

on a glacier in Switzerland. In both cases environmental parameters are

measured and sent to base stations where these measurements constitute a

stream of data objects. While classification and outlier detection has priority

in both applications, generating models and distributions of the incoming

data can be of interest for researchers and decision makers.

9

emergency

professional
decision

full
classifier

pre
classifier

normal

Figure 1.1: Examples for real data streams.

The bottom part of Figure 1.1 illustrates the HealthNet project that has

been conducted at RWTH Aachen University within the UMIC research clus-

ter (cf. Chapter 8 for details). A central part in the HealthNet project is

a body sensor network that measures vital functions of patients or elderly

people. Those measurements are transferred to a mobile device for a first

analysis and then partially forwarded to a central server depending on the

results of the local analysis. Again the above mentioned tasks of classifying,

detecting, predicting and modeling such patient data are useful and impor-

tant.

Summarizing the review of data streams in real world scenarios it be-

comes clear that basically everywhere where data is continuously measured,

sent and analyzed, we find a potential application for stream data mining.

10 The Need for Anytime Algorithms

From the nature of a data stream and the properties of the system, on

which the mining algorithm is executed, the following restrictions and con-

sequential requirements emerge:

• endless stream – due to the fact that a data stream is possibly endless,

the amount of data must be considered as infinite. As a consequence,

algorithms are only allowed a single scan over the data. While some

objects can be buffered to be processed again later on, nearly all items

can be considered at most once. Moreover, the data must be processed

in the order of its arrival; random access as in traditional data mining

is missing in the streaming context.

• limited time – since data is continuously arriving, the time to process a

single object is limited. Spending more time on an item by not process-

ing other items (dropping, sampling) is prohibitive in many applica-

tions such as sorting or outlier detection. Therefore the available time

is mostly dictated by the actual or average time between two consecu-

tive stream items. To this end the algorithms must provide fast access

and cheap functions to process incoming objects online.

• limited memory – the limitation of physical memory and the infinite

amount of data naturally yield the need for a compact representation

of historical data using effective data structures. Storing all data objects

is in most cases practically infeasible.

• evolving data distribution – maintaining an up to date model of the

data distribution is crucial for many applications and algorithms. How-

ever, in a data stream scenario the underlying model of the data dis-

tribution often changes over time; concepts may shift or disappear and

novel concepts can emerge. To focus on recent data, algorithms must

provide ways to update their models and also forget or weigh down

older data. Besides maintaining a valid model, the detection of changes

in the data distribution is a new task that emerged in stream data min-

ing.

11

• noisy data – noise in data streams corresponds to improper data tuples

that can result from faulty sensor readings, for example. It is important

for a mining algorithm to be robust against noise and offer appropriate

ways of noise handling.

• varying data rates – the majority of data streams do not exhibit the

same data rate over the entire time of their existence. On the contrary,

many applications produce data at massively changing rates, for ex-

ample due to daytime or seasonal changes in transaction data. Even

rather stable data streams show varying data rates over time such as

changes in conveyor belt speed in production. The varying data rates

imply varying time allowances, which are in many cases unforeseeable.

For some of the above aspects effective solutions have been proposed

that are shared by many approaches. For limited time and limited space,

established methods are available that are discussed in Chapter 3 along with

common methods of dealing with evolving data distributions. Coping with

single scan and missing random access is the core of any streaming algo-

rithm. Also, the handling of noise is done in very individual ways (or even

left out), since there is no clear definition of noise. Varying data rates and

their implications are the focus in the remainder of this chapter.

The requirements for stream mining algorithms demand that items must

be processed as they arrive. The available time for processing is naturally

limited by the time between two consecutive items and may vary greatly

in many applications. Referring back to the data stream applications from

Figure 1.1 we take sensor networks as one example. Many sensor networks

strive to reduce the amount of data that must be sent either to spare network

bandwidth or energy resources, since sending data consumes much energy

and often sensors are battery powered. Therefore, measurements are ag-

gregated or only sent if they deviate significantly from the previous measure-

ment. While this can yield unforeseeable inter-arrival times already for single

sensors, it often results in data streams of massively changing data rates at

base stations or monitoring centers. More moderate changes in stream rates

can be expected at production sites and conveyor belt applications. However,

12 The Need for Anytime Algorithms

frequencies may differ as well on a daily, weekly or monthly basis. Finally,

streams of business data or network traffic data exhibit high volatility for

daytime or seasonal reasons.

As discussed previously, sampling or dropping of data items is prohibitive

for many applications such as sorting or outlier detection. Since in varying

data streams the duration of a burst or the number of objects that arrive

within a certain time window is generally not bounded, simply buffering

objects until the stream slows down is an option, neither. If the buffer size is

exceeded, objects are lost. Moreover, buffering objects can largely delay the

time of their processing and hence consecutive actions or reactions may not

be initiated on time.

To process each item as it arrives traditional algorithms must base their

computational model on the worst case assumption. More precisely, to be

able to keep up even with the highest expected stream rate, the processing

time for a single item must be strongly related to the corresponding small-

est inter-arrival time. While parallel processing can speed up algorithms, it

cannot break the dependency on the smallest time allowance. To finish the

computation within a specific time budget, an algorithm can be restricted

and tailored to the contracted budget. Clearly this yields large amounts of

idle times, since the algorithm would finish his computation in the same

time even if the available time is larger by orders of magnitude. While this

is a drastic restriction for highly volatile streams, even for rather constant

streams with smaller seasonal changes as in production sites, models must

be built according to the minimal time allowance and, hence, the idle times

add up and can become massive.

Optimally, an algorithm should be able to process an object in very short

time and use any additional computation time to improve its outcome as long

as permitted by the application. Consequently, idle times would be reduced

or even avoided, the overall output of the algorithm would be improved,

and the need to tailor algorithms to an expected or minimal time budget

becomes obsolete. The idea of being able to provide a result regardless of the

amount of available computation time lead to the development of anytime

algorithms.

13

Definition 1.1 Anytime algorithm. For a given input an anytime algorithm
can provide a first result after a very short initialization time and it uses addi-
tional time to improve its result. The algorithm is interruptible after any time
and will deliver the best result available at the point of interruption.

Anytime algorithms have first been discussed in the artificial intelligence

community by Thomas Dean and Mark Boddy in [DB88] and have thereafter

been an active field of research [Bod91, Zil96, GZ96]. Recent work includes

an anytime A* algorithm [LGT03] and anytime algorithms for graph search

[LFG+08]. Related concepts include anyspace [RC05, YWKMN09] and any-

cost algorithms [EM11].

Anytime algorithms differ from online algorithms and stream algorithms.

Online algorithms refer to computing with incomplete information; the input

is given one piece at a time [BEY98]. In addition to that, stream algorithms

consider limited resources explicitly, for example a fixed maximal amount

of time or memory. In contrast to anytime algorithms, neither of the two

categories requires the algorithm to be interruptible at any time.

Not every application needs an anytime algorithm. In many applica-

tions there may always be enough time to compute even the most detailed

model. However, it is unquestioned that in many applications the available

data largely increases in both size and complexity. This implies on the one

hand that models become more complex, too, leading to higher computation

times. On the other hand the increasing amount of data to process yields

smaller time allowances per object. Multi-core processors and paralleliza-

tion are not a one-fits-all solution to increasing complexity and decreasing

time allowance. Large enterprises, especially web-scale endeavors, employ

newest hardware and large scale server installations. While this may solve

the case for some, others cannot afford giant hardware resources either due

to economic reasons or contextual restrictions. Embedded systems, sensor

networks, and mobile devices, for example, naturally own only very limited

resources.

The anytime principle is applicable to many mining tasks and other algo-

rithms. Classification is used as an example for the remainder of this section.

14 The Need for Anytime Algorithms

0,8

1

ur
ac
y

0 4

0,6ac
c

0

0,2

0,4

0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 time

Figure 1.2: Anytime classification accuracy curve.

An anytime classifier can provide a first classification result for a given object

after a short initialization. If it is not interrupted by the application, the algo-

rithm continues processing the object to improve its classification decision;

the accuracy of the result increases with the available computation time. Fig-

ure 1.2 shows the curve of a typical evaluation result for an anytime classifier

(if the algorithm works correctly): very small time allowances typically lead

to medium classification accuracy, with greater time allowances the accuracy

increases asymptotically towards its maximum.

The evaluation principle of anytime algorithms is somehow opposite to

evaluating traditional algorithms. Traditional algorithms are often compared

in terms of their efficiency, stating how many resources (most often time)

they need to achieve a certain goal. This corresponds to the minimum prin-

ciple, or principle of thrift, known from economy, which strives to reach a

certain output with the least possible input. Anytime algorithms rather cor-

respond to the maximum principle, or principle of yield, which strives to

yield the highest possible output given a certain input. Evaluating an any-

time classifier hence asks the question ”how accurate is the classifier for a

given amount of time?”. Taking the varying time allowances into account,

not only the single time accuracy value pairs are of interest, but also the

accuracy increase between two different time allowances as well as the av-

erage accuracy over a given distribution of time allowances. Details on these

evaluation methods are provided in Chapter 4.

Anytime algorithms are obviously the best choice for data streams with

varying data rates. Also on constant data streams, where every inter-arrival

interval is always strictly the same, anytime algorithms can be beneficial and

clearly outperform traditional budget algorithms. Consider the first applica-

15

tion from Figure 1.1, bottles on a conveyor belt in a brewery, for example. At

some point the bottles pass a camera or the like, where features are extracted

that are used in a classifier to decide whether the bottle must be sorted out

or not. If the time between two bottles is known in advance, lets say 50

milliseconds, then a budget algorithm can be designed that delivers a classi-

fication result within that budget of 50 milliseconds. If the budget would be

higher the resulting accuracy of the classifier is likely to be better, because it

has more time and can process a more detailed model. However, the budget

algorithm spends the same amount of time on each item, i.e. on each bottle.

In reality there are bottles for which the decision is very clear even after a

very short time, as in the case of a bottle that is broken or clearly wasted.

At this point an anytime algorithm can be used to not spend any more time

on these certain decisions and to take advantage of the gained extra time

for other items, where a clear decision requires a more detailed model. This

way, the overall performance of an anytime algorithm (the accuracy in this

example) exceeds that of a traditional budget algorithm even on a constant

data stream. In Chapter 9 different approaches to harness the strength of

anytime algorithms on constant streams are proposed along with details and

experimental analyses.

The abundance of data streams and applications and the superiority and

usefulness of anytime algorithms on both varying and constant streams moti-

vated the research that is presented in this thesis. Novel methods for anytime

classification are developed and the first anytime algorithm for clustering on

data streams is proposed. The outline of the thesis is provided in the next

section.

16 The Need for Anytime Algorithms

1.1 Thesis structure

This thesis consist of five parts: I Introduction, II Anytime Stream Classifi-

cation, III Anytime Stream Clustering, IV Summary and Outlook, and the

appendices in Part V.

The introduction contains the motivation, the background, and the main

concepts for stream data mining and anytime algorithms. We have seen that

data mining algorithms are important in many applications and that streams

are ubiquitous in all areas of our daily life. The special requirements of

stream mining algorithms were discussed and anytime algorithms resulted

as most flexible and the best choice for both varying and constant streams.

In the remainder of the introduction the KDD process and general mining

tasks are reviewed in Chapter 2 and specific tools and algorithms for stream

data mining are discussed in Chapter 3.

In part II the focus is on anytime classification on data streams. Novel

approaches for anytime stream classification are presented in Chapters 4 – 7

and an application of the proposed anytime classifier is shown in Chapter 8.

Two concepts for using anytime algorithms on constant streams are proposed

in Chapter 9, future work in the area of anytime stream classification is dis-

cussed in Chapter 10.

In Part III anytime clustering on data streams is introduced. Novel ap-

proaches for anytime stream clustering are proposed in Chapters 11 – 13, an

application of the proposed technique for anytime outlier detection is shown

in Chapter 14. Chapter 15 deals with the evaluation of stream clustering

algorithms presenting a software framework for stream mining and a novel

concept for the evaluation of clusterings on evolving data streams. Future

work in the area of anytime stream clustering is discussed in Chapter 16.

Part IV summarizes the thesis and provides a general outlook for future

research in the area of anytime algorithms and stream data mining.

The appendices in part V provide the bibliographic references as well as

additional information on the author and his contributions in this thesis in

the form of a statement of originality, a list of publications, and a curriculum

vitae.

Chapter 2

Knowledge Discovery from Data

This chapter contains background information on the KDD process and in-

troductions to basic data mining tasks, algorithms and challenges. Readers

familiar with data mining may want to skip this chapter and proceed with

Chapter 3, where more specific techniques for stream data mining are dis-

cussed.

2.1 The KDD process and data mining tasks

Knowledge discovery from data is an iterative process that contains multiple

steps which are illustrated in Figure 2.1. Before the actual data mining is

performed the desired data must be extracted and validated. This requires

that a thorough preprocessing precedes the mining step.

Data cleaning refers to the removal of noise and inconsistencies in the

raw data. These can be missing values or values that are outside the al-

lowed range and can occur among others due to faulty measurements, hu-

man errors during data acquisition or deliberate manipulation. Integration
of data refers to the combination of data from multiple sources, which can

be different companies, different users or different time spans. Challenges

in data integration include differences in naming conventions, missing at-

tributes or a different schema in general. Data selection is the restriction to

relevant data; only those tuples and attributes are retrieved that are inter-

17

18 Knowledge Discovery from Data

Data bases Data Warehouse Preprocessed Data Patterns Knowledge

Cleaning and
Integration

Selection and
Transformation

Data Mining

Evaluation and
Presentation

Figure 2.1: From data to knowledge: Illustration of the KDD process as de-
scribed in [HK01] and others.

esting and necessary for the impending task. Transformation is the last step

in the preprocessing where the data is altered to meet the requirements of

the following mining algorithm. Normalization or unification of value ranges

can be performed in this step as well as aggregation, binarization or other

transformations.

The preprocessing is followed by the actual data mining step, where algo-

rithms are applied that extract patterns from the data. These pattern are for

example groups of data objects described by representatives, models or rules

that are found by the algorithm. While representatives can be used for data

reduction, models can identify abnormal objects that strongly deviate from

the model, and rules can be employed to classify previously unknown data

objects. Examples for data mining tasks are provided below.

The evaluation step is as crucial as the mining step and is often consid-

ered as a part of the data mining algorithm itself. The goal in this step is the

identification of the truly interesting patterns; evaluation is similar to a filter

or pruning step that reduces the amount of found patterns to those that are

most important according to some interestingness measure. Presentation of

the found patterns is most often done by visualization and knowledge repre-

sentation techniques. It supports the user in exploring and interpreting the

results and can provide hints for further mining and analysis steps. Finally,

the found patterns can be integrated into the data repositories and used in

further iterations of the KDD process.

2.1. The KDD process and data mining tasks 19

Data mining is a central step in the KDD process. In the following the

most recognized mining tasks are introduced along with brief explanations

and examples. Since two tasks, namely classification (Part II) and clustering

(Part III), constitute core parts of this thesis, a formal definition is provided

for these as well. In the remainder of this thesis an object or point is re-

ferred to as a d-dimensional tuple or vector, where each dimension is called

an attribute or a feature of the object. In general objects can be from an arbi-

trary metric space; if not mentioned differently, the d-dimensional Euclidean

vector space Rd is assumed as the domain for all objects and the Euclidean

distance between two points x and y is denoted as d(x, y).

Classification. Classification describes the process of assigning a previ-

ously unknown object to a category or class based on its features. To this end

a classifier builds a so called model from the given training data in the train-

ing phase and uses this model to process new objects in the testing phase.

Definition 2.1 Classifier. For an input space Q and a set of class labels
L = {l1, . . . , l|L|} a classifier trains a set of internal model parameters Θ based
on a set of training data T ⊆ Q × L (and possibly external parameters). A
classifier C is associated with a function fC(Θ, q) that assigns an object q ∈ Q to
a class label based on its parameters Θ.

One well known family of classifiers are decision trees [BFOS84, Qui93],

the left part of Figure 2.2 illustrates an example. A node of a decision tree

is associated with an attribute, the outgoing branches correspond to an at-

tribute value. In the example the risk for accidents is determined based on

the two attributes ”car type” and ”age”, possibly useful for an insurance com-

pany. While the root node branches according to a match in the categorical

attribute ”car type”, the second node applies a threshold on the continuous

attribute ”age”. A thirty year old person driving a sports car would be as-

signed a high risk according to this decision tree. The tree is the actual model

of the classifier that is learned in the training phase. A way to improve the

accuracy of a classification method is to build an ensemble of several clas-

sifiers. For a decision tree one could for example build several trees from

20 Knowledge Discovery from Data

A

B

= truck

> 60 60

risk = high

risk = low

 truck

risk = low

car type

age

Figure 2.2: Left: decision tree classifier. Right: a result of the OPTICS clus-
tering algorithm. (Examples taken form lecture slides corresp. to [HK01]).

different random samples of the training data. The classification decision

can then be obtained by a majority vote on the results of all trained trees.

Prediction and regression are similar to classification. In regression the

output of the algorithm is not from a limited set of class labels, but can

be a numerical value. Prediction refers to finding the most probable future

value based on a series of previous values or value tuples. Classification is

also termed supervised learning, since the class labels of the training set are

known in advance.

Clustering. Clustering refers to grouping of data objects, such that the

objects within a group exhibit a high similarity and objects from different

groups are dissimilar. Since in contrast to classification the labels of the

objects are not known, clustering is also called unsupervised learning. A

clustering algorithm takes a data set as an input and returns a set of groups

called clusters.

Definition 2.2 Clustering. Given a data set O ⊆ Q from an input space Q a
clustering C = {C1, . . . , Ck} is a set of groups Ci called clusters. Each cluster Ci
is a non-empty subset of objects from O: Ci ⊆ O with |Ci| > 1,∀i = 1 . . . k.

The most popular clustering methods are so called k-center clustering al-

gorithms including k-means [Llo57], k-medoids [KR90] and their variants.

They take the number of clusters k as an input parameter and try to find k

representative centers such that a given objective is minimized. The objec-

2.1. The KDD process and data mining tasks 21

tive is most often a variant of the sum over all squared distances from the

objects to their closest representative. Since finding the optimal solution to

this problem is NP-hard, clustering algorithms heuristically search a local op-

timum as their solution. Besides k-center clustering algorithms many other

approaches have been proposed such as density-based clustering methods.

One example is the OPTICS algorithm [ABKS99], the right part of Figure

2.2 shows a result of the algorithm. Each valley in the plot corresponds to

a cluster in the data set, a horizontal line corresponds to a threshold value

for the minimal cluster density. If A is chosen as a threshold, the two small

groups on the left side are returned as two clusters and the remaining points

are considered as a third cluster. Choosing B as a threshold results in three

clusters as well (dense areas in the right group of points), but the objects on

the left and the scattered points on the right are not included in a cluster.

Outlier analysis. Objects that deviate significantly from the rest of the

data set are called outliers. There is no clear definition and, consequently,

different approaches can find different outliers in the same data set. In the

OPTICS algorithm described above, the objects that were not included in

any cluster are considered outliers (cf. threshold B), since their region of the

data space does not exhibit a sufficient density. Other algorithms determine

outliers using distance-based [KNT00], angle-based [KSZ08] or statistical

approaches [BL94].

Frequent patterns/Association rules. Market basket analysis is a com-

mon application for association rule mining or frequent pattern mining where

sets of items are searched that frequently occur together. In the example

they correspond to products that are often bought together. The goal is to

find rules of the form ”If customer X buys milk and bread he will also buy

cheese (with a certain probability)”. Technically, an association rule is of

the form ”head→ body (support, confidence)” where body follows as a con-

sequence from head, support is the number of times that the pattern was

observed and confidence is the relative frequency of head compared to the

support of the rule. Efficient methods to compute all association rules for

given support and confidence values have been proposed in the literature

[AIS93, AS94, HPY00].

22 Knowledge Discovery from Data

Concepts description (characterization, generalization, discrimina-

tion). Characterization is a summarization of the general characteristics or

features of a group of objects such as age, job and income of people that

regularly go on a cruise. Generalization is an automated process that groups

objects based on their characteristics. An example is attribute oriented induc-

tion [CCH91]. Discrimination finds characteristics that separate two groups

of objects (contrasting classes), for example those customers that frequently

buy product X and those that rarely buy it.

In this thesis new methods are mainly developed in the areas of classifica-

tion and clustering. A more detailed review of existing approaches in those

areas can be found in Sections 2.2 and 3.2 for classification and Sections 2.3

and 3.3 for clustering, where the corresponding section in Chapter 3 con-

tains the stream specific methods. As an application of a proposed technique

outlier detection is discussed in Chapter 14. The corresponding related work

on outlier detection is discussed in that chapter. For a more detailed general

introduction to data mining please refer to [HK06]. In the following section

challenges in data mining are presented that arise due to certain properties

of the data or requirements of the application. A broader introduction to

those topics can be found in [KHY+09].

2.1.1 Challenges in data mining

Many mining algorithms rely on a notion of similarity between objects or

representatives: clustering algorithms group objects based on similarity, a

classification algorithm can assign labels based on similarities, etc. Efficient

mining algorithms therefore often require methods that allow for fast simi-

larity search in large data sets. Similarity is most often assessed by the use

of a distance measure such as the Euclidean distance. To speed up similarity

search a plenitude of methods and data structures have been proposed that

facilitate fast access. In hierarchical index structures directory information

is organized in a tree structure. When executing a similarity search query,

these methods try to access only very small parts of the data by steering the

search using the tree structure. Examples for index structures include the

2.1. The KDD process and data mining tasks 23

popular B-trees [Com79], R-trees [Gut84, BKSS90], M-trees [CPZ97] and

KD-trees [Ben75], as well as specialized methods such as the RI-tree [KPS00]

or the TS-tree [AKAS08]. Besides hierarchical index structures many other

approaches for fast similarity search have been proposed including bitmap

indexes [CI98] or hashing techniques [DIIM04].

A major challenge are very high dimensional spaces. In high dimensional

spaces distances lose their expressive power, since all distances tend to be

similar. This problem is known as the curse of dimensionality, which af-

fects similarity search and hence also mining algorithms. Specialized index

structures for high dimensional spaces have been proposed such as X-trees

[BKK96] and TV-trees [LJF94]. The VA-file [WSB98] constitutes a filter-and-

refine approach that first computes a set of candidates using a lower dimen-

sional representation of the data and refines the set in the full space in a

second step. Other lines of research focus on approximate similarity search

in high dimensional spaces [HS05] or try to avoid using distances and de-

termine the association between objects by the means of shared-neighbor

information [Hou08, HKK+10]. To circumvent the problems resulting from

the similarity of distances in high dimensional spaces, subspace clustering al-

gorithms search for solutions in different subsets of the attributes [AGGR98,

APW+99, AY00, CFZ99, AKMS08]. Since the number of different subspaces

is exponential in the dimensionality of the original space, these algorithm

are faced with a huge combinatorial complexity.

Time poses different challenges on data mining algorithms, ranging from

volatile data bases to dynamic and endless data streams. Time aspects, es-

pecially requirements and solutions for stream data mining, have been dis-

cussed in Chapter 1 and are the main topic throughout the thesis. A different

notion of time in data sets and mining algorithms is introduced by time series

data. Time series denote sequences of values over time which are available

entirely before processing them in an algorithm. Hence, in contrast to dy-

namic data streams, time series constitute a static type of data. Mining on

time series data includes searching for reoccurring or unusual patterns to

discover trends or conspicuous behavior [AS95, HDY99, KGI+11].

24 Knowledge Discovery from Data

A further challenge lies in the structure of the data. New technologies

and new phenomena yielded complex data types such as multimedia data

[Sub98], text data [SM84], graph data as in social networks [New03], gene

sequences and molecular structures [BB01] and other domain-specific data

types. For multimedia data even a single image is often represented by a

large number of features describing color, texture or salient points in the

image [HLZ02]. Specialized distance measures have been proposed that are

claimed to reflect the human perception of similarity [SK97, RTG00]. Mining

video data has many applications such as video copy detection, but remains

a major challenge in data mining research [CZ06, AKS10]. Other complex

data types pose their own difficulties but also offer new questions and tasks.

From there many new directions in data mining research emerged such as

graph mining or text and semantic mining [WM03, WIZD04, WF94].

Although pattern evaluation has always been a step in the KDD process

(cf. Figure 2.1), it got new attention with the advent of complex methods and

data types. One example is the exploration of subspace clustering results

[MAK+08], where the number of found clusters can sometimes be larger

than the actual size of the data set. This is due to the exponential number

of different subspaces in which clusters can be found. More precisely, since

generally objects can be in more than one cluster, the found clusters often

largely overlap with respect to the contained objects. To this end measures

for redundancy and interestingness have been proposed and included into

algorithms either during the cluster search or as a post processing component

[MAG+09a, AKMS08]. Similar issues and solutions apply for other mining

tasks such as frequent item set mining [BEX02].

Finally there is a list of other issues that reveal limitations of mining al-

gorithms and open up new research directions. Examples are privacy and

security issues that either restrict the access to data or the validity of re-

sults [CM96, VBF+04]. Parallel and distributed data mining algorithms try

to meet the requirements of growing data repositories by efficient strategies

to share data and computation across large networks of servers and clients

[PCY95, AS96, PHBB09]. The popularity of sensor networks, global posi-

tioning systems (GPS), cellular phones, other mobile devices and RFID tech-

2.2. Classification 25

nology yielded vast amounts of moving object data that calls for effective

methods for analysis and knowledge extraction [DeC97, PZZ+07, CBB08].

The internet can be seen as a synonym for many of the challenges men-

tioned above. It represents graph data, text data and heterogeneous data,

poses privacy and security issues, is massively distributed and parallel and

has obviously a tremendous size.

2.2 Classification

In this section the main concepts and approaches proposed for classification

on static data sets are reviewed. Stream classification algorithms are dis-

cussed in Section 3.2. Before going into detail on the individual approaches

a more formal description of a classifier based on Definition 2.1 is provided.

Given an input space Q of dimensionality d and a set of labels L =

{l1, . . . , l|L|}, the extended input space of labeled objects is denoted as Q+ =

Q × L. The power set P(Q) of Q contains all possible subsets of Q, P(Q+)

analogously for Q+. The training set for a classifier can then be written as

T ∈ P(Q+) and a test object for classification as q ∈ Q. Tl = {o ∈ T |o =

(o1, . . . , od, l)} denotes the set of objects from T with label l.

Any classifier C can be described by a model M which is in turn defined

as set of parameters M = {ψ1, . . . , ψ|M |}. The domains of the parameters

are denoted as Dom(ψ), and Dom(M) := Dom(ψ1) × . . . × Dom(ψ|M |) is

the cross product of all parameter domains. A configuration or instantiation

of the model M is a set of values Θ ∈ Dom(M) for its model parameters:

Θ = (θ1, . . . , θ|M |) with θi ∈ Dom(ψi) ∀i = 1 . . . |M |.
To build a classifier, any approach must first select a model and second

choose, or optimize, its parameter values. To this end it can consider the

training set T and possibly a set of external parameters Φ = {φ1, . . . , φ|Φ|}.
Similar to the above the parameter domains are denoted as Dom(φ) and

Dom(Φ) := Dom(φ1) × . . . × Dom(φ|Φ|). A set of external parameter values

is called Ξ = {ξ1, . . . , ξ|Ξ|} with ξj ∈ Dom(φj) ∀j = 1 . . . |Φ|. The selected

model is

M = ηC(Ξ, T) (2.1)

26 Knowledge Discovery from Data

where η : Dom(Φ) × P(Q) 7→ M is a model selection function that selects

a model M from the model spaceM based on the training set and external

parameters. The values for the model parameters are chosen in a second

step as

Θ = πC(M, T) (2.2)

where π :M×P(Q) 7→ Dom(M) is a parameter optimization that is based

on the selected model and the training set and Dom(M) =
⋃
M∈MDom(M).

Finally, the label of a test object q ∈ Q is determined by the classifier as

l = fC(Θ, q) (2.3)

using a decision function fC : Dom(M)×Q 7→ L that assigns a label based on

the model parameters Θ. Thus, without loss of generality, the general task of

a classifier C is to determine

l = fC(πC(ηC(Ξ, T), T), q). (2.4)

Finding the set of parameter values Θ = πC(ηC(Ξ, T), T) is usually re-

ferred to as the training of a classifier, also called learning or supervised learn-
ing, since the class labels of the training set are known. Applying the decision

function on a set of test objects is often termed testing of a classifier.

The performance of a classifier is mostly measured in terms of its classifi-

cation error err or classification accuracy acc = 1− err corresponding to the

proportion of correctly classified objects. Examples for further analysis and

performance measures like the confusion matrix, sensitivity, precision or the

ROC curve can be found in [HK06]. To assess the performance of a classi-

fier on some given data set D ∈ P(Q+), an m-fold cross validation splits D

into m equally large parts (folds) and uses successively one part for testing

and the remaining parts for training. A different approach called bootstrap-

ping uses m subsets Di of size |Di| = |D| sampled randomly from D with

replacement and uses Di for training and D \Di for testing for i = 1 . . .m.

For the plethora of classification algorithms, different approaches have

been suggested to categorize the proposed methods [HK01]. One approach

2.2. Classification 27

distinguishes lazy learners and eager learners, while the latter category is

larger by far. Lazy learners spend little or no computation time on model

selection and parameter optimization, but defer the work to the decision

phase. Eager learners on the other hand exhibit more time consuming train-

ing procedures and are in turn often more efficient in the decision phase.

A different categorization separates generative and discriminative methods.

The objective in training generative classifiers is to build a model that best

describes the classes L as given by T , as if the model was generated by T .

This is opposed to discriminative methods, which seek to best separate, or

discriminate, the different classes. Neither of these categorizations is fol-

lowed here, but the terminology is referred to when describing the single

methods. Among the presented classification approaches Bayesian classifi-

cation is described in more detail, since it will be heavily used throughout

the thesis. Support vector machines (SVM) and decision trees receive more

attention that the remaining approaches, since both relate to parts of the

methods presented in Part II. For SVMs a simple transformation to Gaus-

sian mixture models is discussed and decision trees connect to the proposed

methods by constituting a hierarchical approach.

Bayesian classification

Bayesian classification constitutes a statistical approach in which an object

q ∈ Q is assigned to a class label l ∈ L based on membership probabilities. It

is based on the Bayes theorem and one of the most frequently used methods

for classification. The Bayes theorem for two events A and B is

P (A|B)P (B) = P (B|A)P (A), (2.5)

where P (A) is the prior or a priori probability of A and P (A|B) is the pos-

terior probability of A conditioned on B, also called the conditional prob-

ability of A given B. In the context of a classifier, given a set of labels

L = {l1, . . . , l|L|} and an object o ∈ Q, P (li) and P (o) are the prior prob-

abilities for the labels and the object, respectively. P (li|o) is the posterior

probability of label li given object o and P (o|li) is called the conditional prob-

28 Knowledge Discovery from Data

ability of o given label li. Using Equation 2.5 the Bayes classifier assigns to

an object o the label l̂ that yields the maximal posterior probability:

l̂ = fBayes(Θ, o) = arg max
l∈L
{P (l|o)} = arg max

l∈L

{
P (o|l)P (l)

P (o)

}
(2.6)

The probabilities on the right hand side of Equation 2.6 can be estimated

from T as follows. The class priors are estimated as the relative frequency of

the labels in T :

P (l) = |{o ∈ T |o = (o1, . . . , od, lo) ∧ lo = l}| /|T | (2.7)

The prior for the object is computed as

P (o) =
∑
l∈L

P (o|l)P (l). (2.8)

However, as in the computation of l̂ the object o is not varied in the de-

cision set {P (l|o)}, the term P (o) can be left out in equation 2.6, since it

merely normalizes the probabilities but does not affect the decision (simul-

taneous classification of several objects is discussed in Chapter 9). The way

of estimating the class conditional probability P (o|l) defines different kinds

of Bayesian classifiers. The approach known as näıve Bayes assumes class

conditional independence of all dimensions in Q, which allows to calculate

the posterior probability for o as

P (o|l) =
d∏
i=1

P (oi|l). (2.9)

The class conditional probabilities P (oi|l) for the single dimensions can again

be easily computed from T by counting. Estimating P (oi|l) requires different

approaches for categorical and continuous attributes.

For a categorical attribute Ai with possible values ai1, . . . , aiu the proba-

bility is looked up in so called conditional probability tables, in which it is

2.2. Classification 29

precomputed for every possible value aij as

P (aij|l) = |{o ∈ T |o = (o1, . . . , od, lo) ∧ lo = l ∧ oi = aij}| /|Tl| (2.10)

Dropping the assumption of the näıve Bayes allows to introduce dependen-

cies between the attributes by defining the probability of attribute A having

value ai conditioned on attribute B having value bj. For categorical attributes

the dependencies and the resulting probability distributions can be described

by Bayesian networks, also termed belief networks or Bayesian belief net-

works. A Bayesian network B = 〈G,Θ〉 is defined by a directed acyclic graph

G and a set of parameter values Θ. G = (V,E) contains one vertex for

each attribute and one vertex for L. An edge (v1, v2) ∈ E signifies that v2

is conditionally dependent on v1; there are exactly d edges in the Bayesian

network for the näıve Bayes, one from L to each dimension (cf. Figure 2.3

left). For a vertex v ∈ V , let pa(v) denote the parents of v in G. Then the

joint probability from Equation 2.9 for a Bayesian network classifier is

P (o|l) =
d∏
i=1

P (oi|l, {oj|vj ∈ pa(vi)}). (2.11)

Θ in B comprises conditional probability tables that store a probability per

attribute vi for each combination of values from vi, pa(vi) and L. Considering

the example in the right part of Figure 2.3 lets assume |L| = 4 and |Ai| = 10

∀i = 1 . . . d, then each attribute can have ten different values. This yields

|Θ| = 4︸︷︷︸
P (l)

+ 4 · 102︸ ︷︷ ︸
A1

+ 4 · 10 · 5︸ ︷︷ ︸
A2,...,A6

+ 4 · 103︸ ︷︷ ︸
A7

= 4604 (2.12)

A1 A2 A3 A4 A5 A6 A7

L

A1 A2 A3 A4 A5 A6 A7

L

Figure 2.3: Examples for Bayesian networks for the näıve Bayes (left) and
with additional dependencies (right).

30 Knowledge Discovery from Data

which is opposed to |Θ| = 4 + 4 · 10 · 7 = 284 for the näıve Bayes on the

same example (cf. Figure 2.3 left). Besides higher space demands, the large

number of parameters can frequently lead to zero probabilities, since certain

value combinations do not occur in T . These zero probabilities can cancel

the effect of all other posterior probabilities; if in the above example six

attributes would yield a high probability, a zero probability in the seventh

attribute would spoil the output. To avoid this, a Laplace correction can be

applied that initially sets each count in the probability tables to one and takes

this into consideration during the normalization.

The model selection η (cf. Equation 2.1) for a Bayesian network classifier

refers to the determination of the network topology (defining the edges in

G). Proposed solutions are for example based on maximal correlation coeffi-

cients [Edw00, SS05] or use hill climbing methods to iteratively add the most

promising edges [KP02]. The parameter optimization π (cf. Equation 2.2) for

Bayesian networks as introduced above can simply compute the probabilities

in a generative way from T (with or without Laplace correction) or can itera-

tively perform cross validation on T to find parameter values that lead to the

best discrimination of the classes in L. For Bayesian networks with hidden

variables (not discussed in this thesis) there is an abundance of literature

for network inference, introductions and examples can be found [RN95] and

[Jen96].

For continuous attributes, the probabilities P (o|l) and P (o) in Equation

2.6 are substituted by density estimation functions denoted as p(o|l) and p(o).

Usually the class conditional density p(oi|l) for a given object in dimension

i is computed using a parameterized density function g(oi,Θl) assuming a

certain distribution of the attribute values. The parameter values Θl for the

distributions of label l are derived from T . The most popular example is the

Gaussian distribution or normal distribution.

Definition 2.3 The Gaussian distribution N (µi,Σi) for a random variable X
with mean value µ and variance σ2 is described by the probability density func-
tion

g(x, µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2

2.2. Classification 31

For a set {X1, . . . Xd} of d random variables the joint probability distribution is

g(~x, ~µ,Σ) =
1

(2π)
d
2

√
|Σ|

e−
1
2

(~x−~µ)Σ−1(~x−~µ)T

where ~x ∈ Rd is a d-dimensional vector, ~µ = (µ1, . . . , µd) is the vector containing
the mean values of X1, . . . Xd, Σ is the corresponding covariance matrix, |Σ| its
determinant and Σ−1 its inverse.

For convenience g(x, µ,Σ) is used instead of g(~x, ~µ,Σ) for the d-dimen-

sional case in the following. The joint probability distribution for continuous

attributes naturally includes dependencies between all attributes via the co-

variance matrix Σ. For the näıve Bayes using Gaussian distributions, the

covariance matrix constitutes a diagonal matrix Σ = diag(σ2
1, . . . , σ

2
d) and the

posterior probability for an object o simplifies to

P (o|l) = g(o, µ,Σ) =
1

(2π)
d
2

∏d
i=1 σi

e
− 1

2

∑d
i=1

(oi−µi)
2

σ2
i (2.13)

Using a single Gaussian distribution to describe a set of objects is also

called a unimodal model. A more flexible density estimation function is given

if several Gaussian distributions are combined.

Definition 2.4 A Gaussian mixture model (GMM) with k components is a
weighted combination of k Gaussian distributions with parameters (µi,Σi),
i = 1 . . . k and is defined by the probability density function

gGMM(x,Θ) =
k∑
i=1

wi · g(x, µi,Σi)

where Θ = {µ1, . . . , µk,Σ1, . . . ,Σk w1, . . . , wk} is the set of all parameter values.
wi is the weight of the i-th Gaussian subject to

∑k
i=1wi = 1.

Besides unimodal models and mixtures of Gaussian, kernel density esti-

mators constitute the most detailed model for density estimation based on

training data. Kernel density estimation is detailed in Chapter 4, where ker-

nels are employed in a novel anytime classification approach.

32 Knowledge Discovery from Data

The model selection η for a Bayes classifier on continuous attributes can

hence be viewed as selecting the type of density function, for example the

number and type (näıve or not) of Gaussians. The parameter optimization π

can again determine Θ from T in a generative way by using the EM clustering

algorithm (cf. Chapter 6) or in a discriminative way by using max margin

optimization for example (cf. Chapter 7). A more detailed introduction to

Bayesian classification as well as further references can be found in [DHS01].

Support vector machines

Support vector machines (SVM) constitute discriminative classifiers that seek

to find decision boundaries, called separating hyperplanes, which best sepa-

rate the objects from different labels. A binary SVM considers objects from

two different classes denoted as +1 and −1 (l ∈ {+1,−1}). The decision

function of a binary SVM is

fSVM(Θ, q) = sign

(
s∑
i=1

liαiK(xi, q)− b

)
, (2.14)

where Θ = {(xi, αi)|i = 1 . . . s} ∪ {b,K(·, ·)} stores the bias b, the Kernel

K(·, ·), the support vectors xi ∈ T and their weight αi. s is the number of

support vectors, li ∈ {+1,−1} is the label of xi and examples for kernels

K(·, ·) are

polynomial kernel of degree h: K(xi, xj) = (xi · xj + 1)h

radial basis function (RBF) kernel: K(xi, xj) = e−γ‖xi−xj‖
2

sigmoid kernel: K(xi, xj) = tanh(κxi · xj − δ)

The training of an SVM determines the weights αi for all objects oi ∈
T . Those objects with corresponding αi > 0 are used as support vectors

and are included in Θ. The actual training involves solving a constrained

quadratic optimization problem, introductions and details to SVM can be

found in [Vap95, Vap98, Bur98, Pla98].

2.2. Classification 33

In the case of |L| > 2 multiple binary SVMs are combined. SVM classi-

fiers for |L| > 2 can for example train |L| binary SVMs, each separating the

objects from one label against all other objects, or quadratically many binary

SVMs, one for each pair of labels. The final decision can then be reached by

a majority voting or interpreting the outputs of the single SVMs as probabil-

ities.

On a side note, there is a simple transformation between an SVM using

RBF Kernels and a Bayes classifier using Gaussian mixture models with equal

variance σ for each Gaussian and each dimension, which yields the exact

same decision boundaries for both classifiers [DHN10]. Using the notation

from Equation 2.13 the transformation is

xi = µi (2.15)

αi = P (li) · wi ·
1

(2π)
d
2σd

(2.16)

γi =
1

2σ2
(2.17)

Transforming an SVM into GMMs, the bias b can be sufficiently well approx-

imated by an additional Gaussian with arbitrary mean, very high variance

and weight w proportional to b.

Decision tree classifier

An example of a simple binary decision tree was given in Figure 2.2, where

the risk of an accident was determined based on the car type and the age of

the driver. Generally, decision trees are not restricted to binary nodes but are

allowed higher branching factors. The binary case is introduced below; the

general case naturally follows from the description.

Definition 2.5 A decision tree node ν = (Ai, aij, p1, p2) stores a splitting at-
tribute Ai, a split value aij and two pointers p1 and p2 to the left and right
subtree. A Leaf node ν is associated with a set of training objects T|ν and an
inner node with the union of its subtree data sets T|ν = T|ν1 ∪ T|ν2.

34 Knowledge Discovery from Data

For categorical attributes, aij splits T|ν into the two sets T|ν1 = {o|oi = aij}
and T|ν2 = {o|oi 6= aij}, for continuous attributes the two resulting sets are

T|ν1 = {o|oi < aij} and T|ν2 = {o|oi ≥ aij}. For higher branching factors,

additional values for the same attribute are stored in ν as well as additional

pointers to the corresponding subtrees.

The training of a decision tree is often referred to as decision tree induc-

tion. Popular algorithms for decision tree induction are ID3 [Qui86], C4.5

[Qui93] and CART [BFOS84], which all follow a greedy top down approach

to partition T recursively into smaller subsets. The algorithms seek to find

the best split point, which is the best attribute Ai and attribute value aij,

for the current node ν with respect to some objective function. A popular

objective, which is also used in ID3, is the information gain

IG(ν) = Ent(ν)−
2∑

u=1

|T|νu|
|T|ν |

Ent(νu), (2.18)

where Ent(ν) is the entropy of node ν defined as

Ent(ν) = −
∑
l∈L

|Tl|ν |
|T|ν |

log

(
|Tl|ν |
|T|ν |

)
. (2.19)

Tl|ν extends the notation of T|ν to Tl. For higher branching factors the sum in

Equation 2.18 considers all subtrees. Since this yields a bias towards nodes

with a larger fanout, other methods such as C4.5 use the gain ratio as their

objective, which overcomes the bias by normalizing the information gain

with the potential information for the split [HK06]. The induction termi-

nates if for example either all objects in T|ν have the same label or the same

attribute values. There is a vast amount of literature on scaling decision tree

induction to large data bases or improving decision trees, which is beyond

the scope of this thesis.

During classification a query object q ∈ Q follows the path from the root

of the decision tree to a leaf ν̂ according to its attribute values. The basic

version of a decision tree then assigns a label based on a majority voting on

T|ν̂ . Advanced versions associate distributions with the leaves of the tree and

apply for example a Bayes classifier using these distributions [Koh96].

2.2. Classification 35

Nearest neighbor classification

The nearest neighbor classifier (NN) [Das90, Sei09] is a simple classifier that

belongs to the category of lazy learners. The idea is to assign to an object

q ∈ Q the label l̂ ∈ L of the closest object o ∈ T with respect to a given

distance function dist(·, ·) ∈ Ξ:

fNN(Θ, q) = l̂ ⇔ ô = (ô1, . . . , ôd, l̂) ∧ ô = arg min
o∈T
{dist(o, q)}

Here, the training set forms the parameters: Θ = T . Ties can be broken

assuming a canonical ordering of the labels. Variants of the nearest neighbor

classifier use k > 1 objects, where k ∈ Ξ is an external parameter. The deci-

sion based on the k resulting labels can be done using simple majority voting,

weighting the frequencies with the class priors or weighting the influence of

each object by dist(o, q)−1.

Ensemble classifiers

Ensemble methods combine several classifiers and arrive at a decision based

on the combined outputs. As an example, classifiers of different kinds can be

trained on T and the label l ∈ L for an object q ∈ Q is determined via ma-

jority voting. Bagging (bootstrap aggregation) [Bre96] is a popular ensemble

method that trains k classifiers (usually of the same type) on k different boot-

strap samples from T . Another popular method is Boosting [FS97], which

weights the results of the single classifiers with respect to their performance

on T . Moreover, in boosting the objects are weighted during training and

the k classifiers are trained successively giving misclassified objects higher

weights in subsequent trainings such that more attention is paid to them.

Neural networks

Neural networks are well known and very well researched. For a neural net-

work classifier one must select a network topology and the type of neurons in

a first step and learn or optimize the parameters of the network in a second

36 Knowledge Discovery from Data

step. A frequently used training method for neural networks is backpropa-

gation [RHW86, HB87, Jac88]. Using RBF-style neurons in a neural network

yields the same decision hyperplane as an SVM with RBF kernels [HK06].

Besides the discussed classification algorithms there is a number of ad-

ditional approaches including case-based reasoning and genetic algorithm

as well as rough set and fuzzy set approaches; Please refer to [HK06] for

a broader introduction. Each classification paradigm has its strengths and

weaknesses. Bayesian classifiers are for example said to be less prone to

overfitting since the employed probability distribution functions can provide

an effective way of generalization. Clearly, there is no single solution that

outperforms all other approaches on all domains and settings. Finding the

best classifier for an actual application involves tuning and testing of various

methods and is usually not addressed in the classification literature.

2.3 Clustering

Clustering tries to find groups of data, such that objects exhibit a high simi-

larity within the groups and a low similarity between the groups (cf. Section

2.1). Research on clustering algorithms looks back at a long history. Since

clustering is useful for many applications, approaches have been developed

in different areas and from different perspectives. In this section the most

prominent and frequently used clustering algorithms are reviewed.

The nature of clustering algorithms is often more heuristic compared to

classification algorithms and their description appears therefore sometimes

less formal. This holds true in a similar extent when it comes to the evalua-

tion of clusterings that were found by an algorithm. A ground truth is hardly

ever available; and even if, heuristics are needed to assess the quality of a

found clustering. A wealth of measures can be found in the literature, some

of which rely on a given ground truth clustering for comparison while other

don’t. The measures employed in Part III are commonly used and will be

introduced where needed. The matter of clustering evaluation on evolving

data streams is discussed in Chapter 15.

2.3. Clustering 37

Definition 2.2 defines a clustering C = {C1, . . . , Ck} as a set of groups

Ci, each of which is a non-empty subset of objects from a given data set O.

This general definition allows both overlapping clusters (an object can be

contained in more than one cluster) and unclustered objects, which are not

contained in any cluster. Many clustering algorithms have been proposed

and the approaches restrict these properties differently; some approaches

allow only non-overlapping clusters, for example. An exhaustive survey is

beyond the scope of this thesis. The following provides an overview of the

main concepts and most important approaches as well as some details on

those methods that are referred to in Section 3.3 and throughout the thesis.

k-center clustering

Algorithms that perform a k-center clustering on a given data setO start from

an initial solution and try to optimize an objective by iterating the following

two steps until a stopping criterion is met:

1. assign objects o ∈ O to a cluster w.r.t. the current cluster parameters

2. recompute the cluster parameters

The initial solution can either be chosen at random or given to the algorithm

from the outside. Iterating the two steps can be stopped if between two

iterations the improvement of an objective is less than a certain amount. The

objective can for example be a similarity measure that is calculated between

all objects from the same cluster. Another possible stopping criterion is a

fixed number of iterations. Two well-known and commonly used approaches

are k-Means and k-Medoids.

k-Means. k-Means [Llo57, Mac67] is a partitioning clustering meth-

ods, where every point is included in exactly one cluster:
⋃k
i=1Ci = O and

Ci ∩ Cj = ∅,∀i 6= j. If no initial centers are provided, it chooses k objects

randomly from O as the initial centers µ1, . . . , µk. In the assignment step

it assigns each object o ∈ O to its closest center µi based on their distance

and calculates the new centers as the resulting means in the recomputation

38 Knowledge Discovery from Data

step. The objective that k-Means tries to be minimize is typically the sum of

squared distances

SSQ =
k∑
i=1

∑
o∈Ci

d(o, µi)
2.

k-Medoids. k-Medoids is a partitioning method that uses objects as rep-

resentative centers instead of cluster means. This allows on the one hand

clustering in domains where no mean is defined (as in categorical data) and

can on the other hand reduce the influence of outliers on the cluster cen-

ter positions. Initialization and reassignment in k-Medoids is done as in

k-Means. As the objective typically the total distance is used

TD =
k∑
i=1

∑
o∈Ci

d(o, µi).

Recomputing the cluster parameters (determining new representatives) can

be done in several ways. The simplest solution is to randomly select a pair

of representative and non-representative and swap them if the objective im-

proves. The PAM algorithm (Partitioning Around Medoids) [KR90] tests each

pair of representative and non-representative and swaps the pair that yields

the largest improvement. CLARA (Clustering LARge Applications) [KR90] is

a more efficient variant that applies PAM on several randomly drawn sam-

ples and returns the best found solution. Further solutions perform an inter-

leaved resampling during the search [NH94]. A combination of k-Means and

k-Medoids by interleaving iterations of both methods has been proposed in

[GH07].

Expectation maximization. In contrast to partitioning methods the EM

algorithm (Expectation Maximization) [DLR77] assigns each object to each

cluster. More precisely, each object o belongs to each cluster Ci with a certain

probability P (Ci|o) > 0. The underlying assumption is that the data is gen-

erated by a mixture of probability distributions. The standard EM algorithm

assumes Gaussian mixtures (cf. Definition 2.4) and defines each cluster Ci
as a Gaussian distribution N (µi,Σi). Initialization can for example be done

using a k-Means clustering result, keeping the means µi, computing the co-

variance matrices Σi from the points in cluster Ci by the standard formula

2.3. Clustering 39

and setting the prior probabilities P (Ci) to the proportion of points in Ci.

In the reassignment step the expected cluster membership is calculated; each

object o is assigned to each cluster Ci with probability

P (Ci|o) =
P (Ci) p(o|Ci)

p(o)
=

P (Ci) g(o, µi,Σi)∑k
j=1 P (Cj) g(o, µj,Σj)

,

where g(o, µi,Σi) is the Gaussian density function according to Definition 2.3.

In the recomputation step the likelihood of the distribution is maximized with

respect to the data by updating the cluster parameters according to

P (Cj) =
1

n

n∑
i=1

P (Cj|oi)

µj =

∑n
i=1 oi · P (Cj|oi)∑n
i=1 P (Cj|oi)

Σj =

∑n
i=1 P (Cj|oi) · (oi − µj) · (oi − µj)T∑n

i=1 P (Cj|oi)

The EM algorithm can easily be transformed into a partitioning method by

assigning each object to the most probable cluster after the last iteration.

k-Means then corresponds to a special case of the EM algorithm where the

covariance matrix Σi is for all clusters fixed to the d-dimensional identity ma-

trix. Due to the assignment of objects to their closest representative, the par-

titions induced by k-center methods always exhibit a convex shape (Voronoi

cells). A drawback of these methods is that the user must specify the number

of clusters k.

Density-based and Distribution-based methods

Density-based clustering methods search groups of data as connected and

highly populated (dense) regions. They automatically determine the number

of clusters based on density and connectivity and avoid at the same time the

restriction to convex partitions.

DBSCAN and OPTICS. DBSCAN (Density-Based Spatial Clustering of Ap-

plications with Noise) [EKSX96] iteratively grows regions of sufficient den-

40 Knowledge Discovery from Data

sity using the notions of core points and density-reachability. A point p is a

core point if there are sufficient objects in its neighborhood as specified by

two user parameters. Two points p and q are density-reachable if they are

connected by a chain of neighboring core points. To find clusters in a given

data set the algorithm iteratively searches for a core object that is not yet

clustered and expands a new cluster from there on by adding the object and

all its density-reachable objects to a new cluster.

To cope with the difficulty of finding a good parameter setting for DB-

SCAN on real data sets, the OPTICS algorithm has been proposed as a visual
analysis method [ABKS99] (cf. Figure 2.2). Any choice for a neighborhood

size (ε value in DBSCAN) corresponds to a horizontal line in the plot that cuts

of the peaks and marks the objects above the line as noise. Each resulting

valley underneath the line then represents one cluster.

Grid-based clustering. Grid-based clustering algorithms constitute a

type of density-based clustering where the data space is divided into rect-

angular cells by defining split points along each dimension. Points are then

included in their corresponding cell and noise or unpopulated regions of the

data space can be removed by a simple density threshold on the resulting

cells. Clusters can finally be determined as sets of neighboring cells that are

populated or dense. STING [YM97] is a grid-based clustering algorithm that

uses multiple resolutions of grids and stores additional statistical informa-

tion in the grid cells. WaveCluster [SCZ98] uses multiple resolutions and

employs a wavelet transformation on the feature space to find dense regions

in the transformed space, in [BC00] different resolutions are used to deter-

mine clusters based on the fractal dimension.

DENCLUE. The DENCLUE algorithm [HK98] uses density distribution

functions for clustering, which are basically kernels centered at the data

points and the overall density function is a mixture of all kernels. Clusters

are identified using the local maxima of the overall density function; a hill

climbing algorithm is employed using the gradient of the density function to

assign all points to one cluster that reach the same local maximum. Again

noise can be removed by applying a density threshold for each point.

2.3. Clustering 41

-8 -6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

Figure 2.4: Data set, image from unordered objects and VAT image [BH02].
Lighter pixels correspond to larger distances, the dark squares along the di-
agonal correspond to dense regions in the data.

Hierarchical and specialized methods

Hierarchical clustering methods provide clusterings at different granulari-

ties. A popular example is the BIRCH algorithm [ZRL96]. It stores cluster

representation in a tree structure where each entry summarizes all objects in

its corresponding subtree. COBWEB [Fis87] is a hierarchical clustering algo-

rithm that uses classification trees for clustering. Since BIRCH and COBWEB

are discussed in the main part of the thesis, a more detailed description is

provided in Chapter 3.

Generally, hierarchical methods either split the data set top down (di-
visive) or iteratively merge sets of objects bottom up (agglomerative). Ex-

amples of hierarchical methods can be found in [DE84]. A simple bottom

up approach merges in each step the two closest clusters together. The dis-

tance between two clusters can be defined as the distance between their cen-

ters or using the minimum, maximum or average distance between included

points. Using the minimum distance in agglomerative clustering is equiv-

alent to building a minimal spanning tree where each point corresponds to

one vertex in a graph. The analogue divisive method produces the same clus-

ter hierarchy by starting from a minimal spanning tree and removing always

the edge associated with the largest distance.

A method that uses the minimal spanning tree construction to ”visually

assess the cluster tendency” (VAT) was proposed in [BH02]. The output of

VAT for a data setO = {o1, . . . , on} is an n×n image where the intensity of the

pixel at position (i, j) corresponds to the distance between the points oi and

42 Knowledge Discovery from Data

oj, the lighter the color the larger the distance. The order of the objects is the

order in which they are processed by the minimal spanning tree algorithm.

Figure 2.4 shows an example of a VAT image. Several extensions of VAT have

been proposed to deal with large data sets, arbitrarily shaped clusters or

automated cluster detection from VAT images [HBH05, HBH06, WNB+10].

A more sophisticated graph-based clustering algorithm has been proposed

in [KHK99]. It constructs a k-nearest-neighbor graph where each point cor-

responds to one vertex and an edge is inserted between two vertices if one of

the points lies in the k-neighborhood of the other. The edges are weighted by

the similarity between the vertices, which can be computed as the inverted

distance, for example. The graph is then first partitioned into a relatively

large number of small clusters, such that the edge cut (the total weight of

all removed edges) is minimized. In a second step the resulting clusters are

merged based on two criteria (interconnectivity and closeness) that exploit

the graph structure of the clusters.

Further clustering approaches are for example frequent pattern-based

clustering [BEX02] or MDL-based clustering [SVvL06]. Specialized solutions

have been proposed for constraint-based clustering [TNLH01, THH01], sub-

space clustering and projective clustering in high dimensional spaces

[AGGR98, APW+99, CFZ99, MSE06, AKMS08] or clustering of complex data

types like time series [Lia05]. In Section 3.3 proposed methods for clustering

on data streams are reviewed.

Chapter 3

Stream Data Mining

The requirements for stream mining algorithms have been discussed in Chap-

ter 1. The previous chapter provided the background on the KDD process and

reviewed established methods for classification and clustering which are not

designed for working on data streams. This chapter deals with algorithms

for stream mining. In Section 3.1 general tools and techniques are presented

that deal with the special requirements in a data stream scenario. After

that existing algorithms for stream classification and stream clustering are

reviewed in Sections 3.2 and 3.3, respectively.

3.1 General Tools and Techniques

Two important requirements for stream mining algorithms are a compact

representation of historical data and a mechanism that appropriately han-

dles evolving data distributions. Solutions to these are detailed in Sections

3.1.1 and 3.1.2. A research area that is closely related to stream mining is

change mining [BHS08], which concentrates on describing the changes and

identifying or predicting when a change occurs. Section 3.1.3 provides an

example for a change mining approach and outlines how the approach can

be combined with the novel methods proposed in Part III.

43

44 Stream Data Mining

Before going into detail about the general tools and individual algo-

rithms, the following formally defines a stream of data objects.

Definition 3.1 Stream. A stream S : N0 → T ×Q : i 7→ (ti, oi) is an endless
sequence of objects oi ∈ Q from a d-dimensional input space Q and ti ≥ 0 is the
arrival time of object oi.

3.1.1 Compression and the BIRCH Algorithm

Compression is a fundamental technique in stream mining algorithms. It re-

sults in a compact representation of the data, which yields on the one hand

space efficiency and on the other hand time efficiency, since algorithms only

process the compressed representation. Compression of a set of data objects

can be achieved, for example, through clustering algorithms, statistical ap-

proaches or advanced methods that use wavelets or Fourier transformations.

Clustering can be used for compression by storing only the representatives

of a k-center approach and the resulting cluster parameters. Statistical ap-

proaches may use parameterized density functions or a mixture of these to

describe data distributions in a compressed way. Another frequently used

approach is a so called ’binning’ of attribute values where attribute ranges

are divided into intervals (of fixed or adaptive length) for which only counts

are maintained.

An indispensable requirement for compression methods in a streaming

scenario is the ability to incrementally update the maintained summary or

representation. This requirement is obvious from the facts that new data is

constantly arriving and that the distribution underlying the data may evolve

over time. Considering the examples from above we find that simply main-

taining cluster centers, weights and radii does not sufficiently meet the up-

date requirement. While centers and weights can be updated, the radii (the

maximal distance from the center to a contained point) cannot be calculated

exactly when the centers change (deletions of points are common in data

stream scenarios). Moreover, if the model is intended to reflect recent data

more strongly, shrinking of radii due to the aging of points cannot be real-

ized by this approach. For binning approaches the updating of counts can

3.1. General Tools and Techniques 45

be done easily. However, fixed binning approaches face the problem that, in

the case of evolving data distributions, the number of populated cells may

be exponential in d. Adaptive binning approaches are eventually forced to

redefine the value intervals where they face the problem of redistributing the

counts without actual knowledge about the original points.

The BIRCH clustering algorithm [ZRL96] introduces cluster feature vec-

tors as a compact representation that allows for efficient incremental up-

dates and simple computation of distribution parameters corresponding to

the summarized data. Moreover, BIRCH enables fast access to the main-

tained summaries by organizing them in a hierarchical data structure. The

BIRCH algorithm is described in the following including details of the aspects

mentioned above.

Definition 3.2 Cluster feature vector. For a set of objects contained in a
cluster C the corresponding cluster feature vector CF = (n, LS, SS) stores the
number n = |C| =

∑
oi∈C 1 of objects contained in C and their linear and

quadratic sum per dimension: LS = (LS1, . . . , LSd), LSj =
∑

oi∈C oij,∀j =

1 . . . d and SS = (SS1, . . . , SSd), SSj =
∑

oi∈C o
2
ij,∀j = 1 . . . d.

n, LS and SS are the distributive measures from which the algebraic

measures mean µj and standard deviation σj can be computed per dimension

as follows:

µj = LSj/n (3.1)

σj =

√
(SSj/n)− (LSj/n)2 (3.2)

The latter follows directly from the linearity of expected values. In the

BIRCH algorithm only the squared sum over all objects and all dimensions is

stored in the cluster feature vector, which allows only the computation of the

average standard deviation over all dimensions. A useful property of cluster

features is their additivity.

46 Stream Data Mining

Theorem 3.1 Additivity of cluster feature vectors. For two disjoint clusters
CA and CB with cluster feature vectors CFA = (nA, LSA, SSA) and CFB =

(nB, LSB, SSB) assume that C = CA∪CB is the cluster that results from merg-
ing CA and CB. Then the resulting cluster feature vector for C is

CFA + CFB = (nA + nB, LSA + LSB, SSA + SSB).

From the above theorem it becomes obvious that cluster features can be

easily and efficiently updated by simply adding new points to all components

of the CF vector. The BIRCH algorithm stores cluster features in a balanced

hierarchical data structure called cluster feature tree. An inner node stores

entries of the form [CF, pointer], where the pointer corresponds to a child

node and the cluster feature (CF) summarizes all entries in the child node

(cf. Theorem 3.1). Leaf nodes only contain CF vectors without child pointers

and store an extra two pointers to neighboring leaf nodes for efficient scans.

The size of a node (the number of contained entries) is determined by the

size of a page that is read from hard disc. The size of the complete CF-tree is

determined by the amount of available memory.

To create the tree, new points are recursively added to the closest entry.

New entries are created if an object reaches a leaf node and its insertion

would cause the standard deviation (taken as the radius) of the correspond-

ing CF vector (cluster) to exceed a given threshold τ . If a resulting node

contains too many entries, it is split by choosing the farthest pair of entries as

seeds and redistributing the remaining entries based on the closest criterion

[ZRL96]. Once the CF-tree exceeds its maximal size, a new threshold value

τ ′ is determined and a smaller tree is built from the current CF-tree using τ ′

before the clustering process can be continued with additional points. When

the CF-tree is rebuilt, optionally leaf entries of low density can be stored sep-

arately, since those may correspond to noise or outliers. For these CF vectors

it is regularly checked whether they can be reabsorbed into the CF-tree.

Cluster feature vectors constitute an excellent way of compression for

streaming data and are indeed used in many stream clustering approaches

(cf. Section 3.3). The BIRCH algorithm is a first step towards stream clus-

3.1. General Tools and Techniques 47

tering, since it processes each object only once; it uses a single linear scan.

A drawback of BIRCH in a streaming scenario is the periodical rebuilding of

the CF-tree and the reinsertion of possible outliers. Moreover, every object

is considered equally important regardless of its age; the resulting clustering

does not correspond to an up-to-date model in the sense that it reflects re-

cent data more strongly. While BIRCH has been developed as an algorithm

for clustering large data bases, for data stream mining the issue of evolv-

ing data distributions is of high importance. This aspect is detailed in the

following section.

3.1.2 Mechanisms for aging data streams

The goal of the mechanisms presented in this section is to focus on data from

a specific time interval. Therein the most recent data is of primary interest

and is therefore given priority in all described approaches.

Sliding window

The simplest mechanism is the so called sliding window [GKS01, BBD+02,

ZS03]. Two variants of sliding windows determine the set of contained ob-

jects either using a fixed size or a threshold for the age of the objects. For the

former, objects that newly arrive on the data stream are added to the object

set of the window and if the maximal capacity is reached, the oldest object

drops out. If the age of the objects is used to determine their membership to

the window, the actual size of the window is not fixed unless the data stream

is constant.

All objects in the window are assigned an equal weight, usually 1; other

objects are assigned a zero weight. As a consequence all objects in the win-

dow are equally important, since they are incorporated into the model of

the actual algorithm with equal weights. While the sliding window is sim-

ple and easy to use, its weighting scheme does not allow for prioritization

of the objects within the window according to their age. Moreover, there is

no provision for an analysis of older data that already dropped out of the

window.

48 Stream Data Mining

Damped window

The damped window [AHWY04, CEQZ06] is similar to the sliding window,

but introduces individual weights for the objects based on their age. In the

literature the employed aging functions determine the weight for an object o

as w(o) = b−λ(tnow−to), where tnow is the current time stamp and to the arrival

time of o. The base b and the decay factor λ determine the shape of the

aging function. If b = 2 then 1/λ is the half life of o. Using the above aging

function, the total weight of the stream is bounded by

W = v ·
now∑
t=0

2−λt =
v

1− 2−λ
(3.3)

where v is the speed of the stream corresponding to the number of points

arriving in one unit of time [CEQZ06].

The exponential aging function employed in the damped window gives

more influence to recent data when building the model in an actual mining

algorithm. The membership of the objects to the window can still be done

either using a fixed size for the window or a threshold for the object weight

(based on the age). As in the sliding window mechanism, an analysis of

historical data cannot be done using a damped window alone.

Landmark window and tilted time frame

To enable the analysis of historical data, aggregates of the streaming data

must be computed and maintained. The simplest mechanism is the land-
mark window [GKS01], which stores aggregates at regular time intervals. To

compute a model in an actual mining algorithm it then uses the entire history

from a specific time point called the ’landmark’. In a real data stream appli-

cation, however, this model would fail since it does not provide any means

to delete or reduce the amount of the stored aggregates, which is essential

on infinite streams.

3.1. General Tools and Techniques 49

The tilted time window [CDH+02] stores aggregates at different granu-

larities depending on the recency of the data; it stores fewer aggregates

for older data and provides a more detailed view on recent data. Assume

for example that for the most recent 15 minutes an aggregate is stored ev-

ery minute. The older aggregates are compressed to one per quarter for

the last hour. Even older data is represented by one aggregate per hour,

then one per day, one per month, etc., yielding 15 snapshots for the min-

utes, 4 for the quarters, 24 for hours, 30 for days and 12 for months. In

this example 15 + 4 + 24 + 30 + 12 = 85 aggregates are stored for a whole

year, while maintaining one aggregate per minute throughout would yield

60 ∗ 24 ∗ 30 ∗ 12 = 518400 aggregates.

Pyramidal time frame

The pyramidal time frame was introduced in [AHWY03]. It is the most ad-

vanced method presented here and can also be used in combination with the

novel methods proposed in Part III. For these reasons it is described in more

detail. The pyramidal time frame stores snapshots of clusterings as aggre-

gates. The single clusters are represented by cluster features (cf. Definition

3.2) such that the difference between two snapshots can be computed using

the additivity of cluster features (cf. Theorem 3.1). The principle of the pyra-

midal time frame, however, can be used for any type of additive aggregates.

Similar to the tilted time window, the pyramidal time frame stores recent

aggregates at a high granularity and maintains only few aggregates for older

data. The name is due to the employed data structure that resembles a

pyramid: it stores the aggregates in levels of decreasing cardinality. The size

of the pyramid is controlled by the two parameters α and β, where, roughly

said, α controls the height and β the width of the pyramid (an example

is provided below). The following steps determine whether and where an

aggregate is stored in the data structure:

1. An aggregate that is taken at time tnow is stored on the highest level i

with tnow modαi = 0

2. If a level contains more than αβ + 1 aggregates, the oldest is removed.

50 Stream Data Mining

level:

5

4

3

2

1

0

32

16, 48

8, 24, 40

20, 28, 36, 44, 52

38, 42, 46, 50, 54

47, 49, 51, 53, 55

height = 6
[= logα(tnow)]

tnow = 55
α = 2
β = 2

width = 5 [= αβ + 1]

Figure 3.1: Example for the pyramidal time frame.

Consequently, at time tnow the height of the pyramid is at most dlogα(tnow)e
and the total number of stored aggregates is at most (αβ + 1) · dlogα(tnow)e.
Figure 3.1 shows an example for the pyramidal time frame. In the example

α = 2, β = 2 and a snapshot is taken at every time unit. Hence, 55 snapshots

have been taken in the example. The height of the pyramid is dlog2(55)e = 6

and a level stores at most 22 + 1 = 5 snapshots. Level 5 stores snapshots

from time stamps which are divisible by 32, level 4 those that are divisible

by 16 but not by 32, etc. The maximal number of snapshots per level cuts off

the edges of the pyramid; the resulting structure therefore rather resembles

a house or a tower (depicted by the gray area).

The flexibility that is given to the user by choosing the parameters α

and β was shown in [AHWY03] by means of the following example. With

α = 2 and β = 1 one snapshot per second over 100 years would yield (2 +

1)dlog2(60 ∗ 60 ∗ 24 ∗ 365 ∗ 100)e = 96 aggregates. This is on the one hand

very efficient, but yields on the other hand only a very coarse representation.

Allowing more snapshots per level by setting β = 10 in the same example

yields (210 + 1)dlog2(60 ∗ 60 ∗ 24 ∗ 365 ∗ 100)e = 32800 aggregates.

To analyze the data from a time interval [t1, t2] the two aggregates X1

closest to t1 and X2 closest to t2 are searched in the pyramid and a represen-

tation of the data between t1 and t2 is given by X2 −X1 using the additivity

3.1. General Tools and Techniques 51

of aggregates. An example for such an analysis is the change mining algo-

rithm described in Section 3.1.3. Any interval [tnow − h, tnow] that considers

the most recent h time steps can at least be approximated with a factor of 2;

a snapshot will always be found that lies at most at tnow − 2 · h as shown in

[AHWY03]. Increasing the parameter β improves the approximation and a

snapshot will be found within (1 + 1
αβ−1) · h. In the above example of a 100

year old data stream with α = 2 and β = 10 a snapshot will be found within

(1 + 1
210−1)h = 1.002 · h for any h.

3.1.3 Change Mining

The mechanisms described in the previous section enable a stream mining

algorithm to focus on more recent data and to maintain an up to date model.

In contrast, research in change mining seeks to identify and describe changes

in the data distribution. As one example a method called MONIC (modeling

and monitoring cluster transitions) that was proposed in [SNTS06] is dis-

cussed here.

Given two clusterings C1 and C2 from two different time steps t1 < t2,

MONIC distinguishes between internal and external transitions of a cluster

from t1 to t2. For both groups a set of possible transitions is identified and for-

mally described in [SNTS06]. As a prerequisite the overlap overlap(C1, C2)

of a cluster C1 ∈ C1 to a cluster C2 ∈ C2 is defined and the match for C1 in C2

is derived as the cluster in C2 with the highest overlap (if the highest overlap

is less than a threshold τ then C1 does not have a match in C2). The identi-

fied external transitions are splitting, merging, disappearing, emerging and

survival. For the latter the identified internal transitions are size transition

(growing, shrinking), compactness transition (compacter, diffuser), location

transition (mean shift, skew) and no change.

The overlap overlap(C1, C2) of a cluster C1 to a cluster C2 in MONIC is

based on the intersection C1 ∩C2. This requires that the identifiers of the ac-

tual objects that are summarized in the cluster need to be accessible to apply

MONIC on two given clustering. The clusters maintained by a stream clus-

tering algorithm, however, usually offer only a compact representation such

52 Stream Data Mining

as cluster features (cf. Definition 3.2). The applicability of change detection

methods to stream clustering outputs is nonetheless often given through so

called micro clustering. Most stream clustering algorithm maintain a detailed

micro clustering in an online component and defer the actual clustering to

an offline component, which uses the stored micro clusterings. If the single

micro clusters are given a unique ID by the online component, these can be

utilized to compute overlaps, matches and transitions using MONIC.

3.2 Stream Classification

Research on stream classification seeks to develop algorithms that adhere to

the requirements of stream data mining listed in Chapter 1.

Limited resources. Limited time and limited memory can be handled by

restricting the classifier’s model accordingly; limiting the number of sup-

port vectors in an SVM or the number of objects for a nearest neighbor

classifier are two examples. In the following budget algorithm refers to an

approach which restricts its model such that the classification decision is

reached within a previously known time budget.

Evolving Data. Updating the model of a classifier in the presence of chang-

ing data distributions is less straightforward. Proposed methods are dis-

cussed in Section 3.2.1, some of which constitute general approaches while

others are specialized solutions for a specific classification paradigm. To be

able to adapt a model, new training data is constantly required. Hence, in

the literature it is assumed that the objects in a data stream according to

Definition 3.1 are interleaved with labeled objects o ∈ Q+ [WFYH03, KJ00].

In practice such labeled instances may result from supervised phases of the

application, where an expert provides the ground truth labels manually.

Varying data rates. Anytime classifiers that adapt to varying data rates and

flexibly use the available processing time are a more recent field of research.

A review of the exisiting approaches is provided in Section 3.2.2, finding

that their number is significantly smaller than that of conventional stream

classification algorithms.

3.2. Stream Classification 53

Many stream classification algorithms have been proposed, surveys and

further references that go beyond the approaches discussed below can be

found in [GZK05, Agg06, GG07].

3.2.1 Learning on evolving data streams

A general approach to building classifiers for evolving data streams has been

proposed in [WFYH03]. The basic idea is to maintain a set of m classifiers

trained on consecutive chunks of the stream and employ them in a weighted

ensemble based on their classification performance. Newly arriving labeled

objects are added to the current chunk T x until a fixed amount is collected

(chunk size). A new classifier is trained on T x and the performance of the

existing classifiers is computed using T x as the test set. Each classifier is

given a weight proportional to its accuracy and the m highest weighted clas-

sifiers are kept. The weights are used during classification in an ensemble of

all m classifiers. The approach is applicable to any classification paradigm,

provided that the times for training and classification meet the constraints of

the actual stream setting.

Another approach that processes the data stream in chunks has been pro-

posed in [KJ00]. The paper describes an implementation of the approach

using support vector machines, but the idea can be generalized to a certain

extent. As its input the approach assumes t chunks T 0, . . . , T t−1 of equal size

m. It then trains t classifiers on all objects from the most recent h chunks for

h = 1 . . . t. The performance of the trained classifiers is assessed by testing on

each object from the latest chunk in a leave-one-out fashion; each classifier

must be trained m times. Since this procedure soon becomes prohibitively

expensive, the error is estimated with a pessimistic bias, where the true er-

ror is overestimated on average. The output of the approach is the classifier

which has the smallest estimated error. The error estimation thwarts the gen-

erality of the approach, since it either must be defined for other paradigms

to be able to use the methodology or the leave-one-out performance of the

paradigm must comply with the time constraints of the actual stream.

54 Stream Data Mining

For the nearest neighbor classifier an adaptive version for evolving

streams has been proposed in [BMH+05]. A fixed number of weighted repre-

sentatives is maintained based on the prevailing time and space constraints.

For a newly arriving labeled object o the closest representative r̂ is deter-

mined according to some distance measure dist(o, r̂). If dist(o, r̂) is larger

than a predefined threshold, o is stored as a new representative. Otherwise

o is merged to r̂ by moving its position taking the weight into account. If

the labels of o and r̂ are equal, the weight of r̂ is increased by 1, otherwise 1

is subtracted. If the resulting weight is 0 then r̂ is removed from the repre-

sentatives. The classification decision for an object q is determined based on

the k nearest neighbors among the representatives taking their weight into

account.

Decision trees are an extensively researched paradigm in evolving data

stream scenarios. In [DH00] a system called VFDT (Very Fast Decision Tree

learner) has been proposed entailing a rich diversity of improvements and

modified variants such as [HSD01, JA03, GMR04, BHP+09]. In decision tree

induction leaf nodes are recursively replaced by test nodes (inner nodes)

associated with a split attribute and one or several split values (cf. Section

2.2 and Definition 2.5). The core idea of VFDT is to consider only a small set

of objects per leaf node to decide on the split. The size of the set is chosen

such that, with high probability, the chosen attribute is the same that would

have been chosen using infinite examples. To this end a statistical result

known as Hoeffding bound (or additive Chernoff bound) [Hoe63, MM93] is

employed, yielding the name Hoeffding trees for the decision trees used in

VFDT and its variants. The Hoeffding trees grow top down by incrementally

adding new labeled objects to the leaf nodes and eventually splitting them

using the best attribute according to a splitting criterion of choice such as the

information gain (cf. Equation 2.18). If the available memory is exceeded,

the least promising leafs are deactivated in order to make room for new ones.

The VFDT system includes further heuristics for solving ties between two

attributes, increasing the efficiency by delaying computations of the splitting

criterion, reducing the number of attributes or initializing VFDT to ensure a

good early performance.

3.2. Stream Classification 55

A common method for Bayesian classification on categorical attributes

are Bayesian networks (cf. Section 2.2). Inference of a Bayesian network de-

termines the network topology as well as the parameters for the conditional

probability tables. While the latter naturally provide the means to efficiently

add new training data or remove outdated training data by adjusting the en-

tries in the conditional probability tables, determining the network topology

is a more time consuming process. In [LW96] an anytime learning method

for Bayesian networks based on state-space abstraction is discussed. State-

space abstraction refers to restricting the number of possible values (cate-

gories, intervals) per attribute in order to reduce the size of the parameter

set Θ (cf. Equation 2.12). This way the evaluation of a trial topology is accel-

erated. The restrictions on the state-space are iteratively loosened by refining

one category for one attribute at a time until the process is interrupted or all

states are elementary.

Both [DH00] and [LW96] declare their methods as anytime algorithms.

In either case the term anytime refers to the training of the classifier: VFDT

”is an anytime algorithm in the sense that a ready to use model is avail-

able at any time” [DH00] and the latter ”considers an anytime procedure for

approximate evaluation [inference] of Bayesian networks” [LW96]. While

being able to learn in an anytime manner is certainly worthwhile, the ability

to perform anytime classification is of higher value in streaming scenarios.

Existing anytime classifiers are discussed in the next section.

3.2.2 Anytime classifiers

Given a test object q ∈ Q, an anytime classifier C can provide a classification

decision fC(Θ, q, t) at any time t ≥ t0 after a very short initialization time t0.

A simple and intuitive anytime classifier for nearest neighbor classifica-

tion has been proposed in [UXKL06]. While the traditional nearest neighbor

classifier is a lazy learner that essentially skips the training phase and ex-

hibits high classification times especially on larger data sets∗ , the anytime

∗Similarity search on large data sets can be sped up to some extend by index structures
and other appropriate methods as discussed in Chapter 2.

56 Stream Data Mining

nearest neighbor is quite the opposite. The basic idea is to compute a rank-

ing on T during the training phase and process T in the resulting order

during classification until the algorithm is interrupted or T is entirely read.

Different ranking heuristics are discussed in [UXKL06]; the recommended

heuristic assigns to each object o ∈ T a rank according to its performance in

a leave-one-out classification on T . The rank is computed as

rank(o) =
∑
j

1 if label(o) = label(oj)

− 2
|L|−1

otherwise
(3.4)

where oj ∈ T is an object having o as its nearest neighbor. Ties are resolved

by sorting objects with the same rank according to their distance to their

nearest neighbor of the same class. During classification the objects are pro-

cessed in decreasing rank order and on interruption the label of the currently

closest object is returned as the classification result. The training time of the

anytime nearest neighbor is rather high, consider 53 minutes for |T | = 11340

on a Pentium 4 with 3.0GHz as an example from [UXKL06]. Moreover, the

employed ranking does not allow a straightforward incremental addition of

new training data as desirable in the data stream context.

For support vector machines several anytime versions have been proposed

[DeC02, DeC03, DM03]. The solution proposed in [DM03] relies on two

main observations. The first observation is that for an SVM the same clas-

sification decision can often be reached by using only a small fraction of

the nearest support vectors of a query in the decision function (cf. Equation

2.17). The second observation is that the ordering of the nearest neigh-

bors can be approximate without harming the actual performance. Putting

the second observation into practice the principal components of the sup-

port vectors are determined and the nearest neighbors for an object q ∈ Q
are computed during classification using only the subspace spanned by the

”top few principle component dimensions” [DM03]. The realization of the

first observation follows directly from evaluating the support vectors incre-

mentally with respect to their distance to q. Earlier anytime SVM versions

iteratively compute tighter bounds on the SVM output using either distance

3.2. Stream Classification 57

geometry [DeC02] or Cholesky factorization [DeC03]. In [DeC02] the sup-

port vectors are processed during classification in a fixed order (similar to

[UXKL06]), which is precomputed via a greedy eigenvector analysis.

Anytime classification for the Bayes classifier on categorical attributes has

been discussed in [YWKT07]. The system is called AAPE (anytime averaged

probabilistic estimator) and consists of the following four steps:

1. Identify single improvement steps.

2. Order single improvement steps.

3. Invoke next single improvement step until time is exhausted.

4. Ensemble improvement steps to output class probability estimates.

Initially a näıve Bayes is evaluated to obtain a first classification result. As the

single improvement steps SPODEs (superparent-one-dependent estimators)

are used, which were introduced in [KP02] and frequently investigated in

subsequent research [WBW05, ZW06, ZW07, YWC+07, FGMP09]. SPODEs

assume that the attributes are independent of each other given the class label

and a common attribute: the superparent. The SPODE considering the p-th

attribute as superparent yields the posterior probability (cf. Equation 2.6)

given by

P (l|o, p) =
P (l, op)P (o|l, op)

P (o)
=
P (l, op)

∏d
i=1 P (oi|l, op)
P (o)

(3.5)

Since any of the d attributes can be utilized as superparent, a total of d

improvement steps are given in AAPE.

For the second step seven heuristics to determine the best order of

SPODEs are discussed and evaluated in [YWKT07]. The recommended

heuristic is called FSA (forward sequential addition), in which the SPODEs

are successively added to an ensemble based on the resulting performance

with respect to a leave-one-out evaluation on T . Further heuristics include

backward sequential elimination, random ordering and others. After com-

puting the single posterior probabilities in step three until interruption, the

58 Stream Data Mining

final decision is given by

l̂ = arg max
l∈L

{
P (l)P (o|l) +

∑
p∈I P (l, op)P (o|l, op)

P (o) · (|I|+ 1)

}
(3.6)

averaging over the probabilities of the näıve Bayes and all evaluated SPODEs

subsumed in I. While the probability tables used for the SPODEs can be

incrementally updated with new training data, the order of the SPODEs re-

quires more expensive recomputation, which cannot be done online in most

cases.

3.2.3 Summarizing remarks

As noted in Section 2.2 different domains call for different classifiers. The

development of anytime classifiers is about enabling the use of a specific

classification paradigm in an anytime setting; it corresponds to designing an

algorithm that follows Definition 1.1 for the paradigm at hand. Ideally a

classifier supports both incremental learning and anytime classification. As

described above anytime classifiers have been developed for SVMs, nearest

neighbor classification and Bayesian classification for categorical attributes.

In Part II the focus is on Bayesian anytime classification for continuous at-

tributes. Therein first an anytime classifier is developed that can incremen-

tally learn from new labeled instances arriving on the stream. Consequently

the focus is on improving the method by building the classifier offline; to this

end the general approach for evolving data streams can be employed that

was proposed in [WFYH03] and discussed in Section 3.2.1.

3.3. Stream Clustering 59

3.3 Stream Clustering

Being one of the most frequently used data mining techniques, the devel-

opment of clustering algorithms promptly followed the real world situation

of data repositories; single scan algorithms were proposed when large data

bases became prevalent and stream clustering algorithms followed soon af-

ter. For most of the clustering paradigms discussed in the Section 2.3 a

streaming algorithm has been developed based on the static methods includ-

ing stream variants of k-Means and DBSCAN, but also grid-based, graph-

based and MDL-based approaches.

3.3.1 k-center methods

As in static clustering, k-center clustering approaches are numerous and

among the most popular. Two algorithms are presented in greater detail

and an overview of further k-center methods from the literature is provided

thereafter.

STREAM

One of the first stream clustering algorithms called STREAM [OMM+02] uses

a k-Medoids variant for clustering. Instead of processing each object directly

as it arrives, the algorithm periodically collects a certain number of points

and processes these as one chunk of data. The outline of the STREAM algo-

rithm is as follows:

1. Perform k-Medoids clustering on the current chunk

2. Store the k resulting centers weighted by the number of assigned points

3. If no memory is left perform k-Medoids on the set obtained in step 2

and replace the set by the resulting centers

The output of STREAM is the k-Medoids result on the set of stored centers.

The employed k-Medoids variant is called LSEARCH and is based on the

facility location problem, where each cluster center represents a facility. In

60 Stream Data Mining

contrast to the classical k-Medoids facility location imposes fixed costs ζ to

every cluster (facility) and tries to minimize

FC(C) = ζ · |C|+
|C|∑
i=1

∑
o∈Ci

d(o, µi).

Initially the points in the chunk are sorted randomly and a facility is opened

at the location of the first point. At each following point a location is opened

with probability d/f , where d is the distance of the current point to the

closest existing facility.

To find the desired number of k clusters LSEARCH performs a binary

search over the costs ζ. ζ is chosen between ζmin = 0 and ζmax =
∑

o∈O d(p0, o),

where p0 is the first point in the random ordering. The costs are in each iter-

ation set to ζ = (ζmin + ζmax)/2 and the clustering C is computed. If |C| > k

the cost were too small and the lower bound is updated by setting ζmin = ζ,

if |C| < k the cost were too large and the upper bound is updated by setting

ζmax = ζ. LSEARCH stops if either |C| = k or FC(C) did not improve more

than a given threshold. To speed up the algorithm a sampling approach is

proposed in [OMM+02].

Considering the requirements for streaming algorithms discussed in Chap-

ter 3 the main weaknesses of STREAM are the missing aging of historical

points and the missing treatment of noise. However, the algorithm can easily

be adapted to lay more focus on recent data by either decreasing the weights

of centers from older chunks or removing them in step 3 instead of merging

them.

CluStream

CluStream [AHWY03] introduces the notion of an online and an offline com-

ponent. In the online component a larger number of so called micro-clusters

MC are maintained and stored regularly using a pyramidal time frame (cf.

Chapter 3). The offline component performs a k-Means clustering on the

micro clusters from a user specified horizon. Micro-clusters in CluStream are

represented by a temporal extension of cluster features as follows:

3.3. Stream Clustering 61

Definition 3.3 An extended cluster feature CFT = (n, LS, SS, lst, sst) stores
in addition to a cluster feature CF = (n, LS, SS) according to Definition 3.2
the linear sum lst and quadratic sum sst of the time stamps of all contained
objects.

Each micro-cluster is assigned a unique id upon creation. The total number of

micro-clusters k′ is a parameter of the algorithm, which is determined by the

amount of available main memory according to [AHWY03]. Initially a fixed

number (InitNumber) of points are collected and processed by the offline

component to obtain k′ micro-clusters. The value of InitNumber is chosen

to be as large as permitted by the computational complexity of a k-Means

algorithm [AHWY03]. For a newly arriving point p the online component of

CluStream performs the following operations:

1. Find the closest micro-cluster MCi according to d(p, µi)

2. If d(p, µi) < α · σi then add p to MCi (α = 2 in [AHWY03])

3. Else create a new micro-cluster containing only p and

(a) delete the least recent MC, if its relevance stamp is below τ

(b) else merge the two closest micro-clusters

If two micro-clusters are merged the resulting micro-cluster is assigned an id-

list containing the member-ids of both. The relevance stamp for the delete

check reflects the average time-stamp of the last m̂ points. Using lsi and ssi
it is calculated as the m̂/(2 · n)-th percentile of the time-stamp distribution

assuming a normal distribution. The parameters of the distribution are cal-

culated using lst and sst as in the feature case. τ and m̂ are parameters of

the algorithm.

In contrast to STREAM CluStream incorporates aging of points and micro-

clusters through the extended cluster features and the deletion according to

recency. Noise points are not directly discarded, since each point is included

or assigned a new micro-cluster to allow the formation of new clusters and

concepts. However, noise points that stay alone in their micro-cluster will be

eventually be removed in step 3(b).

62 Stream Data Mining

Other approaches

Besides the two described methods a variety of other k-center approaches

has been proposed. E-Stream [URW07] maintains for each micro-cluster in

addition to the cluster feature a histogram that is used to determine the best

dimension for splitting the cluster. MovStream [TTD+08] uses a sliding win-

dow, adds a new point to its closest cluster and removes the oldest point

from its cluster. OLINDDA [SdLFdCG07] stores a certain number of repre-

sentatives per cluster such that the total number is constant and performs

periodically a k-Means clustering on those objects. New objects that do not

fall into an existing cluster are buffered and clustered separately to check for

novelty and drift. StreamKM++ [ALM+10] computes a small weighted sam-

ple of the data stream using a coreset tree and performs a k-Means variant

[AV07] on that sample. The sample size is experimentally shown to yield

a good tradeoff between running time and clustering quality when set to

200 · k, where k is the number of resulting clusters. TRAC-STREAM [NR06]

uses Chebyshev bounds to determine outliers and compatibility of clusters.

In [Guh09] theoretical bounds are proven for maintaining k clusters of equal

radius in a streaming scenario.

3.3.2 Density-based methods

Density-based stream clustering approaches claim to outperform k-center

methods by finding clusters of arbitrary shape. This advantage is in most

cases however only due to the employed offline component of the approaches.

This issue is discussed at the end of this chapter in Section 3.3.4.

DenStream

The DenStream algorithm proposed in [CEQZ06] is based on DBSCAN (cf.

Section 2.3). Similar to CluStream, micro-clusters are maintained in an on-

line component and the DBSCAN algorithm is applied to these micro-clusters

in the offline component upon user request. The online component differs

3.3. Stream Clustering 63

significantly from CluStream. It uses a time-weighted variant of cluster fea-

tures.

Definition 3.4 Let w(o) = b−λ(tnow−to) be a time weighting function where
tnow is the current time and to ≤ tnow is the arrival time of an object o.
Then the time-weighted cluster feature vector corresponding to a cluster C is
CF = (n(t), LS(t), SS(t)), with n(t) =

∑
oi∈C w(o) and for each dimension

LSj =
∑

oi∈C w(o)oij,∀j = 1 . . . d and SSj =
∑

oi∈C(w(o)oij)
2,∀j = 1 . . . d.

DenStream distinguishes between core micro-clusters CMC with n(t) ≥ τ

and outlier micro-clusters OMC with n(t) < τ . n(t) is the time weighted num-

ber of points contained in the micro-cluster and τ is a threshold parameter.

The offline component is applied only on the core micro-clusters. To insert a

new point p at time t the algorithm performs the following steps:

1. Find the closest core micro-cluster CMCi

2. Add p to CMCi if afterwards σi ≤ ε holds

3. Else perform steps 1 and 2 to test the closest outlier micro-clusters

4. If p was added to an outlier micro-cluster OMCj check whether OMCj

became a core micro-cluster

5. If p was not absorbed create a new OMCp containing only p

6. Periodically after Tper time steps, if tmod Tper = 0,

(a) delete all core micro-clusters CMCi with n(t) < τ

(b) delete all outlier micro-clusters that did not become a core micro-

cluster within the last Tper time steps

Step 4 ensures that an outlier micro-cluster can evolve to a core micro-

cluster over time, step 6 deletes noise and outdated micro-clusters. Given the

maximal total weight W of the time-weighted stream according to Equation

3.3 the number of core micro-clusters is bound by W/τ and it is shown in

[CEQZ06] that the number of outlier micro-clusters is also limited. The value

64 Stream Data Mining

Tper for the periodical checks is determined using the decay factor λ and the

density threshold τ as Tper = d 1
λ

log(τ
τ−1

)e.
To initialize the list of maintained core micro-clusters the DenStream al-

gorithm collects an initial number of points (InitNumber) in a temporary

set. For a point p in this set, if the number of points in its ε-neighborhood

is above τ , a new core micro-cluster is created containing these points and

they are removed from the set.

In [CEQZ06] the core micro-clusters of the online component are called

potential c-micro-cluster and τ is a product of two parameters. In their exper-

imental evaluation the parameters were set to τ = 2, ε = 16, InitNumber =

1000 and λ = 0.25. For these parameters the value for periodical checks is

Tper = 4.

DStream

DStream [CT07] uses a grid-based approach and divides each dimension into

l partitions yielding a total number of N = ld grid cells. It exhibits some sim-

ilarities with the previously described DenStream algorithm in that it uses

a decay function for aging and checks periodically for noise or outdated re-

gions. The online component maintains populated grid cells in a hash list. A

grid cell GC is represented by its characteristic vector

(tupdate, tspor, n
(t), label, status)

where status can be sporadic or normal and label is used for cluster mem-

bership. tupdate and tspor are the time stamps when GC was last updated or

marked as sporadic respectively. With tp as the insertion time of point p the

term n(t) =
∑

p∈GC b
λ·(tnow−tp) is the time weighted sum of all points in GC

(density) similar to Definition 3.4. In DStream λ is set to 1 and the base b is

used as a parameter to influence the aging. With this parameter choice the

total weight of the stream is bounded by W = 1
1−b (cf. Section 3.1). This

property is used in the online component.

DStream distinguishes three kinds of grid cells using the bounded total

weight of the stream W = 1
1−b and the total number of grid cells N = ld as

3.3. Stream Clustering 65

follows:

• GC is a dense grid cell, if n(t) > τdense · WN

• GC is a sparse grid cell, if n(t) < τsparse · WN

• GC is a transitional grid cell, if τsparse · WN < n(t) < τdense · WN

The two requirements for a sparse grid to be marked as sporadic are

S1 : n(t) < τsparse
N

∑tnow−tupdate
i=0 bi

S2 : tnow ≥ (1 + β)tspor

S2 defines how fast a grid cell that has been marked as sporadic before can

be marked again as sporadic. The larger β is chosen by the user the longer

it takes for these grid cells to be removed. Moreover, since the comparison

is absolute rather than relative, requirement S2 becomes more difficult to

fulfill as time proceeds.

The main steps of the online component for any new point p arriving at

time t are:

1. Determine the grid cell GC that p falls into

2. Add GC to the hash list if it is not already contained

3. Update GC with respect to p and t. If GC changed from sparse to

another type, remove possible sporadic mark

4. Periodically after Tper time steps, if tmod Tper = 0,

(a) delete all grid cells from the hash list that have been marked as

sporadic and did not receive new points within the last Tper steps

(b) mark sparse grid cells as sporadic if requirements S1 and S2 are

met

(c) adjust the clustering

66 Stream Data Mining

It is shown in [CT07] that S1 and S2 ensure that no transitional or dense

grid will be falsely deleted due to the removal of a sporadic grid cell.

Initially DStream collects incoming points for Tper time steps, inserts them

into their corresponding grid cell and defines connected regions of dense or

transitional grid cells as one cluster. In step 4(c) the clustering is updated to

reflect the density changes of the grid cells, possibly merge newly connected

clusters or split clusters that became unconnected.

The value Tper for periodical checks is set such that any change of a grid

cell from dense to sparse or vice versa is recognized. This is achieved by

Tper = min

{⌊
logb

τsparse
τdense

⌋
,

⌊
logb

N − τdense
N − τsparse

⌋}
=

⌊
logb

(
min

{
τsparse
τdense

,
N − τdense
N − τsparse

})⌋
In the experimental evaluation in [CT07] the parameters are set to τdense = 3,

τsparse = 0.8, b = 0.998, β = 0.3, l ranges from 20 to 50 and d ranges from 2

to 40. For these parameter settings the value for Tper ranges from 0 to 2.

Other approaches

In [PL04] a dynamic splitting of grid cells is used to cluster streaming data.

To this end coarse initial grid cells are repeatedly split based on their data

distribution using either a mean split in the dimension with the highest vari-

ance, or a split along the dimension with the lowest variance that keeps the

elements around the mean in one segment. Grid cells are basically repre-

sented by their bounding box and a time weighted cluster feature. Splitting

and deleting of cells is performed based on two user defined density thresh-

old parameters. As in DenStream and DStream the algorithm periodically

checks all maintained cells to remove noise or outdated regions. The initial

cells are always maintained and cannot be deleted. An offline component is

not employed. In [LC08] a grid-based stream clustering approach that uses

the fractal dimension has been proposed.

3.3. Stream Clustering 67

3.3.3 Specialized methods

COBWEB [Fis87] is an incremental clustering method that stores only a com-

pact representation of the data and can therefore be used for stream cluster-

ing. As a compact representation it uses classification trees, which differ from

decision trees (cf. Chapter 2) in that they label nodes rather than branches

and store probabilistic descriptors rather than logical ones. The construc-

tion of the classification trees is guided using probabilities of attribute val-

ues, a variant for continuous attributes using distributions was proposed in

[GLF89]. To react to evolving data the algorithm allows merging and split-

ting of nodes. However, COBWEB, just as the other early method STREAM

(cf. Section 3.3.1), does not incorporate aging of historical data.

For high dimensional data streams a projected clustering algorithm called

HPStream has been proposed in [AHWY04]. It uses a variant of time

weighted cluster features that represents clusters only in the most relevant

dimensions. The relevant dimensions are determined globally by keeping the

k · l dimensions over all clusters that have the smallest radii, where k is the

number of clusters and l is a parameter. Subspace clustering algorithms for

data streams have been proposed in [KPM06, PL07, LL08, PL08].

Further stream clustering algorithms use concepts mentioned in Section

2.3 such as MDL-based clustering [vLS08], graph-based clustering [LL09]

or model-based clustering using kernel estimators [JZC06]. An extension

of OPTICS to data streams has been proposed in [TRA07], a method that

employs an immune system learning model was presented in [NUCG03].

3.3.4 Summarizing remarks

Many stream clustering algorithms have an online component that main-

tains detailed summaries of the streaming data and an offline component

that produces the actual clustering. Other methods can be adapted to act

as an online component: using a large k value for STREAM or performing

step 4(c) in DStream (adjust clustering) only on user requests are examples.

The offline components are often exchangeable; from any micro-clustering

resulting from an online component a k-Means or DBSCAN clustering can

68 Stream Data Mining

be calculated. However, the online components often exhibit a rather high

complexity with respect to the number of maintained micro-clusters due to

expensive checks for deleting or merging micro-clusters. This can be prob-

lematic on very fast or bursty streams. This is a first motivation for the

development of new methods in Part III. Moreover, none of the proposed ap-

proaches for stream clustering constitutes an anytime algorithm; neither is

interruptible or exploits additional time once its model has been processed.

Part II

Anytime Stream Classification

69

Chapter 4

The Bayes Tree

∗ Classification of streaming data faces three basic challenges: it must deal

with huge amounts of data, it must make the best possible use of the varying

time between two stream data items (anytime classification) and additional

training data must be incrementally learned (anytime learning) for apply-

ing the classifier consistently to fast data streams. In this chapter a novel

index-based technique is proposed that can handle all three of the above

challenges using the established Bayes classifier on effective kernel density

estimators. The proposed Bayes tree constitutes a hierarchy of mixture den-

sities that represent kernel estimators at successively coarser levels. The pro-

posed probability density queries adapt the employed mixtures efficiently to

the individual object to be classified. Together with novel classification im-

provement strategies this allows for very effective classification at any point

of interruption. Moreover, a novel evaluation method is introduced for any-

time classification using Poisson streams, and the performance of the Bayes

tree is evaluated empirically.

∗This chapter has been published in the Proceedings of the 12th International Conference
on Extending Database Technology (EDBT/ICDT 2009) [SAK+09].

71

72 The Bayes Tree

4.1 Introduction and Preliminaries

As discussed in Chapter 3, existing classifiers that focused on anytime learn-

ing built a budget classifier [BH90, SK01, WFYH03], i.e. they are not able to

perform anytime classification. Anytime classifiers on the other hand have

so far not been able to profit from novel training data unless they were given

a large amount of time to retrain their classifier. For a stream classification

application it is important to support both anytime learning and anytime

classification to allow consistent use on fast data streams.

The proposed classifier enables anytime Bayes classification using non-

parameterized kernel density estimators (cf. Section 4.1.1). Consistent with

classifying fast data streams the technique is able to incrementally learn from

data streams at any time. The proposed Bayes tree indexing structure pro-

vides aggregated model information about the kernels in all subtrees on all

hierarchy levels of the tree. In probability density queries, descending the tree

is based on strategies that favor classification accuracy. As different granu-

larities are available and compact models are located at the top levels, the

probability density query can be interrupted early on (starting with a uni-

modal model at root level) and refines the model as long as time permits.

The novel anytime classifier does not only improve its result incrementally

when more time is granted, but also adapts the model refinement individu-

ally to the object to be classfied.

The design goals of the proposed anytime approach include

• Statistical foundation. The classifier uses the established Bayes classi-
fier based on kernel estimators.

• Adaptability. The model is adapted to the individual query object, i.e.

the mixture model is refined locally with respect to the object to be

classified.

• Anytime classification and anytime learning for applying the Bayes

tree consistently in applications on fast data streams.

The contributions on a technical level include

4.1. Introduction and Preliminaries 73

• Novel hierarchical organization of mixture models. The novel index

structure provides a hierarchy of mixture density models and allows

fast access to very fine-grained and individually adapted models.

• Probability density queries. Novel access strategies where traversal

decisions are based on the probability density of the query object with

respect to the current mixture model.

• Poisson stream evaluation. A novel evaluation method is introduced

for anytime classification on data streams using Poisson processes.

In the following section first the evaluation of anytime classification is re-

viewed and Bayes classification using kernel density estimation is described.

In Section 4.1.2 hierarchical indexing is discussed in the context of anytime

learning.

4.1.1 Anytime classification and kernel density estimation

Anytime classifiers are capable of dealing with the varying time constraints

and high data volumes of stream applications. The usefulness of an anytime

classifier depends on its quality, which can be determined with respect to

accuracy and accuracy increase. Accuracy refers to the proportion of cor-

rectly classified objects for a fixed time allowance, accuracy increase is the

improvement of accuracy over the amount of available time (cf. Figure 1.2).

In stream classification the accuracy of an anytime classifier is given by the

average classification accuracy with respect to the inter-arrival rate (speed)

of the data stream. The accuracy increase also influences the stream specific

anytime classification accuracy, since a steeper increase yields a better ac-

curacy even if marginally more time is available and thus a higher average

accuracy for the same inter-arrival rate. In Section 4.3 a novel stream spe-

cific anytime classification evaluation method is introduced, which captures

both aspects in a single measure.

Bayesian classification on continuous attributes requires a model for prob-

ability density estimation (cf. Chapter 2). A detailed approach to density

74 The Bayes Tree

estimation are kernel density estimators, which do not make any assump-

tion about the underlying data distribution (thus often termed “model-free”

or “non-parameterized” density-estimation). Kernel estimators can be seen

as influence functions centered at each data object. To smooth the kernel

estimator a bandwidth hi is used. Comparing Definition 2.3 with kernel den-

sities, the bandwidth corresponds to the variance of a Gaussian component.

Definition 4.1 Kernel density estimation. The class conditional probability
density for an object q ∈ Q and class li based on a training set T ⊆ Q+ and
kernel K with bandwidth hi is given by:

pK(q|li) =
1

|Tli | · hdi

∑
oj∈Tli

K

(
‖q − oj‖

hi

)

Thus, the class conditional probability density for any object q is the weighted

sum of kernel influences of all objects oj of the respective class. In this the-

sis, Gaussian kernels KGauss(x) = 1
(2·π)d/2

e−
x2

2 are used along with Gaussian

mixture models in a consistent model hierarchy to support mixing of models

and kernels in the Bayes tree.

In terms of classification accuracy, Bayes classifiers using kernel estima-

tors have shown to perform well for traditional classification tasks [EW95].

Especially for huge training data sets the estimation error using kernel densi-

ties is known to be very low and even asymptotically optimal [Sil86]. In sec-

tion 4.2 a novel indexing structure is proposed that enables kernel density es-

timation on huge data sets (as in stream applications) and incremental learn-

ing at any time. Moreover, it is shown how anytime density estimation using

kernel density estimators can be realized with the proposed method. There

has been some research on anytime density estimation [ZRL99, GM03]. It is

however not described how to use these approaches for anytime classifica-

tion. As we will clearly see in Section 4.3, this is not a trivial task. Neither

a naive solution nor either of the straightforward solutions delivers competi-

tive results.

4.1. Introduction and Preliminaries 75

4.1.2 Anytime learning using hierarchical indexing

Supervised classification is performed in two steps: learning and classifica-

tion. So far we discussed the quality criteria for anytime classification. How-

ever, in stream applications it is often essential to efficiently learn from new

labeled objects. As the time to learn from new objects is typically limited,

classifiers are required which can be interrupted at any time during learn-

ing. The classification model which has been learned up to this point in time

is then used for all further classification tasks. A classifier that can learn

from new objects at any time is called an anytime learning algorithm in the

following (also called incremental learning).

An important quality criterion for anytime learning algorithms is the run-

time complexity of updating the learned model. While using lazy learning

(e.g. nearest neighbor) allows for updating the decision set in constant time,

the lack of a concise model of the data stops this approach from being ef-

fective in the anytime classification context. An anytime classifier based on

the nearest neighbor approach has been proposed in [UXKL06] (cf. Chapter

3). However, to perform anytime classification, [UXKL06] uses a non-lazy

learning method that has a superlinear complexity for new objects.

The method proposed in this chapter uses a hierarchy of models for Bayes

classification that allows incremental refinement to meet the requirements of

anytime classification and anytime learning. The Bayes tree indexes density

models for fast access. Using multidimensional indexing techniques enables

the Bayes tree to learn from new objects in logarithmic time.

Multidimensional indexing structures like the R-tree [Gut84] have been

shown to provide substantial efficiency gains in similarity search in low di-

mensional spaces. The basic idea is to organize the data efficiently on disk

pages such that only relevant parts of the database must be accessed. This is

based on the assumption that in similarity search, query processing requires

only a small portion of the data. This assumption does not hold in Bayes ker-

nel classification. As the entire model potentially contributes to the class la-

bel decision, the entire database must be accessed in order to perform Bayes

classification without loss of accuracy (see Section 4.2 for details). Con-

76 The Bayes Tree

sequently, simply storing objects for kernel estimation in multidimensional

indexes does not suffice for anytime classification.

The Gauss-tree [BPS06] builds on the R*-tree structure [BKSS90] to pro-

cess unimodal probabilistic similarity queries. As the application focus is

on similarity search, it does neither allow for anytime classification, nor for

management of multi modal densities.

4.2 Indexing density models

Anytime algorithms and Bayes classification using kernel density estimation

are the preliminaries for the proposed anytime classifier. The overall goal

is a classification algorithm that can be interrupted at any given point in

time and that produces a meaningful classification result that improves with

additional time allowances. The Bayes classifier on kernel densities cannot

provide a meaningful class conditional density p(q|li) at an arbitrary (early)

point in time, since the entire model may potentially contribute to the class

label decision (cf. Section 4.1.2). In the next section an overview is provided

of the technique for estimating the class conditional density before discussing

the technical details in the following sections. Finally, it is described how the

classification decision is made and improved using the novel index structure.

4.2.1 Outline

As discussed before, any anytime classifier must provide an efficient way to

improve its results with additional time. Indexing provides means for effi-

ciency in similarity search and retrieval. By grouping similar data on hard

disk and providing directory information on disk page entries, only the rele-

vant parts of the data are accessed during query processing. Similarity search

queries are usually specified via a query object and a similarity tolerance

given by a threshold range ε. Using this ε range, irrelevant parts of the data

are pruned based on directory information during query processing. Thus

the amount of data that must be accessed is reduced, which in turn greatly

reduces runtime. This is illustrated in Figure 4.1 (top left). The query and

4.2. Indexing density models 77

MBR MBR MBR
Range query Pruned data Bayes tree solution

MBR MBR MBR
g q y

Necessary
information
to answer a

Pruned data y

MBR MBR MBR(q, ε)‐range
query

D D D D D DD

Probability density queryProbability density query

? ?

?
How to realize

anytime without
pruning?

Necessary
information
to answer a

Aggregate statistical information
on higher levels of the tree to

K K K K K K K K K K K K K KK K K K

? ?to answer a
q‐probability
density query

g
enable classification without
reading the entire leaf level.

Figure 4.1: Pruning as in similarity search is not possible for probability
density queries, since all kernels must be accessed to answer a q-probability
density query.

the ε range allow for straightforward pruning of database objects whose di-

rectory entries are at more than ε distance (with respect to a given distance

function). This scenario also applies for k nearest neighbor queries [SK98].

In the Bayes tree, the data objects are stored at leaf level as in similarity

search applications. As classification requires reading all kernel estimators of

the entire model, accuracy would be lost if a subset of all kernel densities was

ignored. Consequently, there is no irrelevant data, and hence the pruning as

in similarity search is infeasible when dealing with density estimation. As for

the accuracy increase, accessing the entire kernel density model is not only

inefficient but also not interruptible. Moreover, kernel densities provide only

a single model of the data, i.e. no incremental improvement of classification

is possible as required for anytime classification.

As illustrated in Figure 4.1 (bottom left), the upper levels of an index that

supports anytime classification need to provide information that can be used

for assigning class labels even before the leaf level containing the kernels is

reached. The Bayes tree solves this problem by storing aggregated statistical

information in its inner nodes (Figure 4.1 right).

78 The Bayes Tree

s∙1 s∙2

ns∙1 LSs∙1 SSs∙1 ptrs∙1MBRs∙1 [free space]

K K K K K

ns∙2 LSs∙2 SSs∙2 ptrs∙2MBRs∙2

nodes

nodes∙1

es∙1

Figure 4.2: Nodes and entries in the Bayes tree (here: above the kernel
level). Entries es store minimum bounding rectangles (MBRs), child point-
ers (ptrs), and additional information to compute mean and variance, i.e.
number of objects (ns) as well as their linear and quadratic sums per dimen-
sion. Kernel positions are depicted as dots, the higher level mixture density
is represented as density curves.

The proposed approach is therefore a hierarchy of mixture models built

on top of kernel densities. It provides a classification decision on interrup-

tion and allows for adaptive query-based refinement as long as more time is

available.

4.2.2 Structure of the Bayes tree

In this section the Bayes tree structure is described for a single class li. Query

processing and refinement on multiple classes is discussed in Section 4.2.3.

The Bayes tree builds on top of the R-tree and the CF-tree. Each entry

is associated with a Gaussian that represents the data in its corresponding

subtree. A cluster feature vector according to Definition 3.2 is stored per

entry. This way the entries can be updated incrementally (cf. Theorem 3.1)

and the parameters µ and σ of the Gaussian can be computed easily.

4.2. Indexing density models 79

Definition 4.2 Bayes tree node entry. A subtree Ts of a d-dimensional Bayes
tree is associated with the set of objects stored in the leaves of the subtree:
Ts = {o(s,1), . . . , o(s,ns)}. An entry es then stores the following information
about the subtree Ts:

• The minimum bounding rectangle enclosing the objects stored in the
subtree Ts as MBRs = ((l1, u1), . . . , (ld, ud))

• A pointer ptrs to the subtree Ts

• The number ns of objects in Ts

• The vector LSs containing the linear sum of all objects per dimension

• The vector SSs containing the squared sum of all objects per dimension

All objects stored in the leaves of the Bayes tree are d-dimensional ker-

nels. Figure 4.2 illustrates the structure of a Bayes tree node entry. From

the information stored in each entry according to Definition 4.2, mean and

variance are computed according to Equations 3.1 and 3.2.

The Bayes tree extends the R*-tree to store model specific information in

the following manner:

Definition 4.3 Bayes tree. A Bayes tree with fanout parameters m and M and
leaf node capacity parameters l and L is a balanced multidimensional indexing
structure with the following properties:

• Each inner node nodes contains between m and M entries (see Def. 4.2).
The root has at least a single entry.

• Each inner node with νs entries has exactly νs child nodes

• Leaf nodes store between l and L observations (d-dimensional kernels).

• A path from the root to any leaf node has always the same length
(balanced).

80 The Bayes Tree

This structure has some very nice and intuitive benefits: since the number

of objects, their linear sum as well as their quadratic sum are all distributive

measures, they can efficiently be computed bottom up. More precisely, we

can use the build procedure of any standard R*-tree to create the hierarchy

of mixture densities. Using an index structure from the R-tree family auto-

matically allows both processing of huge amounts of data and incremental

learning at any time.

Recall that R*-trees, or any other tree from the B-tree or R-tree family,

grow in a bottom-up fashion. Whenever there are more entries assigned to

any node than allowed by the fanout parameters M, which in turn reflects

the page size on hard disk, an overflow occurs. This overflow leads to a

node split, i.e. the entries of this overfull node are separated onto two new

nodes. Their ancestor node then stores aggregate information on these two

nodes. In the R*-tree case, this was simply the MBR of the two nodes. In

addition to that, for the Bayes tree the overall number, linear and quadratic

sum must be computed and stored in the ancestor node. This way, in a very

straightforward manner, coarser mixture density models are created.

Consequently, building Bayes trees is a simple procedure that starts from

the original kernel density estimators that are stored in a leaf node until

a split is necessary. This first split leads to creation of a second level in

the tree, with a coarser mixture density model derived through R*-tree-style

split [BKSS90]. Successive splitting of nodes (as more kernel densities are

inserted) leads to further growth of the tree, eventually yielding a hierarchy

of mixture density models as coarser representations of the kernel densities.

4.2.3 Query processing

Answering a probability density query requires a complete model as stored

at each level of the tree. Besides these full models, local refinement of the

model (to adapt flexibly to the query) provides models composed of coarser

and finer representations. This is illustrated in Figure 4.3 on page 83. In any

model, each component corresponds to an entry that represents its subtree.

This entry may be replaced by the entries in its child node yielding a finer

4.2. Indexing density models 81

representation of its subtree. This idea leads to query-based refinement in

the proposed anytime algorithm.

A frontier is a model representation that consists of node entries such

that each kernel estimator contributes and such that no kernel estimator is

represented redundantly. To formalize the notion of a frontier, we need a

clear definition for the enumeration of nodes and entries.

Definition 4.4 Enumeration of nodes and entries. To refer to each entry
stored in the Bayes tree we use a label s with the following properties:

• The initial starting point is labeled e∅ with T∅ being the complete set of
objects stored in the Bayes tree.

• The child node of an entry es has the same label s as its parent entry, i.e.
the child of es is nodes. Ts denotes the set of objects stored in the respective
subtree of es.

• The νs entries stored in nodes are labeled {es◦1 . . . es◦νs}, i.e. the label s of
the predecessor concatenated with the entry’s number in the node. (recall
Figure 4.2: nodes has two entries es◦1 and es◦2 with their child nodes
nodes◦1 and nodes◦2).

A set E = {ei} of entries defines a Gaussian mixture model GMM accord-

ing to Definition 2.3, which can then be used to answer a probability density

query.

Definition 4.5 Probability density query pdq. Let E = {ei} be a set of en-
tries, GMME the corresponding Gaussian mixture model and n =

∑
i nei the

total number of objects represented by E . A probability density query pdq re-
turns the density for an object q with respect to GMME by

pdq(q, E) =
∑
es∈E

nes
n
· g(q, µes , σes)

where µes and σes are calculated according to Equations 3.1 and 3.2.

82 The Bayes Tree

For a leaf entry a kernel estimator as discussed in Section 4.1 is used and

obviously µes is the object itself.

Figure 4.3 b) shows the resulting mixture density for the example frontier

from part a). The leftmost Gaussian stems from the entry e1 which is located

at root level. The rightmost Gaussian and the one in the back correspond to

entries e23 and e21 respectively, the remaining represent kernel densities at

leaf level. Part c) of the image depicts the underlying R*-tree MBRs and the

kernels as dots. The bigger blue dot and the vertical line represent the query

object from which the above frontier originated.

Using the above enumeration a frontier can be derived from any prefix-

closed set of nodes.

Definition 4.6 Prefix-closed subset and frontier. A set of nodes N is prefix-
closed iff:

• node∅ ∈ N (the root is always contained in a prefix-closed subset)

• nodes◦i ∈ N ⇒ nodes ∈ N (if a node is contained in N , its parent is also
contained in N)

Let E(N) be the set of entries stored in the nodes that are contained in a prefix-
closed node set N : E(N) =

⋃
node∈N

(e ∈ node). The frontier F(N) ⊆ E(N)

contains all entries e ∈ E(N) that satisfy

• es◦i ∈ F(N)⇒ es /∈ F(N): no predecessors of a frontier entry is in F(N)

(predecessor-free)

• es ∈ F(N)⇒6 ∃i ∈ IN with es◦i ∈ E(N): a frontier entry has no successors
in E(N) (successor-free)

Figure 4.3 a) illustrates both a prefix-closed subset of nodes and the cor-

responding frontier. The subset, separated by the curved red line, contains

the root, node2 and node23, hence it is prefix-closed. Its corresponding fron-

tier (highlighted in white) contains the entries e1, e21, e23, e221, e222 and e223

where the last three represent kernels. The frontier is both predecessor-free

and successor-free.

4.2. Indexing density models 83

1
a)

21 23

K K K
K

221
K K K KK K K KK K K

K
222

K
223

b)

c) 21

1
23

K
221

K
222

K
223

Figure 4.3: Tree frontier: In a) a frontier in a Bayes tree that corresponds
to a model with mixed levels of granularity is depicted: nodes 2 (root level)
and 22 (inner level) are refined, yielding 1 (root level), 21 (inner level),
221, 222, 223 (all leaf level), 23 (inner level). The resulting mixture density
model is depicted in b), the actual kernel positions and the hierarchy are
depicted in c).

84 The Bayes Tree

Using the above definitions the following defines the processing of a prob-

ability density query on the Bayes tree.

Let T∅ be the set of objects stored in a Bayes tree containing tmax nodes.

Anytime pdq processing for an object q processes a prefix-closed subset Nt in

each time step t with N0 = {node∅}, i.e. the processing starts with the root

node, and |Nt+1| = |Nt| + 1, i.e. in each time step one more node is read.

The probability density for the query object q at time step t is then calculated

using the mixture model corresponding to the frontier F(Nt) of the current

prefix-closed subset Nt as in Definition 4.5, that is pdq(q,F(Nt)). This way

all objects of the tree are accounted for:
∑

es∈F(Nt) nes = |T∅|.

Definition 4.7 Anytime pdq processing. From time step t to t+1,Nt becomes
Nt+1 by adding the child node nodes of one frontier entry es ∈ F(Nt). If nodes
has νs entries, then the frontier F(Nt) changes to F(Nt+1) by

F(Nt+1) = (F(Nt) \ {es}) ∪ {es◦1, . . . , es◦νs}

i.e. es is replaced by its children. The probability density for q in time step t+ 1

is then calculated by

pdq(q,F(Nt+1)) = pdq(q,F(Nt))

− ns
|T∅|
· g(q, µes , σes)

+
νs∑
i=1

ns◦i
|T∅|
· g(q, µes◦i , σes◦i)

Following the above equation, the probability density for q in time step

t + 1 is calculated taking the probability density for q in time step t (row

1), subtracting the contribution of the refined entry’s Gaussian (row 2) and

adding the contributions of its children’s Gaussians (row 3). Hence, the cost

for calculating the new probability density for q after reading one additional

node is very low due to the information stored for mean and variance. Af-

ter that the entry has to be sorted into the frontier, which can be done in

O(log2
2(r ·M)) using a heap (after r refinements the frontier contains maxi-

mally r ·M entries).

4.2. Indexing density models 85

Note that after reading all tmax nodes pdq(q,F(Ntmax)) is a full kernel

density estimation taking all kernels at leaf level into account.

Each possible frontier represents a possible model for the anytime algo-

rithm. The number of possible models in any Bayes tree depends on the

actual status of the tree, i.e. the degree to which it is filled and the height

of the tree. For example, there are four possible models for a Bayes tree of

height two and fanout two (root, leaves, and two mixed models). For realis-

tic trees, with increasing height and fanout, the number of possible models

is exponential in the height and in the fanout.

Choosing among all these models is crucial for anytime algorithms, where

the available time (typically unknown a priori) should be spent such that the

most promising model information is used first. For tree traversal three basic

descent strategies are proposed to answer probability density queries on a

Bayes tree. Descent in a breadth first (bft) fashion refines each level com-

pletely before descending down to the next level. Alternatively, descending

the tree in a depth first (dft) manner refines a single subtree entirely down

to the actual kernel estimators before refining the next subtree below the

root. The choice of the subtree to refine is made according to a priority mea-

sure. The third approach, which is called global best first (glo), orders nodes

globally with respect to a priority measure and refines nodes in this ordering.

The priority measure in R-Trees, denoted as geometric, gives highest prior-

ity to the node with the smallest (Euclidean) distance based on its minimum

bounding rectangle.

In the Bayes tree, the focus is not on distances, but on density estimation.

The proposed probabilistic priority measure awards priority with respect to

the actual density value for the current query object based on the statistical

information stored in each node. More specifically, at time step t, having

read the prefix-closed set of nodes Nt, the probabilistic approach descends

at the next time step t+ 1 into the subtree Tŝ belonging to the entry eŝ with

eŝ = arg max
es∈F(Nt)

{
g(q, µes , σes) ·

ns
n

}
where q is the current query object and g is a Gaussian pdf as in Def. 2.3.

86 The Bayes Tree

In Section 4.3 all combinations between the three descent strategies and

the two priority measures are evaluated, where in the breadth first approach

the priority measure determines the order of nodes per level.

The described descent strategies work on a single Bayes tree; they refine

mixture models for just one class. In the following refinement with respect

to several classes L = {l1, . . . , l|L|} is discussed. The time for classification is

divided between several Bayes trees, one per class (cf. Section 4.2.2). The

question is, having read x nodes so far, i.e. being at time step tx, which of the

|L| trees should be granted the right to read the next node in the following

time step tx + 1?

Initially, the coarsest model for each class li is evaluated, which is the

model consisting of only one Gaussian probability density function repre-

senting all objects of li.

A naive improvement strategy chooses the classes in an arbitrary order

l1, . . . , l|L|. First, the class l1 is refined according to one of the above strate-

gies. In the next step, l2 is refined and so on. After |L| time steps all classes

have been refined and the Bayes tree of the first class is processed again. As

the classes are not sorted in any predefined way, this method is referred to

as unsorted.

Intuitively, it is very likely that for an object q the true class li shows a

high posterior probability independent of the time tli spent descending its

corresponding tree:

P (li|q) = pdq(q,F(Ntli)) · P (li)/p(q).

Consequently, a second strategy for improving classification is suggested

which only chooses the k classes having the highest a posteriori probabil-

ity. This technique stores these k classes in a priority queue (queue best k).

Assume the sorted priority queue contains the classes (li1 , . . . , lik). The next

node is read in the Bayes tree of class li1 and the probability model is updated

accordingly. If more time is permitted class li2 is refined and so on. After k

steps all k classes have been improved and the queue is filled again using the

new a posteriori probabilities. The influence of the parameter k is evaluated

in the experiment section. Setting k = 1, always the model of the most prob-

4.3. Experiments 87

able class is refined. For k = m (assuming m = |L| in the rest of this chapter)

all classes are refined in the order of their probability before the queue is

refilled. The approaches are referred to as qb1 and qbm, respectively, and

qbk in general.

One observation which is also known from hierarchical indexing is that

the root node often only contains a few entries. This free space is used for

storing the entries from different classes on the same page if it does not

exceed the page size. These new root pages are called the compressed root.
The total size of the compressed root varies since the number of root entries

in a single Bayes tree varies as in all index structures. Clearly, the total size

also grows linearly in the number of dimensions and the number of classes.

4.3 Experiments

The experiments are performed on real world and synthetic data and evalu-

ate the Bayes tree for both anytime classification and anytime learning. Table

4.1 summarizes the data sets and their characteristics. The synthetic data

sets were generated using a random Gaussian mixture model as in [HTF02].

A small data set containing 4 dimensions, 2 classes and eleven thousand

objects and one large data set containing 5 dimensions, 3 classes and one

million objects are tested. Furthermore, real world data of various charac-

teristics is tested which is taken from different sources such as the UCI KDD

archive [HB99].

All experiments were performed using 4 fold cross validation. To evaluate

the anytime performance the accuracy (averaged over the four folds) is re-

ported after each node that is read (corresponding to one page). The first ac-

curacy value corresponds to the classification accuracy of the unimodal Bayes

classifier that is used as an initialization before reading the compressed root

(cf. Section 4.3.1). Experiments were run using 2KB page sizes (except 4KB

for Verbmobil and 8KB for the USPS data set) on Pentium 4 machines with

2.4 Ghz and 1 GB main memory. The bandwidth for the kernel estimators is

set using a common method according to [Sil86].

88 The Bayes Tree

name size classes features ref.

Synthetic (11K) 11000 2 4
Synthetic (1M) 1000000 3 5
Vowel 990 11 10 [HB99]
USPS 8772 10 39 [HTF08]
Pendigits 10992 10 16 [HB99]
Letter 20000 26 16 [HB99]
Gender 189961 2 9 [AS04]
Covtype 581012 7 10 [HB99]
Verbmobil 647585 5 32 [Wah00]

Table 4.1: Data sets used in the experiments.

The following first evaluates the descent strategies along with the priority

measures introduced in Section 4.2.3. In Section 4.3.2 the various improve-

ment strategies are analyzed to find that none of the three simple approaches

leads to competitive results. After that a novel evaluation method is intro-

duced for anytime classifiers on Poisson streams in Section 4.3.3. Finally

the anytime learning performance of the Bayes tree is demonstrated for both

anytime accuracy and stream accuracy.

4.3.1 Descent strategies

For tree traversal depth first (dft), breadth first (bft) and global best first

(glo) strategies are evaluated. Combined with both the geometric (geom)

and probabilistic (prob) priority measure six approaches are compared for

model refinement in a Bayes tree. Figure 4.4 shows the results for all six ap-

proaches on the small and on the large synthetic data set using the unsorted
improvement strategy. After 5 pages on the small synthetic data set the local-

ity assumption of the depth first approach fails to identify the most relevant

refinements for both geometric and probabilistic priority. For the large syn-

thetic data set the accuracy even decreases after 17 pages. The processing

strategy of the breadth first approach causes the classification accuracy to

only increase if a next level of the tree is reached.

4.3. Experiments 89

1

Synthetic 11K, descent strategies

0 9

0,95
y

prob_glo_unsorted

0,85

0,9

cc
ur
ac
y

prob_bft_unsorted

prob_dft_unsorted

l t d

0,75

0,8ac geom_glo_unsorted

geom_bft_unsorted

geom_dft_unsorted

0,7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

g _ _

pages0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 pages

0,6

0,7

0,8

0,9

cc
ur
ac
y

Synthetic 1M, descent strategies

prob_glo_unsorted

prob_bft_unsorted

prob_dft_unsorted

eom lo nsorted

0,3

0,4

0,5

0 5 10 15 20 25 30 35 40 45

ac geom_glo_unsorted

geom_bft_unsorted

geom_dft_unsorted

pages

Figure 4.4: Comparing descent strategies along with priority measures on
synthetic data.

The results suggest that the performance of the different descent strate-

gies is independent of the employed improvement strategy (i.e. unsorted or

qbk). As an example for the independence of the improvement strategy Fig-

ure 4.5 shows the performance on the Gender data set using qbm. The glo
descent strategy with probabilistic priority measure shows the overall best

anytime classification accuracy for all data sets. Further experiments use the

global best first descent and the probabilistic priority measure.

4.3.2 Improvement strategies

First the improvement strategies unsorted, qb1 and qbm are tested on all

seven real world data sets from Table 4.1. Besides that qb3 is used for the

first evaluation (setting k to 3, 2 for Gender, respectively) as it can be seen

90 The Bayes Tree

0,78

Gender, descent strategies

0,74

0,76

prob_glo_qbm

0,7

0,72

cc
ur
ac
y

p _g _q

prob_bft_qbm

prob_dft_qbm

0 66

0,68

0,7

ac geom_glo_qbm

geom_bft_qbm

geom dft qbm

0,64

0,66

0 5 10 15 20 25 30 35 40 45

geom_dft_qbm

0 5 10 15 20 25 30 35 40 45 pages

Figure 4.5: Comparing descent strategies along with priority measures on
the Gender data set.

as corresponding to ”some relevant candidates”. (A thorough evaluation of

various values for k follows later in this section.)

The results from Pendigits and Covtype as represent the two sorts of out-

come that were found when analyzing the results (cf. Figures 4.6 and 4.7).

The naive approach, i.e. the unsorted improvement strategy, does not provide

a competitive solution (third rank on Pendigits and last rank on Covtype).

However, after reading the entire compressed root this approach has read

the same information as qbm. This can best be seen on the results for Cov-

type. After four page accesses the compressed root is read and both strategies

deliver the same classification accuracy. From then on, their accuracy is the

same after every seven steps, i.e. 11, 18, 25, . . . since Covtype has seven

classes. The graph for Pendigits does not show this behavior in such a clear

fashion. This is due to the averaging over the four folds. The compressed

root needs between seven and eight pages within each fold. Therefore the

accuracy for unsorted and qbm is similar after seven to eight steps, yet not

equal. This similarity occurs every ten steps from then on, since Pendigits

has ten classes.

Regarding the other improvement strategies, one could expect that qb1,

i.e. refining only the most probable class, delivers the best results, because it

either strengthens the current decision by increasing the probability for the

correct class or corrects the decision by decreasing the probability in case

4.3. Experiments 91

0,98

Pendigits, improvement strategies

0,94

0,96

0 9

0,92

cu
ra
cy prob_glo_qb3

prob_glo_qbm

0,88

0,9

ac
c

prob_glo_unsorted

prob_glo_qb1

0,84

0,86

0 5 10 15 20 25 30 35 40 45 pagespagespages

Figure 4.6: Comparing improvement strategies on Pendigits.

0,66

0,68

0,7

0,72

cu
ra
cy

Covtype, improvement strategies

prob_glo_qb3

prob_glo_qb1

0,6

0,62

0,64

0 5 10 15 20 25 30 35 40 45

ac
c

prob_glo_qbm

prob_glo_unsorted

pages

Figure 4.7: Comparing improvement strategies on Covtype.

a false class has currently the highest density. On Covtype qb1 outperforms

the qbm and unsorted strategies, but on Pendigits it performs way worse then

both of them. Opposite success and failure would befall those in favor for

qbm.

The results on Verbmobil and Gender were similar to those on Pendigits,

i.e. qb1 performed way worse than all other strategies. On the other hand,

similar to the Covtype results, qb1 performed better than qbm and unsorted
on Letter and USPS. On all datasets all of the three strategies discussed above

were clearly outperformed by the qb3 approach.

These results prove that anytime density estimation does not extend in a

naive or straightforward way to anytime classification with competitive re-

92 The Bayes Tree

0,75

0,8

0,85
cy

Letter, variation of k

prob_glo_qb4

prob_glo_qb2

0,6

0,65

0,7

0 5 10 15 20 25 30 35 40 45

ac
cu
ra
c

prob_glo_qb6

prob_glo_qb8

prob_glo_qb10

prob_glo_qb1

prob_glo_qbm

pages

Figure 4.8: Variation of k on the Letter data set.

35,022

37,174 37,212
36,591

35,922
35,36

33,61

Letter, Area

Figure 4.9: The area under the corresponding anytime curves in Figure 4.8.

sults. Moreover, the results pose the question, how the choice of k influences

the anytime classification performance. Figure 4.8 shows the comparison of

qb1, qbm and qbk for k ∈ {2, 4, 6, 8, 10} on the Letter data set. As stated

above, qb1 performs better than qbm on this data set.

The accuracy of the qbm strategy in Figure 4.8 initially increases steeply

in the first three to four steps. It is clearly visible that the compressed root

needs on average 19 pages for the 26 classes (recall the 4 fold cross valida-

tion). After the compressed root is read, the accuracy of the qbm strategy

again steeply increases for the next four to five steps. A similar increase can

be observed 26 steps later when all classes have been refined once more.

4.3. Experiments 93

46 845
46,907 46,889

Vowel, Area

46,845 46,81
46,74

46,66

46 554

46,406

46,554
46,458

46,344

46,227

32,919

33,826

33,247

32,778

32,368

32,076

Covtype, Area

,
31,84

Figure 4.10: Area values for k ∈ {1 . . .m} for Vowel (left) and Covtype
(right).

Opposed to those three strong improvements are the rest of the steps, during

which the accuracy hardly changes at all. For this data set we derive from

Figure 4.8 that for an object to be classified there are on average five classes

that are worth considering, the other 21 classes can be excluded.

The qb10 strategy needs seven to eight pages to read the root information

for the top ten classes from the compressed root. These steps show the same

accuracy as the qbm approach, since the ordering according to the priority

measure is equal. After that a similar pattern can be observed each ten steps,

i.e. after reordering according to the novel density values.

Continuing with the qb8 variant, the ”ramps” (steep improvements) move

even closer together and begin earlier. Similar improvement gains are shown

by qb6 and qb4. An even smaller k (k = 2 in Figure 4.8) does no longer

improve the overall anytime accuracy and qb1 shows an even worse perfor-

mance than qb10.

For an easier comparison of the qbk performance when varying k, the area

under the anytime curve is calculated for each k yielding a single number for

each value of k. Since qbk curves mostly ascend monotonically, a larger area

is an indication for a better anytime performance. Figure 4.9 shows the area

values corresponding to the anytime curves in Figure 4.8. As in the above

analysis qb4 turns out to perform best according to this measure.

Evaluating qbk for k ∈ {1 . . .m} on all data sets showed the same charac-

teristic results. Figure 4.10 displays the results for Vowel and Covtype. The

94 The Bayes Tree

results show that the maximum value is always between k = 2 and k = 4 on

the data sets tested. Moreover, with an increasing number of classes, the k

value for the best performance also increased, yet only slightly. An exception

is the Gender data set, where k = m = 2 showed the best performance. This

is due to the bad performance of qb1, therefore k is set to be at least 2. To de-

velop a heuristic for the value of k experiments were performed on different

data sets having different number of classes. It turned out that a good choice

for k is logarithmic in the number of classes, i.e. k = blog2(m)c. Using this

heuristic met the maximal performance for all the evaluations. Yet the mini-

mum value for k is set to 2 as mentioned above. This improvement strategy

is used in all further experiments along with the best descent strategy from

Section 4.3.1.

4.3.3 Evaluating anytime classification

using Poisson streams

So far we determined the best strategy for descending a Bayes tree to refine

the density model and evaluated the proposed improvement strategies. Next

a novel evaluation method is introduced for anytime classifiers using Pois-

son streams. Finally the anytime learning performance of the Bayes tree is

demonstrated on various data streams.

To evaluate anytime classification under variable stream scenarios, the

proposed evaluation method recapitulates a stochastic model that is widely

used to model random arrivals [DHS01]. A Poisson process describes streams

where the inter-arrival times are independently exponentially distributed.

Poisson processes are parameterized by an arrival rate parameter λ:

Definition 4.8 Poisson stream. A probability density function for the inter-
arrival time of a Poisson process is exponentially distributed with parameter λ
by p(t) = λ·e−λt. The expected inter-arrival time of an exponentially distributed
random variable with parameter λ is E[t] = 1

λ
.

A Poisson process is used to model random stream arrivals for each fold

of the cross validation. The method randomly generates exponentially dis-

4.3. Experiments 95

0 88

0,90

0,92

0,94

0,96

Stream accuracy

0,80

0,82

0,84

0,86

0,88

0,50 0,10 0,05

Pendigits

USPS

λ

0,80

Stream accuracy

0,70

0,75

0 55

0,60

0,65

Synth 1M

0 45

0,50

0,55
y

Covtype

Verbmobil

0 35

0,40

0,45

0,30

0,35

0,50 0,10 0,05 λ, , , λ

Figure 4.11: Stream classification accuracy using Poisson processes for data
set Pendigits and USPS (left) and Synthetic 1M, Covtype and Verbmobil
(right).

tributed inter-arrival times for different values of λ. If a new object arrives

(the time between two objects has passed) the anytime classifier is inter-

rupted and its accuracy is measured. This experiment is repeated using dif-

ferent expected inter-arrival times 1
λ
, where a unit corresponds to a page as

in all previous experiments. It is assumed that any object arrives at the ear-

liest after the initialization phase of the previous object, i.e. after evaluating

the unimodal Bayes.

Figure 4.11 shows the results for the stream classification accuracy as

described above for different values of λ on Pendigits, USPS, Covtype, Verb-

mobil and the large synthetic data set. All data sets show an improvement

of accuracy as the expected inter-arrival time 1/λ increases and arrival times

are distributed following a Poisson process. This is an excellent feature that

contrasts anytime classifiers from budget or contract classifiers. Budget clas-

sifiers would be forced to use a time budget that is small enough to guarantee

the processing of all arriving objects which would clearly result in worse per-

formance. Moreover, evaluating anytime classifiers using Poisson processes

yields a single accuracy value for each λ making it very easy to compare

performance on different underlying streams.

4.3.4 Incremental learning

Incremental learning in stream classification applications originates from la-

beled objects that newly arrive in the data stream. If the Bayes tree started

96 The Bayes Tree

0,7

0,72

0,74

0,76

0,78

cc
ur
ac
y

Gender, incremental learning (anytime accuracy)

train 100%

train 75%

0,64

0,66

0,68

0 5 10 15 20 25 30 35 40 45

ac train 50%

pages

Figure 4.12: Incremental learning on Gender.

learning/inserting a new object, it always finishes the insertion for that ob-

ject; no roll back will be performed. However, if the average inter-arrival

time between two object is smaller than the time necessary for learning

an additional object, the classifier cannot process all labeled objects online.

Hence, the resulting classifier is based on a varying amount of training data

depending on the stream speed, i.e. λ as in Definition 4.8. To evaluate the

incremental learning performance of the Bayes tree different λ values are

tested such that the classifier is only able to process a certain percentage of

the training data. The results for 50%, 75% and 100% are reported in the

following. First the anytime classification accuracy for the three classifiers is

evaluated. To be able to compare the results, the classifiers classify each the

same stream of test objects. As above the results are averages over 4 folds.

Figure 4.12 shows the resulting anytime accuracy of the three incremen-

tal learning classifiers on the Gender data set. Even the classifier trained

on the fastest stream (train 50%) shows a good performance. On slower

streams, the Bayes tree can exploit its incremental learning property and

learn more objects before the training phase is over. The resulting anytime

accuracy (train 75%) lies constantly above train 50% from page three on-

wards. The Bayes tree that was trained on the slowest stream (train 100%)

performs consistently better then both the others, again highlighting the ben-

efit of the incremental learning property.

4.3. Experiments 97

1

Vowel, incremental learning (stream accuracy)

0,9

0 7

0,8

train 50%

0,6

0,7
train 75%

train 100%

0,5

0,4

0,50 0,20 0,10 0,05 λ, , , , λ

Figure 4.13: Incremental learning on Vowel.

0,7

Covtype, incremental learning (stream accuracy)

0,65

0 55

0,6

train 50%

0,5

0,55
train 75%

train 100%

0,45

0,4

0,50 0,20 0,10 0,05 λ, , , , λ

Figure 4.14: Incremental learning on Covtype.

Finally the incrementally trained Bayes trees are evaluated on Poisson

streams for various λ. Figures 4.13 and 4.14 show the resulting stream accu-

racy values for Vowel and Covtype respectively. Again the same underlying

stream data is used during classification to be able to compare the results.

The anytime learning performance can be seen within each group of three

bars, where immediate comparison of the classifiers is possible through the

Poisson stream evaluation. For all of the evaluated λ values and data set the

classifiers trained on slower streams perform better. Moreover, with smaller

λ values during classification, the stream accuracy of each individual Bayes

tree improves.

98 The Bayes Tree

The evaluation shows that the Bayes tree efficiently supports incremental

learning as well as anytime classification. Moreover, the underlying index

structure ensures the ability to handle very large data sets as in the case of

streaming data.

4.4 Conclusion

In this chapter a novel index-based classifier was proposed called Bayes tree.

It supports anytime learning and anytime classification and can handle huge

amounts of data, which makes it a consistent solution for classification on

fast data streams. The Bayes tree constitutes a hierarchy of mixture densities

that represent kernel estimators at successively coarser levels. The proposed

probability density queries adapt the employed mixtures efficiently to the in-

dividual object to be classified. The time complexitiy of the r-th refinement is

in O(log2
2(r ·M)), where M is the maximal fanout. Together with novel clas-

sification improvement strategies this allows for very effective classification

at any point of interruption. Moreover, the anytime learning performance of

the proposed classifier was demonstrated and a novel evaluation method for

anytime classification was investigated using Poisson streams.

The following three chapters concentrate on improving the Bayes tree

by different offline learning methods. The applicability to evolving data

streams with changing distributions and new labeled data is given by com-

bining the classifier with general approaches such as [WFYH03] as discussed

in Chapter 3.

Chapter 5

The MC-Tree

∗ In this Chapter an approach to Bayesian anytime classification is presented

that is called MC-Tree. As the Bayes tree it can provide a very fast first result

after evaluating just one Gaussian normal distribution per class at the root

level and it can improve the classification accuracy as long as time permits by

refining its current model incrementally. On the finest level a kernel density

estimator is evaluated for each object in the training set. In between, the

MC-Tree stores a hierarchy of mixture models that allows effective and query

adaptive anytime density estimation.

In contrast to the Bayes tree the mixture components contain objects from

several (potentially all) classes. A top down approach for the tree construc-

tion is proposed and data transformations are used that take both the local-

ity of the data and the class distribution into account. The proposed descent

strategies, which exploit the entropy information available through the MC-

Tree, achieve parallel model refinement for several classes. The experiments

confirm the effectiveness of the MC-Tree and show significant improvements

over previous approaches in terms of anytime classification accuracy.

∗This chapter has been published in the Proceedings of the 22nd International Confer-
ence on Scientific and Statistical Database Management (SSDBM 2010) [KGFS10].

99

100 The MC-Tree

5.1 Combining Multiple Classes

In the following, firstly the structural differences of the MC-Tree and the

novel construction approach are described in Section 5.1.1. The classification

process with respect to the multi-class structure is presented in Section 5.1.2,

classification refinement is discussed in Section 5.1.3.

5.1.1 Tree structure and construction

As in the Bayes tree the general idea of the Multi-Class Tree (MC-Tree) is to

store a hierarchy of mixture densities. Figure 5.1 shows an MC-tree structure

with three levels. The root node of the tree consists of two entries and repre-

sents the coarsest data model. The gray Gaussians in these entries represent

the aggregated statistical information of the points in the subtrees. They

are constructed from the Gaussians in the level below. For better illustra-

tion these lower-level components are shown once again in the entries of the

root node but are actually not stored twice. The Gaussians of the first level

on their part are constructed from kernel based Gaussian components in the

leaves. As one can see at the left most entry in level 1, the MC-Tree permits

to represent objects from different classes (A and B) in one Gaussian com-

ponent. This is beneficial if the spatial similarity of the underlying objects is

high and thus the model remains compact. Gaussians that comprise objects

from several classes are represented by dotted lines in the figure. Further-

more, unbalanced MC-Trees are possible. If an area of the data space needs a

more detailed representation, paths can become longer than for other areas.

Two types of entries are developed and analyzed for the MC-Tree. The

first version separately stores the necessary information for calculating the

mean and variance for each class contained in an entry. Thus if O(e, l) is

the set of objects from class l in the entry e we can derive the corresponding

Gaussian. Furthermore we can calculate the mean and variance of the overall

entry independent of the class information.

Definition 5.1 MC-Tree node entry (type A). Let O(e) be the objects that are
represented by an entry e of the MC-Tree and O(e, l) ⊆ O(e) the objects belong-
ing to class l ∈ L. An entry e of type A then stores the following information:

5.1. Combining Multiple Classes 101

kernel
level

level 1

root

class A class Bclass A

Figure 5.1: Example of an MC-Tree. Gaussian components of an entry may
represents entities from various classes.

• A pointer to its subnode Sube

• For each class l ∈ L a cluster feature CFl = (ne,l, LSe,l, SSe,l) representing
the objects O(e, l)

The algebraic measures mean and variance can be calculated out of the

linear and squared sums (cf. Equations 3.1 and 3.2). Accordingly, we can

calculate these values for the overall entry.

The second approach uses a technique known as variance pooling. In-

stead of storing the squared sums for each class, only the squared sums of

all objects is stored in the entry. By this we assume for all classes the same

variance within the entry, but we use less space. The linear sum, the number

of objects and hence the mean are still used for each class on its own.

Definition 5.2 MC-Tree node entry (type B). An entry e of type B stores the
following information:

• A pointer to its subnode Sube (set of entries)

• For each class l ∈ L a the number ne,l = |O(e, l)| of objects and the vector
LSe,l of their linear sums per dimension

• The squared sum SSe for all objects O(e)

102 The MC-Tree

An inner node of the MC-Tree is a set of the beforehand introduced en-

tries. As in Chapter 4 a leaf node of the tree contains a set of kernels. The

overall definition of the MC-Tree is:

Definition 5.3 MC-Tree. Let O be a set of objects. An MC-Tree with fanout u
is a tree with the following properties:

• each inner node contains maximally u entries (type A or B)

• each leaf node contains maximally u kernels

• the objects O(e) represented by an entry e correspond to the objects of its
subnode Sube, i.e. O(e) =

⋃
ei∈Sube O(ei)

• the entries of a single node N represent disjoint object sets, i.e. ∀ei, ej ∈
N : O(ei) ∩O(ej) = ∅

• the root-node R represents the whole database, i.e.
⋃
ei∈RO(ei) = O

Tree construction. With the definition of the tree structure we know how

to represent a certain subset of objects. In the next step we must determine

which objects should be grouped together to achieve a high classification

accuracy based on the MC-Tree. The proposed method uses a top-down ap-

proach to divide the whole data set O in smaller subsets Oi. For each subset

one entry ei is constructed that represents the objects Oi. All the entries to-

gether represent an inner node of the MC-Tree. The subsets are recursively

divided in smaller subsets and hence further inner nodes are constructed

until the kernel level is reached.

For dividing a set of objects in reasonable subsets the EM clustering algo-

rithm [Lau95] (cf. Chapter 2) is employed. The EM algorithm tries to rep-

resent objects with the best possible Gaussians. Because both approaches,

the MC-Tree and the EM algorithm, use Gaussians to describe the data, the

clustering results of EM are well suited for the index construction. Other

methods like the density-based clustering DBSCAN [EKSX96] optimize dif-

ferent criteria to obtain the clusters. Thus, a subsequent description of these

clusters by Gaussians in the MC-Tree may result in poor results. The number

5.1. Combining Multiple Classes 103

of clusters used in the EM algorithm determines the fanout of the MC-Tree

(explicit fanouts are provided in Section 5.2).

Using this clustering method, the MC-Tree possibly mixes several classes

in one entry and can achieve compact representations of the data. How-

ever, very impure clusters with respect to their class labels could result in

low classification accuracy even if the underlying objects show a similar spa-

tial relationship. In an impure cluster we cannot discriminate between the

classes and thus a precise class prediction is difficult. Hence it is preferable

to find pure clusters with respect to their class labels if they also show good

spatial compactness/similarity. The MC-Tree must seek a trade-off between

pure entries with respect to the class labels and compact spatial clusters.

The EM algorithm does not consider the classes in the clustering process.

It simply processes all objects neglecting their labels and hence pure clusters

cannot be expected. To take care of this fact, objects from the same class must

be considered as more similar than objects from different classes. Hence,

a new distance function is used that combines the spatial similarity of the

objects and their class similarity:

dδ(x, y) =

δ · d(x− y) if class(x) 6= class(y)

d(x− y) else

where d(x − y) is the Euclidean distance between the objects x and y and

δ > 1. However, EM cannot work on arbitrary distance functions and requires

a vector space.

The proposed approach transforms the data space such that the class in-

formation is reflected by the spatial similarity and the Euclidean distance

between x and y in the new space is approximately the value dδ(x, y). As

an advantage, we still have a vector space on which EM can work and we

implicitly use the class information at the same time.

The proposed method makes use of multi-dimensional scaling (MDS

[dL77]) to transform the data space. MDS is a non-linear transformation

technique for representing or visualizing objects in any d-dimensional vector

space. Often MDS is used to arrange and display objects with higher di-

104 The MC-Tree

x x

x

MDS

ba
ck

tra
ns
fo
rm
at
io
n

(a) Transformation for better cluster detection; Gaussians in original space

original data space

1st MDS
+ clustering

2nd MDS
+ clustering

recursive MDS

non-recursive MDS

clu
ste

rin
g

(b) Recursive vs. non-recursive MDS

Figure 5.2: Multidimensional scaling (MDS) for class discrimination.

mensional features on a 2d screen. Given the original distances between the

objects, MDS iteratively tries to find a mapping into the new d-dimensional

space such that the distances are represented best possible. The method pro-

posed here does not transform the objects to a lower-dimensional space but

uses the same dimensionality as in the original space. It only changes the

original distances to dδ(x, y) before applying MDS. The initial coordinates

which are used for the MDS algorithm are the original coordinates of the

objects. By this most of the original spatial structure is preserved and is

incorporated adjustments made by the MDS algorithm according to dδ.

In Figure 5.2(a) (left) we see an example where two classes (squares/

circles) are mixed together in the 1d space. Its not possible for the EM to

identify pure clusters, i.e. both clusters contain squares and circles. The

clusters are marked in red and blue, respectively. After a transformation

5.1. Combining Multiple Classes 105

with δ > 1 the situation in the middle is obtained, for which EM yields the

two marked clusters. Keep in mind that the transformation is only performed

for the detection of clusters, i.e. which subsets should be grouped together.

The Gaussians of the corresponding entries in the MC-Tree are still calculated

in the original space. The resulting clusters/entries are presented in Figure

5.2(a) (right). Both clusters represent only objects from one class. Hence,

Gaussians could overlap in the original space if by this we achieve purer

clusters.

The proposed MDS technique is not only employed once at the beginning

of the tree construction, but recursively for each subtree. By application of

MDS only for a subset of objects a better discrimination of the classes in

further steps is possible. An example is depicted in Figure 5.2(b), where it is

not possible to separate all objects from class 1 to those from class 2 with the

first transformation. If MDS is not performed recursively (right upper case)

the clusters are still impure. However, if MDS is applied on the remaining

smaller subset (right lower case), we can further discriminate the classes.

With this recursive application Gaussians which represent only objects from

one class are more likely to occur already in higher levels of the MC-Tree.

With the proposed method we can generate clusters and thus entries

which account for the trade-off between compact spatial representations and

pure cluster with respect to the class labels.

5.1.2 Classification

Given the MC-Tree we are able to perform classification of objects with un-

known labels based on the mixture of densities. Two steps are distinguished

in the classification process which are alternately performed. First, given a

mixture model (a set of entries in the MC-Tree), we must determine the pos-

terior probability of the contained classes w.r.t. the current object. Second,

to realize the anytime property, in each step the mixture must be refined to

receive a more fine-grained model. To this end an entry is replaced with the

entries in its subtree. In the following the first step is discussed, the second

step is detailed in Section 5.1.3.

106 The MC-Tree

class A class Bclass A

root

level 1

kernel
level

Figure 5.3: Example of a frontier. The gray entries contribute to the current
mixture model for the density estimation and can be refined in further steps.

An example MC-Tree frontier is demonstrated in Figure 5.3. Given the

frontier we can calculate the density of an object with respect to one class.

Keep in mind that the MC-Tree can store objects from different classes in one

entry. Hence, given an entry the algorithm must only use the class-specific

information.

Definition 5.4 Probability density query (pdq) in MC-Tree. Given a frontier
F = {e1, . . . , er} and a class l. Let ne,l be the number of objects from class l in
the entry e, then the pdq returns the density of an object x with respect to l and
F , i.e.

pdq(x|l,F) =
∑
e∈F

ne,l
|O|
· g(x, µe,l, σe,l)

where µe,l and σe,l are calculated based on the stored information within the
entries (cf. Def. 5.1 or Def. 5.2).

This is a weighted mixture of densities according to distribution of num-

ber of objects from the current class. For the leaf entries a kernel estimator

is used. The two different types of entries also yield two versions of the pdq.

Let nli be the total number of objects from class li and let the a priori

probability P (li) be estimated from the training data as the relative frequency

5.1. Combining Multiple Classes 107

of each class. Then it holds:

pdq(x|li,F) =
∑
e∈F

ne,li
|O|
· g(x, µe,li , σe,li)

=
nli
|O|
·
∑
e∈F

ne,li
nli
· g(x, µe,li , σe,li)

= P (li) · p(x|li)

The term p(x|li) is a valid probability density function because the weights

associated to the Gaussians sum up to 1. With the MC-Tree the class-specific

weighting P (li) is directly integrated in the pdq. According to Bayes classifi-

cation the class label assigned to an object can then be calculated as

arg max
li∈L

{P (li) · p(x|li)} = arg max
li∈L

{pdq(x|li,F)}

5.1.3 Refinement

Given a frontier F the algorithm can guess the class of a new object. For any-

time processing a chain of such frontiers must be generated, starting with the

coarsest model from the root and down to the leaf nodes. In each step one

entry e ∈ F is replaced with the entries in the subnode of e. This refinement

of the underlying spatial data distribution corresponds to a refinement of the

probability density query pdq.

Definition 5.5 Anytime pdq processing in MC-Tree. Given a frontier Fi. Let
e ∈ Fi and {e1, . . . , em} the entries of the subnode of e. The MC-tree algorithm
refines Fi to Fi+1 by removing e and inserting the child entries:

Fi+1 = (Fi \ {e}) ∪ {e1, . . . , em}

The pdq of an object x with respect to a class l and the new frontier Fi+1 is

108 The MC-Tree

calculated by:

pdq(x|l,Fi+1) = pdq(x|l,Fi) −
ne,l
|O|
· g(x, µe,l, σe,c)

+
m∑
i=1

nei,l
|O|
· g(x, µei,l, σei,l)

As in the Bayes tree, from each time step i to i + 1 the algorithm must

decide which e ∈ Fi should be replaced. This decision is important for the

performance in terms of anytime classification. If an entry with low informa-

tion with respect to the current query is refined, the classification result may

change only slightly. The time could better be spend for an improvement

with more useful entries. In the following different strategies for choosing

the next entry are presented.

Quality measure. During anytime processing the model is refined indi-

vidually based on the current object to be classified. The classification is

based on densities. A high density increases the probability of a class be-

ing selected. Hence a first approach, as presented in Chapter 4, is to refine

the entry e ∈ F with the highest density. Doing this in the MC-Tree is not

straightforward. Each entry subsumes several classes and densities of each

class could vary. The question is, how to decide which entry is the best for

refinement without favoring single classes. To make a fair selection, the den-

sity resulting from all objects is used disregarding their class labels. The next

entry to refine is defined by

argmax
e∈F

{
ne
|O|
· g(x, µe, σe)

}
with the mean µe, variance σe and number of objects ne based on all objects

in the entry e.

Similar to the tree construction this first approach only considers the spa-

tial distribution of the data. During construction we considered the trade-off

between pure clusters with respect to their class labels and the spatial simi-

larity of the objects. A similar trade-off can also be defined for the refinement

5.1. Combining Multiple Classes 109

method. Consider an entry e with several classes that splits up into complete

pure clusters in its subnode, i.e. each sub-entry of e contains only objects

from one class. Refining e yields a clear decision in the following steps and

hence the accuracy could increase. This entry e should be preferred to an

entry whose sub-entries are still impure. Using this intuition requires a mea-

sure that assesses the skew of the class label distribution in an entry and the

possible gain if it is refined.

The MC-tree algorithm uses the well known information gain that is also

used for decision trees (cf. Chapter 2). The information gain for an entry e

with sub-entries {e1, . . . , em} is defined as:

IG(e) = Ent(e)−
m∑
i=1

nei
ne
· Ent(ei)

where Ent(e) measures the entropy of the class label distribution in e:

Ent(e) =
∑
l∈L

(
−ne,l
ne
· log

(
ne,l
ne

))

The information gain measures the reduction of the entropy when e is re-

fined; this corresponds to the reduction of the class label skew. This informa-

tion can be calculated before the query processing, because it is independent

of the actual query object x.

The higher the information gain the better is the refinement of e with re-

spect to the class purity. The higher the beforehand defined density measure

the better is the refinement of e with respect to the spatial similarity. Both

measures are important for the MC-Tree; the trade-off is realized by building

a linear combination of these terms for the proposed quality measure.

Definition 5.6 Refinement quality of an entry. Given a query object x and a
frontier F , the refinement quality of an entry e ∈ F with respect to x and F is
defined as:

qualityα(e, x) = α · IG(e)

log |L|
+ (1− α) · ne · g(x, µe, σe)

maxw∈F nw · g(x, µw, σw)

110 The MC-Tree

Both measures are normalized to [0, 1]. The information gain is at most log |L|
if L is the set of all possible classes in the database. The user can control the

influence of both measures by changing α.

Meta strategies. Formally the quality measure defines a ranking of the en-

tries in the current frontier. To perform the refinement step the MC-tree

algorithm selects the first entry out of this ranking:

arg max
e∈F

{qualityα(e, x)}

Afterwards the ranking is adapted based on the newly inserted entries and

the next best entry can be selected after updating the pdq. This method is

referred to as first-best, since in each step the best entry is refined.

One possible problem of this approach is that only a small local area

around the query object is refined. The algorithm can stick to one path of

refined entries, while other entries with a possibly strong influence on the

query are not refined. This problem is related to greedy algorithms which

choose at each step the best local solution and can run into local optima

not resulting in a global optimal solution. To avoid this two further meta

strategies are presented for the selection of entries.

The k-best method is a direct extension of first-best. Instead of choosing

the best entry this strategy marks the k best entries in the current frontier.

While there are marked entries in the frontier the best out of these is selected

to perform the refinement. Other non-marked entries are ignored even if

they show better quality values. Only when all marked entries are processed

for refinement, all entries in the frontier are considered again for marking the

k currently best ones based on their quality measures. This method widens

the search space because a currently second best entry is refined and can

advance to a top choice for the following steps. Setting k = 1 yields the

first-best method.

The k-best method simply chooses the k best entries based on their qual-

ity measures. The method does not consider the classes within the entries

which is an important characteristic of the MC-Tree. Hence for k-best it is

possible to select k entries all belonging to one class. This single class is fa-

5.2. Experiments 111

vored in the classification process and all remaining classes are neglected. If

the true class of the query object belongs to one of the neglected classes it is

unlikely to reach a correct classification. Therefore the last proposed method

tries to consider all classes equally within the refinement steps: in k succes-

sive refinement steps it favors k different classes. Similar to k-best the k best

entries are marked with respect to the quality measure and the additional

constraint that the strongest represented class of each marked entry is differ-

ent among the k entries. This method is similar to the qbk heuristic, which

yielded the best results in Chapter 4. Formally, for each class li that entry

is selected which yields the highest quality and for which li is the strongest

representative:

e∗li = arg max
e∈F

{qualityα(e, x) | li = arg max
l∈L

{ne,l}}

Out of the set {e∗li}li∈L the k best entries are marked for the next refinement

steps. The strongest represented class of each entry can be calculated before

the actual query processing. This method, called k-class, accounts for differ-

ent classes in the refinement and hence the classification decision is more

likely to be changed to the correct class if it is underestimated so far.

5.2 Experiments

To evaluate the performance of the MC-Tree experiments are performed on

different real world data sets with varying dimensionality, cardinality and

number of classes (cf. Table 4.1). All experiments were run on Windows

machines with 3 GHz and 2 GB RAM using Java 6.0. Mostly we will use an

implementation invariant time measure (as used e.g. in [UXKL06]): in the

graphs the classification accuracy is reported over the number of Gaussians

that have been evaluated. When comparing against anytime nearest neigh-

bor [UXKL06], SVM [WF05] and C4.5 [WF05] the actual time is provided

on the x-axis. The goal in this chapter is to improve the accuracy of any-

time Bayesian classification rather than showing statistical evidence for the

superiority of one or the other classifier in different domains. 4-fold cross

112 The MC-Tree

0,78
0,8

0,82
0,84
0,86
0,88
0,9

ac
cu
ra
cy

Vowel, varying α

α = 0 0

0,7
0,72
0,74
0,76

0 10 20 30 40 50 60 70 80 90
Gaussians

α = 0.0
α = 0.45
α = 0.9

0 85y

Gender, varying δ

0,8

0,85

cc
ur
ac
y

0,75

0,8

ac

0,7

,

δ = ∞

0,65
δ = 5
δ = 2
δ 1

0,6

δ = 1

0 50 100 150 200 250 300 350 400 450 500
Gaussians

Figure 5.4: Left: Varying the influence of entropy during descent via the
parameter α. Right: Varying the penalty for MDS construction via the pa-
rameter δ.

validation was performed on the data sets and the accuracy values are the

corresponding averages. The tree structures are constructed once using all

training data of the current fold. For updates of the trees using additional

new training data one can employ the incremental insertion proposed in

Chapter 4 or adapt other split strategies. Since the focus is on the anytime

classification performance, these aspects are not studied here. In the next

section first the influence of the parameters on the anytime classification ac-

curacy of the MC-Tree are evaluated and in Section 5.2.2 the improvement

of anytime Bayesian classification over previous results from Chapter 4 is

shown.

5.2.1 MC-Tree parameter evaluation

To find a good parameter setting for the MC-Tree we start by evaluating the

influence of the entropy level during descent by varying the parameter α in

Figure 5.4 (left). The k-class strategy is used here, since it performed best

among all meta strategies in primary experiments. Also, zero penalty was

used for the MDS (δ = 1) and the classification decision is based on µe,c and

σe,c. The maximal number of entries in a node and hence the number of

clusters for the EM algorithm is set to the number of classes in the respective

data set.

We find a clear winner in the results indicating that α = 0 yields the best

5.2. Experiments 113

results. This means that the local density of the individual Gaussian com-

ponents in the frontier is sufficient to best determine the next entry for a

refinement. Discounting the importance of entries that yield a high probabil-

ity density with respect to the query object by promoting other entries due

to their higher entropy obviously delays beneficial model refinements and

reduces the anytime accuracy performance. Hence, in the following only the

entry’s probability density is used and α is set to zero.

In Figure 5.4 (right) the influence of the penalty for the construction

using MDS is shown on the Gender data set. The purple line corresponding

to δ = 1 (zero penalty) rises quickly to an accuracy of around 74%, but does

not improve it afterwards. Similar results were found for most data sets

when using the same parameter setting: steep increase early on and little

improvement in later stages.

Increasing the penalty through a higher δ yields continuous improvement

in terms of anytime accuracy. While the curve for δ = 1 shows better per-

formance for the first Gaussians that are read, the other settings can soon

improve the accuracy significantly. The tree build with δ =∞ penalty shows

an accuracy that is up to 9% higher for this data set. The superior perfor-

mance for this setting was confirmed on the other data sets. Moreover, the

stagnating behaviour disappeared throughout as will be shown in the next

section.

δ = ∞ constitutes a special case, since this transformation can be con-

sidered as dividing the database into subsets, such that all objects with the

same class label are in the same subset. Afterwards the clustering is per-

formed only on the separated classes. Hence we do not need the actual

transformation but can directly cluster in the original space on these subsets.

This special case is more similar to the Bayes tree, but the resulting hierarchy

is still very different due to the top down clustering instead of the balanced

R-tree split as in Chapter 4. We will see in the next section that the MC-tree

shows significantly better anytime accuracy.

As a consequence of the high penalty and the resulting tree structure, all

classification options provided by the different node types (cf. Def. 5.1 and

5.2) yield the same results and are therefore not displayed.

114 The MC-Tree

0 96
0,98

1

cc
ur
ac
y

pendigits: Anytime Classifier

0,979
0,963

Weka Classifier

0,88
0,9
0,92
0,94
0,96
0,98

1

ac
cu
ra
cy

pendigits: Anytime Classifier

MC‐Tree

0,979
0,963

Weka Classifier

0,8
0,82
0,84
0,86
0,88
0,9
0,92
0,94
0,96
0,98

1

0 2056 4112 6168 8224

ac
cu
ra
cy

pendigits: Anytime Classifier

MC‐Tree
Bayes tree
Anytime NN

0,979
0,963

SVM (SMO) C 4 5 (J48)

Weka Classifier

0,8
0,82
0,84
0,86
0,88
0,9
0,92
0,94
0,96
0,98

1

0 2056 4112 6168 8224

ac
cu
ra
cy

time [µs]

pendigits: Anytime Classifier

MC‐Tree
Bayes tree
Anytime NN

0,979
0,963

SVM (SMO) C 4.5 (J48)

Weka Classifier

letter: Anytime Classifier Weka Classifier
0,9

ra
cy

letter: Anytime Classifier

0 868

Weka Classifier

0 85

0,9

cu
ra
cy

letter: Anytime Classifier

0,868

Weka Classifier

0,85

0,9

ac
cu
ra
cy

letter: Anytime Classifier

0,818

0,868

Weka Classifier

0,8

0,85

0,9

ac
cu
ra
cy

letter: Anytime Classifier

0,818

0,868

Weka Classifier

0,8

0,85

0,9

ac
cu
ra
cy

letter: Anytime Classifier

0,818

0,868

Weka Classifier

0,75

0,8

0,85

0,9

ac
cu
ra
cy

letter: Anytime Classifier

0,818

0,868

Weka Classifier

0,7

0,75

0,8

0,85

0,9

ac
cu
ra
cy

letter: Anytime Classifier

MC‐Tree

0,818

0,868

Weka Classifier

0,7

0,75

0,8

0,85

0,9

ac
cu
ra
cy

letter: Anytime Classifier

MC‐Tree
Bayes tree

0,818

0,868

Weka Classifier

0,65

0,7

0,75

0,8

0,85

0,9

ac
cu
ra
cy

letter: Anytime Classifier

MC‐Tree
Bayes tree
A i NN

0,818

0,868

Weka Classifier

0,6

0,65

0,7

0,75

0,8

0,85

0,9

ac
cu
ra
cy

letter: Anytime Classifier

MC‐Tree
Bayes tree
Anytime NN

0,818

0,868

Weka Classifier

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0 2056 4112 6168 8224

ac
cu
ra
cy

letter: Anytime Classifier

MC‐Tree
Bayes tree
Anytime NN

0,818

0,868

SVM (SMO) C 4 5 (J48)

Weka Classifier

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0 2056 4112 6168 8224

ac
cu
ra
cy

i []

letter: Anytime Classifier

MC‐Tree
Bayes tree
Anytime NN

0,818

0,868

SVM (SMO) C 4.5 (J48)

Weka Classifier

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0 2056 4112 6168 8224

ac
cu
ra
cy

time [µs]

letter: Anytime Classifier

MC‐Tree
Bayes tree
Anytime NN

0,818

0,868

SVM (SMO) C 4.5 (J48)

Weka Classifier

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0 2056 4112 6168 8224

ac
cu
ra
cy

time [µs]

letter: Anytime Classifier

MC‐Tree
Bayes tree
Anytime NN

0,818

0,868

SVM (SMO) C 4.5 (J48)

Weka Classifier

Figure 5.5: Classification accuracy on pendigits (left) and letter (right) for
anytime classifiers and static classifier.

Gender: Anytime Classifier Weka Classifier
0,9

ra
cy

Gender: Anytime Classifier Weka Classifier

0 85

0,9

cc
ur
ac
y

Gender: Anytime Classifier Weka Classifier

0,85

0,9

ac
cu
ra
cy

Gender: Anytime Classifier

0,832

Weka Classifier

0,8

0,85

0,9

ac
cu
ra
cy

Gender: Anytime Classifier

0,832

Weka Classifier

0,8

0,85

0,9

ac
cu
ra
cy

Gender: Anytime Classifier

0,832

Weka Classifier

0,75

0,8

0,85

0,9

ac
cu
ra
cy

Gender: Anytime Classifier

0,832

Weka Classifier

0 7

0,75

0,8

0,85

0,9

ac
cu
ra
cy

Gender: Anytime Classifier

0,707

0,832

Weka Classifier

0,7

0,75

0,8

0,85

0,9

ac
cu
ra
cy

Gender: Anytime Classifier

MC‐Tree

0,707

0,832

Weka Classifier

0,65

0,7

0,75

0,8

0,85

0,9

ac
cu
ra
cy

Gender: Anytime Classifier

MC‐Tree
Bayes tree

0,707

0,832

Weka Classifier

0 6

0,65

0,7

0,75

0,8

0,85

0,9

ac
cu
ra
cy

Gender: Anytime Classifier

MC‐Tree
Bayes tree
Anytime NN

0,707

0,832

Weka Classifier

0,6

0,65

0,7

0,75

0,8

0,85

0,9

ac
cu
ra
cy

Gender: Anytime Classifier

MC‐Tree
Bayes tree
Anytime NN

0,707

0,832

Weka Classifier

0,6

0,65

0,7

0,75

0,8

0,85

0,9

ac
cu
ra
cy

Gender: Anytime Classifier

MC‐Tree
Bayes tree
Anytime NN

0,707

0,832

SVM (SMO) C 4.5 (J48)

Weka Classifier

0,6

0,65

0,7

0,75

0,8

0,85

0,9

ac
cu
ra
cy

time [µs]

Gender: Anytime Classifier

MC‐Tree
Bayes tree
Anytime NN

0,707

0,832

SVM (SMO) C 4.5 (J48)

Weka Classifier

0,6

0,65

0,7

0,75

0,8

0,85

0,9

ac
cu
ra
cy

time [µs]

Gender: Anytime Classifier

MC‐Tree
Bayes tree
Anytime NN

0,707

0,832

SVM (SMO) C 4.5 (J48)

Weka Classifier 0 9y
Forest Covertype

0,85

0,9
cc
ur
ac
y

0,8

ac

0 7

0,75

0,65

0,7 MC‐Tree
Bayes tree

0,6

Bayes tree

0 50 100 150 200 250 300 350 400 450 500
Gaussians

Figure 5.6: Classification accuracy on gender (left) and Forest Covertype
(right).

5.2.2 Comparison: Improvement of anytime Bayesian clas-

sification

Next the MC-Tree is compared to the Bayes tree. For the Bayes tree the

global best descent strategy and the qbk refinement strategy are used as they

yielded the best results (cf. Chapter 4). For the MC-Tree the fanout (the max-

imal number of entries per node) is set to the same amount as in the Bayes

tree where it is dictated through the page size. Eventually the results of both

approaches will be equal, i.e. if the entire leaf level has been read the de-

cision of both classifiers is based on the same model. However, the graphs

focus on the interesting part: the anytime performance in the beginning of

the classification process. On the right hand side of the Figures the corre-

sponding accuracy reached by the SVM and C4.5 implementation from Weka

[WF05] is reported. These methods do not constitute an anytime approach.

5.2. Experiments 115

Figure 5.5 (left) shows the results for the Pendigits data set. The Bayes

tree performs only slightly better than the anytime nearest neighbor in the

beginning before it falls behind. The MC-tree shows a steep increase in the

very beginning and outperforms the other two anytime classifiers through-

out. While the accuracy of the MC-tree is similar to the nearest neighbor

in later stages, it quickly shows a performance gain over the Bayes tree of

three to four percent accuracy. Support vector machine (SVM) and decision

tree (C4.5), which are considered very fast classifiers, perform well with

97.9% and 96.3% accuracy respectively. These approaches, however, cannot

improve their accuracy once they computed their result while the anytime

classifiers will use additional time for further computations.

Similar results can be seen for the letter data set in Figure 5.5 (right).

For this domain C4.5 (86.8%) performs better than the SVM (81.8%). The

results of the anytime NN and the Bayes tree are again similar, after a short

time the nearest neighbor bypasses the accuracy of the Bayes tree. The MC-

tree outperforms both approaches and reaches accuracy values which are up

to 13% higher as compared to the Bayes tree constituting a major perfor-

mance gain. Moreover, it soon reaches higher accuracy than both SVM and

C4.5.

On the gender data set (cf. Figure 5.6 (left)) the Bayes tree shows con-

stantly better performance than anytime NN. Once more, the MC-tree con-

stantly outperforms both approaches by roughly 6% compared to the Bayes

tree and 10% compared to anytime NN. As was the case for the letter data

set, the decision tree (83.2%) reaches higher accuracy than the support vec-

tor machine (70.7%). This performance is once again met by the MC-tree

after short time and additional time can be used for further improvement.

More importantly, as was the major goal, the new concepts of the MC-tree

prove to be effective through constantly better performance in comparison

with the Bayes tree.

In Figure 5.6 (right) the results for the MC-tree and Bayes tree on the For-

est Covertype data set are shown. The results for the anytime nearest neigh-

bor, SVM and C4.5 could not be computed due to memory issues. In this

Figure the number of Gaussians are reported that have been evaluated until

116 The MC-Tree

classification. As stated above, the goal in this chapter was to improve the

performance of Bayesian anytime classifiers, which is again clearly reached

in this experiment.

The accuracy curve of an anytime approach is desired to be a non-

decreasing function. In Figure 5.6 we observe a slight up and down in the

anytime curves for the MC-tree. Since in both cases k = 2 holds, the two

most probable classes are refined in turns. Obviously the classification de-

cision changes for some queries after each node that is evaluated. The am-

plitude of the oscillation indicates the proportion of queries behaving as just

described. Those query points fall into a region of the data space where two

classes overlap and where a correct decision is difficult to find. Refining the

one class’ model by reading an additional node increases its probability in

that step, while in the next refinement the other class’ model is refined (due

to k = 2) and its corresponding probability prevails. However, the slight

oscillation of the anytime curves does not diminish the dominance of the

MC-Tree in terms of anytime accuracy.

5.3 Conclusion

In this chapter the MC-Tree was proposed which significantly improves the

anytime classification performance over previous results from Chapter 4.

Various strategies for tree construction, descent and classification were in-

vestigated. In experimental evaluation on real world data sets the MC-Tree

outperformed previous Bayesian anytime classifiers and improved the accu-

racy constantly by up to 13%.

Starting from the initial idea of combining several classes in a single tree

a novel way of constructing the tree was investigated through top-down clus-

tering using the EM algorithm. While it turned out that separating the classes

remains advisable, the EM construction showed very good results. Therefore,

further alternative construction methods are investigated in the following

chapter. Since we do not combine several classes in a single tree in the re-

mainder of the thesis, we will not use the term MC-Tree in the following and

only refer to the different construction as EMTopDown bulk loading.

Chapter 6

Bulk Loading the Bayes Tree

∗ In this chapter several methods are investigated for bulk loading mixture

densities in the Bayes tree and the resulting performance is analyzed in ex-

perimental evaluation.

6.1 Bulk loading mixture densities

The goal in this chapter is to improve the performance of the Bayes tree.

The accuracy of the Bayes tree results is based on the quality of the mixture

densities stored in its entries. The iterative insertion performed in Chapter 4

does not consider the quality of the resulting Gaussian components. Several

bulk loading approaches are developed and evaluated in this chapter that

try to overcome this shortcoming and improve the quality of the mixture

densities.

6.1.1 Machine learning and statistical approaches

Goldberger. Since the Bayes tree is a statistical approach to classification,

statistical methods are investigated to create a smaller mixture model from a

given mixture model. Starting bottom up with a mixture model that contains

∗This chapter has been published in the Proceedings of the 14th Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD 2010) [KKDS10].

117

118 Bulk Loading the Bayes Tree

a kernel estimator for each training set item successively coarser models are

created that represent good approximations.

The first statistical approach is based on [GR04] and is called Goldberger

in the following. The Goldberger approach assumes two initial mixture mod-

els f and g to be given, where f is the finer model with r components and

g an approximation with s components, hence r > s. Each component is

assigned a weight and is specified by its mean and covariance matrix. To

measure the quality of the approximation [GR04] defines the distance be-

tween two mixture densities as follows.

Definition 6.1 Let f =
∑r

i=1 αifi and g =
∑s

j=1 βjgj be two mixture densities
containing r and s Gaussian components fi and gj with their respective weights
αi and βj. The distance between f and g is then defined using the Kullback-
Leibler divergence KL [CHOY08] as

d(f, g) =
r∑
i=1

αi ·
s

min
j=1
{KL(fi, gj)}

The optimal model ĝ reducing f to s components is ĝ = arg ming(d(f, g)).

Since there is no closed form to compute ĝ, a local optimum is computed it-

erating the following two steps until the distance d(f, g) no longer decreases.

In that mapping π(i) : {1 . . . r} → {1 . . . s} is a mapping function that assigns

each component in f to a component in g.

• Regroup: update π: π(i) = arg minsj=1{KL(fi, gj)}

• Refit: for each component gj recompute weight βj, mean µj and co-

variance matrix Σj as follows

– βj ←
∑

i,π(i)=j αi

– µj ← 1
βj

∑
i,π(i)=j αiµi

– Σj ← 1
βj

∑
i,π(i)=j αi

(
Σj + (µi − µj)2)

A bulk loading technique is devised based on [GR04] as follows. To ini-

tialize the mixture g a first mapping π0 is computed by assigning 0.75 · M

6.1. Bulk loading mixture densities 119

components from f to one component in g according to the z-curve [Sag94]

order of their mean values. M is the Bayes tree fanout, which in turn is dic-

tated by the page size. When no more changes occur in step 2, the resulting

components gj are converted to Bayes tree nodes containing the entries fi
with π(i) = j. Since the final π may map more than M components from

f to a single component in g, strategies must be found to restrict the fanout

to the given boundaries. Reformulating the regroup step into an integer lin-

ear program with constraints regarding the resulting fanout is a first option.

However, primary experiments showed that for realistic problem sizes this

approach takes way too long to compute a complete bulk loading. Hence, a

post processing is performed after the mapping π is computed, which splits

the nodes that contain too many entries. Therefore two representatives are

computed by moving the mean along the dimension a with the highest vari-

ance σa by an ε = σa/2 in both directions. A Gaussian is placed over the two

representatives and the mapping of the entries to the representatives is com-

puted as in the regroup step. If a node contains too few entries it is merged

with the node closest to it in terms of the Kullback-Leibler divergence.

Virtual sampling. The second approach, called virtual sampling, uses the

work presented in [VL98] and does not rely on the KL divergence. The virtual

sampling approach assumes a given mixture model f =
∑

i=1..r αi ·fi contain-

ing r components and computes a coarser mixture model g =
∑

j=1..s αj · gj
with s < r components. The components fi = g(x, µi, σi) (and gj for g)

constitute multivariate Gaussian normal distributions with their respective

weight αi. To derive an algorithm the following model is utilized: the mix-

ture g can be computed using samples R1 . . . Rr from each component in f

with R = ∪i=1..rRi and |Ri| = αi · |R|. Assuming independence of the sample

points from different components in f yields the assumption that they can

be assigned to different components in g while samples from the same fi are

likely to be assigned to the same gj. Based on this assumption hidden vari-

ables zij are introduced that indicate for each component fi its assignment

to the corresponding gj. While the zij are binary during initialization, they

can take values between 0 and 1 during the iterations. The hidden variables

are used in a modified Expectation Maximization algorithm to compute the

120 Bulk Loading the Bayes Tree

coarser mixture g as follows (superscripts f and g are added for readability

to indicate the origin of the components):

• Expectation: zij ←

[
g(µfi ,µ

g
j ,Σ

g
j)e
− 1

2 trace{(Σ
g
j

)−1Σ
f
i
}
]|Ri|

·αgj∑s
k=1

[
g(µfi ,µ

g
k,Σ

g
k)e
− 1

2 trace{(Σ
g
k

)−1Σ
f
i
}
]|Ri|

·αgk

• Maximization:

– αgj ← 1
r

∑r
i=1 zij µgj ←

∑r
i=1 zij |Ri|µ

f
i∑r

i=1 zij |Ri|

– Σg
j ← 1∑r

i=1 zij |Ri|

[∑r
i=1 zij|Ri|Σf

i +
∑r

i=1 zij|Ri|
(
µfi − µ

g
j

)2
]

The above equations are independent of the actual samples Ri and can be

computed directly from the mixture components in f , hence virtual sampling.

To use the described bottom up method for bulk loading an initialization is

required for the hidden variables zij. The initialization of the mixture g is

done as in the Goldberger approach described above. After getting the final

values for zij from the virtual sampling algorithm, each fi is assigned to that

gj with the maximum zij for all j. Moreover, the result must comply with

the fanout parameters m and M of the Bayes tree. This is achieved through

merging and splitting of the resulting components gj. If a component gj is

assigned fewer thanm components fi, these components from f are assigned

to the gj′ with the second highest zij′. If more than M components fi are

assigned to one gj, gj is duplicated while moving the resulting two means

in opposite direction along the dimension with the highest variance. The

respective fi are reassigned to the more probable candidate according to

the density of their mean µi. After merging and splitting the corresponding

mixture parameters are adapted following the above equations.

EMTopDown. Besides the above mentioned bottom up approaches the

top down approach from Chapter 5 is evaluated that recursively splits the

training set into several clusters. In contrast to the previous approach, where

Gaussian components were merged and mapped, this approach operates

solely on the data objects. More precisely, it starts with applying the EM

[DLR77] algorithm to the complete training set. The desired number M of

resulting clusters is always set to the fanout which is again given through

6.1. Bulk loading mixture densities 121

the page size. If the EM returns fewer than m clusters, the biggest resulting

cluster is split again such that the total number of resulting clusters is at most

M . In the rare case that the EM returns a single cluster, this cluster is split

by picking the two farthest elements and assigning the remaining elements

to the closest of the two. Finally, if a resulting cluster contains more than L

objects (the capacity of a leaf node), the cluster is recursively split using the

procedure described above. Otherwise the items contained in that cluster

are stored in a leaf node, its corresponding entry is calculated and returned

to build the Bayes tree. The EM approach may result in an unbalanced tree,

which differs from the primary Bayes tree idea. However, as we will see in

the experimental section, the results show that this is not a drawback but

even leads to better anytime classification performance.

6.1.2 Data base driven approaches

Since the Bayes tree extends the R-tree, traditional R-tree bulk loading algo-

rithms are employed for comparison. Two types of space filling curves are

used in the experiments, namely Hilbert curve [Sag94] and z-curve. The fol-

lowing briefly describes the Hilbert curve approach, the z-curve bulk loading

works analogously. The bulk loading according to the Hilbert curve is a bot-

tom up approach where in the first step the Hilbert value for each training set

item is calculated. Next the items are ordered according to their Hilbert value

and put into leaf nodes w.r.t. the page size. After that the corresponding en-

try for each resulting node is created, i.e. MBR, cluster features (CF) and the

pointer. These steps are repeated using the mean vectors as representatives

until all entries fit into one node, the root node. Theory on creating multidi-

mensional Hilbert curves can be found in [AN98], for implementation guide

lines see [Law00].

Finally, the partitioning approach presented in [LEL97] is tested, which

is called sort-tile-recursive. The basic idea is to build a hierarchy of rectan-

gles which share per dimension approximately the same expansion in each

dimension at the same level of the hierarchy. For details please refer to

[LEL97].

122 Bulk Loading the Bayes Tree

Pendigits

0,97

0,99

cc
ur
ac
y

0,95

ac

EMTopDown

Goldberger

0,91

0,93
Goldberger

vSampling

Hilbert

0,89
ZCurve

str

0,85

0,87 Iterativ

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 nodes

0,75

0,8

0,85

0,9

ac
cu
ra
cy

Letter

EMTopDown

Goldberger

vSampling

Hilbert

0,6

0,65

0,7

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 nodes

ZCurve

str

Iterativ

0,92
0,93
0,94
0,95
0,96
0,97
0,98
0,99

Area values for Pendigits

0,88
0,89
0,9

0,91 0 74

0,76

0,78

0,8

0,82

0,84

0,86

0,88

Area values for Letter

0,68

0,7

0,72

0,74

Figure 6.1: Anytime classification accuracy and a ranking of all approaches
according to the area values for Pendigits (left) and Letter (right).

6.2 Experiments

The three proposed bulk loading techniques Goldberger, virtual sampling and

EMTopDown are compared to the existing R-tree bulk loading approaches

Hilbert, z-curve and STR and the previous results from Chapter 4 (called Iter-
ative in the graphs since it performs iterative insertion of objects). The same

settings as in Chapter 4 were used: 4-fold cross validation is performed on

the same data sets and the classification accuracy is shown after each node

averaged over the four folds. The employed strategies are the global best

descent and the qbk improvement strategy as they showed the best results

in Chapter 4. The bulk loading is done per fold once and offline and the

resulting classifier is then used on the data stream. Since the focus is on

anytime classification, the time performance of the bulk loading algorithm is

not evaluated, but the performance of the resulting classifier in terms of its

anytime classification accuracy.

The top left part of figure 6.1 shows the results for the pendigits data set.

The Goldberger approach fails to improve the accuracy over the iterative in-

6.2. Experiments 123

sertion for the first 50 nodes. After that it performs slightly better, but cannot

increase the accuracy by more than 1%. Virtual sampling performs worst on

this data set. The Hilbert and z-curve bulkload yield comparable results, their

corresponding curves show a steep increase similar to the iterative insertion

and show better performance in most cases. After falling behind during the

first nodes, STR performs equaly well compared to Iterative. The EMTop-

Down bulkload outperforms all other approaches and improves the accuracy

over the iterative insertion constantly by 3% or more on this data set.

The performance of the Goldberger bulkload stayed below the iterative

insertion in the majority of the experiments. Just on the Letter data set

it improved the accuracy for larger time allowances (cf. Figure 6.1, right).

For the first 40 nodes Goldberger and Iterative perform equally well, after

that the accuracy of Iterative stays behind that of Goldberger. While the

virtual sampling and STR bulkload shows similar performance to Iterative,

Hilbert and z-curve (which are again in close proximity to each other) show

constantly better accuracy than Iterative. The EMTopDown again constantly

yields the best accuracy up to 13% better than the iterative insertion.

To facilitate an easier comparison between the different approaches Fig-

ures 6.1 (bottom) and 6.2 show the normalized area under the anytime

curves for Pendigits, Letter, Vowel, USPS and Verbmobil. Throughout the

data sets Hilbert and z-curve show nearly the same performance, while z-

curve is usually slightly behind Hilbert except for the USPS data set. STR

ranges between these two and the iterative insertion; it is never better than

the former and never beaten by the latter. Surprisingly both statistical ap-

proaches exhibit the same weakness as STR, i.e. they never outperform the

z-curve bulk load (except Goldberger on Letter) and several times show even

worse performance than iterative insertion. This is especially interesting

since both approaches are initialized using the z-curve, however, only with

0.75 ·M entries per node (cf. Section 6.1.1). We discuss the reasons for this

shortcoming of the statistical approaches at the end of the section where

we analyze the structure of the resulting trees. The EMTopDown bulk load

shows constantly the best performance on all data sets despite the unbal-

anced resulting trees. Again we defer the analysis to the end of the section.

124 Bulk Loading the Bayes Tree

0,92

0,93

0,94

0,95

0,96

Area values for Vowel

0,9

0,91

0 92

0,93

0,94

0,95

0,96

0,97

Area values for USPS

0,9

0,91

0,92

0 7

0,71

0,72

0,73

0,74

0,75

Area values for Verbmobil

0,68

0,69

0,7

Figure 6.2: Comparison of all approaches on Vowel, USPS and Verbmobil.

Figure 6.3 shows the results for the gender and covertype data sets. For

readability only the results for Hilbert and EMTopDown are shown. For both

data sets k = 2 for the qbk improvement strategy. The graphs for EMTop-

Down and Hilbert using the global best descent (glo) show an oscillating

behavior on both data sets. For comparison the breadth first traversal (bft) is

recapitulated, the results are plotted as well. As was found in Chapter 4, the

global best descent performs better than breadth first traversal. However, the

graphs for bft do not show the oscillating behavior mentioned above. Since

k = 2, there is obviously a certain proportion of object whose class decision

changes in favor of (or against) the tree which is currently refined. More pre-

cisely, these objects are likely positioned on the decision boundary between

the two most probable classes. In global best descend refining mixture com-

ponents close to the objects, and hence close to the decision boundary, affects

the corresponding posterior probabilities more heavily than refinement of a

farther component as in breadth first traversal. If we assume the oscillation

to be a higher frequency added to a smooth underlying anytime curve, the

proportion of these borderline objects corresponds to the amplitude. How-

6.2. Experiments 125

0,85

y

Gender

0,8ac
cu
ra
cy

0,75
EMTopDown glo

0,7

EMTopDown glo

EMTopDown bft

Hilbert glo

0,65

Hilbert bft

Iterativ glo

0,6

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

nodes

0,85

y

Covertype

0,8ac
cu
ra
cy

0,75
EMTopDown glo

0,7

EMTopDown glo

EMTopDown bft

Hilbert glo

0,65

Hilbert bft

Iterativ glo

0,6

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

nodes

Figure 6.3: Anytime classification accuracy on Gender and Covertype.

ever, on balance, the oscillating behavior does not affect the superiority of

the bulk loading over the iterative insertion.

To find reasons for the surprising ranking of the individual algorithms, the

structure of the resulting trees is analyzed. Since more entries in a node cor-

respond to more detailed information compared to fewer entries, the analysis

focuses on the the degree to which the nodes were filled in the different ap-

proaches. To this end the average fanout was computed per level of the trees

from root to leaf. However, the resulting figures did not reveal any correla-

tion to the found ranking of the approaches. For example, both space filling

curve approaches always fill the nodes to nearly 100% (except for the last

126 Bulk Loading the Bayes Tree

1e
Letter

0,8

0,9

Va
ri
an

ce

0,6

0,7

0,4

0,5 EMTopDown

Hilbert

G ldb

0,2

0,3
Goldberger

Iterativ

0

0,1

0 1 2 3 4 5 6 Level

1e

Gender

0,8

0,9

Va
ri
an

ce

0,6

0,7

0,4

0,5 EMTopDown

Hilbert

G ldb

0,2

0,3
Goldberger

Iterativ

0

0,1

0 2 4 6 8 10 Level

Figure 6.4: Variances per level for Letter and Gender.

one per level and the root), but the EMTopDown sometimes produces fewer

than M entries for a given node.

A correlation can be found between the performance of the algorithm

and the variance of the mixture components in the resulting trees. More

precisely, the average variance of all entries is calculated per level, Figure

6.4 shows the resulting numbers for Hilbert, Goldberger, EMTopDown and

Iterative on the Letter and Gender data sets. The variances are normalized

by the variance of the entire data set per class. Level 0 corresponds to the

leaves, Level 1 is above the leaves, etc. The trees resulting from different

approaches can have different heights as can be seen in the graphs. Hilbert

6.3. Conclusion 127

bulk load fills each node to 100% if possible and consequently yields the

smallest trees, while the unbalanced trees resulting from EMTopDown are

up to twice as high on the Gender data set.

EMTopDown and Hilbert show significantly smaller average variances

compared to the iterative insertion. While the corresponding variances for

Goldberger are smaller than those of Iterative for the Letter data set they are

larger on the Gender data set. This is in line with the observed anytime classi-

fication performances. Comparable similarities were found between the two

measures on the other data sets. The average variances per level achieved

by the EMTopDown bulk load were constantly amongst the lowest compared

to all other approaches. This explains and underlines the superior perfor-

mance of EMTopDown. The fact that the EMTopDown approach may yield

unbalanced trees can lead to the assumption that this supports low variances.

Specialized approaches, incremental or bulk loading, that strive to minimize

the variance can be developed and tested to investigate this relation.

In general the EMTopDown shows the best results in terms of anytime

classification accuracy on all tested data sets and continuously improves the

accuracy over that of the previous results in Chapter 4 by up to 13%. This

proves the effectiveness of the proposed bulk loading approach for hierarchi-

cal anytime classifiers.

6.3 Conclusion

In this chapter three bulk loading approaches were proposed for hierarchical

mixture models to improve Bayesian classification on data streams using the

Bayes tree. The approaches were compared to the previously proposed itera-

tive insertion and three known R-tree bulk loading algorithms on a range of

real world data sets. Experimental results showed that the EMTopDown bulk

load constantly outperformed all other approaches and improved the accu-

racy by up to 13%. Surprisingly the two statistical approaches were outper-

formed by existing R-tree bulk loadings based on space filling curves. Further

analysis attributed this shortcoming to a structural property of the resulting

128 Bulk Loading the Bayes Tree

Bayes trees. The results of the analysis were in line with the classification

results found in the experiments confirming the superior performance of the

new EMTopDown bulk loading in terms of anytime classification accuracy.

In the next chapter different popular classifiers are analyzed to identify

ways to improve the Bayes tree by learning from related approaches. Trans-

ferring related concepts to the Bayes tree yields near perfect results on all

data sets tested. Moreover, a remedy is found for the oscillating behavior

seen in the results of Section 6.2.

Chapter 7

The Classifier Family: Learn from
your Relatives

If two classification approaches are considered one can often find certain

similarities, for example in the way that they build their model or how their

parameters are optimized. Sometimes it is even possible to parameterize the

individual approaches such that they yield the exact same decision bound-

aries. An example was shown for support vector machines and Bayesian

classification using Gaussian mixtures in Chapter 2, other examples include

the equality between nearest neighbor classification and Bayesian classifi-

cation using kernel density estimators. This chapter investigates what the

Bayes tree can learn from related approaches, for example other classifica-

tion paradigms, to improve its anytime classification performance. For all

processes of the Bayes tree, from construction to decision making, matching

concepts are identified and transferred to alter the corresponding process.

Extensive experimental results show the benefits of the concept transfer ap-

proach and yield outstanding results on all data sets tested.

7.1 Introduction

Combining classifiers to improve their performance has been frequently re-

searched in the literature. The goal of the proposed methods is to build a

129

130 The Classifier Family: Learn from your Relatives

classifier that has a better performance than the given baseline approaches.

While some methods focus on a specific application or the efficiency of clas-

sifiers [TLB04, AKKS99], most methods seek to build a general classifier that

yields a high accuracy in various domains. One way to categorize the abun-

dance of related work is to distinguish methods that use an ensemble of

classifiers without modifying the single approaches from those methods that

modify a classifier by transferring concepts from other approaches.

Ensemble methods train a set of classifiers and combine their results e.g.

by majority voting or using individual weights for the single classifiers. Many

approaches have been proposed including boosting [FS96, KSK02, ZWLL09],

bagging [Bre96, LK05, LP03] and Random Forests [Bre01]. While some en-

semble methods use only classifiers from the same paradigm, others combine

the outputs of classifiers from different paradigms and achieve often higher

robustness and better accuracy [KHDM98]. In [WKB97] four paradigms

were combined (decision trees, neural networks, knn and Bayes). In [LBB02]

a genetic algorithm was used to find an appropriate rule for combining deci-

sion trees with neural networks. Similar research ideas tried to fuse discrim-

inative with generative approaches like [DHN10], where the advantages of

support vector machines and Gaussian mixture models were combined to

create an image classification technique that benefits from both approaches.

In [VS09] it was shown that using simple majority voting could negatively

affect the overall performance of the ensemble of different paradigms and

the idea of using dynamic weighting in such ensembles was introduced.

In contrast to the above mentioned ensemble methods, the approach that

is followed in this chapter does only use the concepts from other approaches

for improving the Bayes tree, i.e. it does not result in an ensemble of different

classifiers. The output is an improved version of the original classifier.

The idea of modifying a given classifier by transferring concepts from

other approaches was e.g. used in [PW10], where a method was suggested

to optimize the performance of Gaussian mixtures-based Bayesian classifiers

using the concept of margin maximization. In [TLB04] the variable selection

for SVMs was done using Random Forests and vice versa. The issue of dis-

criminative vs. generative concepts for learning Bayesian network classifiers

7.2. Learning from Relatives 131

was discussed in [RH97]. In [GD04] a method for learning Bayesian network

classifiers through a two-level optimization using the concept of maximizing

the conditional likelihood was proposed.

In this chapter different options for combining the Bayes tree with related

classifiers are identified and evaluated. Details of the individual concept

transfers are provided in Section 7.2, the results are discussed in Section 7.3.

7.2 Learning from Relatives

For the concept transfer the three processes of building a classifier are con-

sidered. The employed notation was introduced in Section 2.2:

M = ηC(Ξ, T) Model selection (Eq. 2.1)

Θ = πC(M, T) Parameter optimization (Eq. 2.2)

l = fC(Θ, q) Decision (Eq. 2.3)

The general idea of optimizing a classifier C by learning from relatives is

to identify promising concepts of related approaches that can be harnessed to

improve C. More precisely, given a set of approaches A = {A1, . . . , A|A|} the

optimization process combines the concepts of an approachA ∈ Awith those

of C, denoted as C � A, and yields new functions ηC�A, πC�A and fC�A. This is

different from using A and C in an ensemble, since there only the outputs of

fC and fA are combined, while the single concepts are left unchanged. The

following chapters describe the investigated concepts for the three processes

of model selection, parameter optimization, and decision.

The Bayes tree is referred to as BT in the remainder of this chapter and

the following notation is used throughout.

Definition 7.1 The model M = {N1, . . . ,Nr} of a Bayes tree is a set of con-
nected nodes. Each node N = {e1, . . . , es} stores a set of entries with 2 ≤ s ≤
maxFanout. An entry e = {pe, ne, ~LSe, ~SSe} stores a pointer pe to the first
node Ne of its subtree, the number ne of objects in the subtree and their linear
and quadratic sums per dimension. The root node Nroot stores exactly one entry
elo for each label l ∈ L that summarizes all objects with label l.

132 The Classifier Family: Learn from your Relatives

T|e refers to the set of objects stored in the subtree corresponding to entry e.

In the Bayes tree, ηBT creates M from T using the iterative insertion process

from R-trees (cf. Chapter 4) or the EMTopDown bulk load (cf. Chapters 5

and 6). Both approaches are used as baselines; they are referred to as R and

EM , respectively.

7.2.1 Tree construction

The first process for building a classifier C is the model selection ηC. The

general approach followed in this chapter is to analyze the actions that are

taken by the classifier and describe them by characteristic terms. For the

Bayes tree, ηBT refers to determining the hierarchy of mixtures, i.e. deciding

how to create the tree structure. Hence, any approach A that partitions T
can be employed in this stage. Moreover, the Bayes tree always processes the

hierarchy from the root, i.e. placing more valuable or important information

in the upper levels may improve the performance of the approach. To this

end, any approach A that ranks the objects in T with respect to their useful-

ness can be profitable. Therefore, approaches are searched that match the

terms partitioning or ranking.

DT. Although decision trees do not maintain one hierarchy per class, the

training of decision trees involves a partitioning of the data space based on

the training data. Hence, the approach fits the term partitioning and is a can-

didate for transferring concepts to the Bayes tree. There are numerous ways

to build decision trees; here the partitioning method proposed by Fayyad

and Irani in [FI93] is adopted. Therein the information gain is used as the

splitting criterion and the termination criterion is based on the minimal de-

scription length. The following node structure for a binary decision tree is

used:

Definition 7.2 A decision tree node ν = (Ai, aij, δ, p1, p2) stores a splitting at-
tribute Ai, a split value aij, a corresponding value for the information gain δ

and two pointers p1 and p2 to the left and right subtree. A Leaf node ν is asso-
ciated with a set of training objects T|ν and an inner node with the union of its
subtree data sets T|ν = T|ν1 ∪ T|ν2.

7.2. Learning from Relatives 133

Let Tl ⊂ T be the set of all training objects with label l. Creating the hier-

archical mixture models for a class l̂ starts with all objects Tl̂ and the single

partition induced by the root node νroot of the decision tree: part0 = {Tl|νroot}.
Next the set of partitions is expanded until maxFanout non empty partitions

are reached by

partk+1 = partk \
{
Tl|ν̂
}
∪
{
Tl|ν̃ |ν̂ ≺ ν̃ ∧ Tl|ν̃ 6= ∅

}
(7.1)

where ν̂ = arg maxν′∈partk{δ′} is the decision tree node in partk with the

highest information gain and ≺ is the parent relation.

A Bayes tree node is generated by creating one entry from each partition,

i.e. computing the corresponding cluster feature (n, ~LS, ~SS). For each class,

this process is repeated recursively until the entire decision tree is read.

ANN. A classification method that creates a ranking of training objects is

the anytime nearest neighbor classifier [UXKL06] (cf. Chapter 3). The basic

idea is to search for the nearest objects by processing the training objects

x ∈ T during classification in a precomputed order as long as time permits.

The order is decreasing w.r.t. the rank of an object x, which is in [UXKL06]

computed as

rank(x) =
∑
j

1 if lx = lxj

−2/|L| otherwise
(7.2)

where xj is an object that has x as its nearest neighbor based on a leave-one-

out evaluation on T .

To create a Bayes tree node for label l̂ we pick the maxFanout objects

from Tl with the highest rank according to Equation 7.2 and assign all re-

maining objects from Tl to their closest representative. From the resulting

subsets the cluster features are calculated. The steps are repeated recursively

until the set fits into a leaf.

7.2.2 Parameter Optimization

For the second process we search for a setAII of feasible approaches that can

be used to improve the parameter optimization. πBT in the Bayes tree deter-

134 The Classifier Family: Learn from your Relatives

mines the parameters (µe,Σe) for the Gaussians corresponding to the entries.

The actions necessary to find good parameter values Θ can be described

by fitting or adjusting. There are numerous approaches that match these

terms. Detailed solutions are provided for margin maximization (πBT�MM),

Bayesian networks (πBT�BN) and Bandwidth estimation (πBT�BW); further

solutions are sketched for combining the Bayes tree with neural networks or

SVMs.

MM. An approach for margin maximization that seeks to improve the

classification performance of Bayesian classifiers based on Gaussian mixtures

has been proposed in [PW10] (referred to as MM). Let Θ be the set of

parameter values for the mixture models of all labels l ∈ L and lx ∈ L the

label of object x. Then MM approximates the multi class margin dΘ(x) by

dΘ(x) =
p(lx, x|Θ)

maxl 6=lx p(l, x|Θ)
≈ p(lx, x|Θ)[∑

l 6=lx p(l, x|Θ)κ
]1/κ

. (7.3)

using κ ≥ 1. In the global objective

D(T |Θ) =
∏
x∈T

h((dΘ(x))λ) with λ > 0 (7.4)

the hinge function h̄(y) = min{2, y} is approximated by a smooth hinge func-

tion h(y) that allows to compute the derivative ∂ logD(T |Θ)/∂Θ. The deriva-

tives w.r.t. to the single model parameters θi ∈ Θ are then used to iteratively

adjust the weights, means and variances of the Gaussians. The employed

optimization algorithm is an extended Baum-Welch algorithm [GKNN91]

To determine πBT�MM a heuristic is required to extract one mixture for

each label l ∈ L from the Bayes tree and optimize these using MM . For a set

of entries E ⊂
⋃
Ni∈M Ni let

Θ(E) =
⋃
e∈E

{µe,Σe} (7.5)

be the corresponding set of parameter values. Initially E0 = Nroot; for each

label l ∈ L the unimodal model describing Tl is represented by Θ(E0). After

7.2. Learning from Relatives 135

applying MM to Θ(E0) the corresponding parameters are updated in the

Bayes tree. Subsequent steps descend the Bayes tree and set

Ei+1 =
⋃
e∈Ei

Ne if pe 6= null

{e} otherwise.
(7.6)

As above, the sets Ei are optimized using MM and the Bayes tree parameters

are updated. An additional parameter is the maximal number m of steps

taken in Equation 7.6: for m = 2 only the upper two levels of the Bayes tree

are optimized.

BN. The second studied approach are Bayesian networks to fit the Gaus-

sians (µe,Σe) in the Bayes tree to the underlying training data T|e. For each

entry e, πBT computes the variance σe,ii per dimension (cf. Equation 3.2) and

sets all covariances σe,ij to 0, i.e. Σ constitutes a diagonal matrix of a naive

Bayesian approach. The space demand w.r.t. the dimensionality d is O(d)

compared to O(d2) for a full covariance matrix. Introducing full covariance

matrices affects every single entry in the Bayes tree, i.e. O(d2) covariances

must be stored per entry. Moreover, the time complexity for the evaluation

of the Gaussian density function (cf. Definition 2.3) increases from O(d) to

O(d2). To avoid this quadratic time and space demand a hill climbing method

for Bayesian network learning (as e.g. proposed in [KP02]) is adapted here

to find the most important correlations.

The goal is to add important correlations at low time and space complex-

ity. To this end a maximal block size s is fixed and Σ is constrained to have a

block structure:

Σ = diag(B1, . . . , Bu) (7.7)

where Bi ∈ R
si×si are quadratic matrices of block size si and si ≤ s ∀i =

1 . . . u. The resulting space demand is in O(d · s). So is the time complexity,

since the exponent in the Gaussian distribution (cf. Definition 2.3) can be

decomposed into a sum as follows:

zΣ−1zT =
u∑
i=1

z[Li..Ui]B
−1
i z[Li..Ui]

T (7.8)

136 The Classifier Family: Learn from your Relatives

where z = (x − µ), Li = 1 +
∑i−1

j=1 sj, Ui = Li + si − 1 and z[Li..Ui] selects

dimensions Li to Ui from z.

A Bayesian network B = 〈G,Θ〉 is characterized by a directed acyclic

graph G and a set of parameter values Θ. G = (V,E) contains one vertex

i ∈ V for each dimension and an edge (i, j) ∈ E induces a dependency

between dimensions i and j. An undirected graph G′ can easily be derived

from G by removing the orientation. To derive Σ an edge (i, j) ∈ E ′ is

transferred to a covariance σij and its symmetric counter part σji in Σ. To

ensure a block structure, a permutation P is applied to Σ by PΣP−1 that

groups dimensions, which are connected in G′, as blocks along the diagonal.

P is then also applied to z before computing Equation 7.8. Since P is just

a reordering of the dimensions, it can be stored in an array of size d and its

application to z is in O(1) per feature.

Creating the block covariance matrix for an entry e starts with an empty

Bayes net; initially E ′ = ∅ and Σe = diag(σe,11, . . . , σe,dd). From the edges

that can be added to G′ without violating the maximal block constraint in

the resulting block matrix, iteratively the one is selected that maximizes the

likelihood of e given T|e. Since all objects x ∈ T|e have the same label l, the

log likelihood is

LL(e|T|e) =
∑
x∈T|e

log (p(l, x|(µe,Σe))) (7.9)

The iterations stop when either the resulting matrix does not allow for

further additions or no additional edge improves Equation 7.9.

In general, a block covariance matrix is determined for each entry in the

Bayes tree. However, on lower levels of the Bayes tree the combination of

single components is likely to capture already the main directions of the data

distribution. This may render the additional degrees of freedom given by the

covariances useless or even harmful, since they can lead to overfitting. In

Section 7.3, in addition to s, the influence of restricting the BN optimization

to the upper m levels of the Bayes tree is evaluated.

7.2. Learning from Relatives 137

BW. In its leaves the Bayes tree stores d dimensional Gaussian kernels.

The kernel bandwidth hi, i = 1 . . . d, is a parameter that is chosen per di-

mension by πBT and that can be optimized by other methods for bandwidth

estimation. A method from [Sil86] uses

hi = d+4

√
4

(d+ 2) · |T |
· σ̂i (7.10)

where σ̂i is the standard deviation of T in dimension i. A second method

[JL95] determines the bandwidth as

hi =
maxi −mini√

|T |
(7.11)

where maxi and mini are the maximal and minimal values occuring in T in

dimension i. Finally, a family of bandwidths

hi = α · σ̂i (7.12)

is tested in Section 7.3, where a factor α is multiplied to σ̂i. In πBT�BW

we refer to the three methods in Equations 7.10, 7.11 and 7.12 as haerdle,

langley and fα respectively.

SVM and Neural networks. Combining Gaussian mixture models and

SVMs has for example been studied in [DHN10], where a mapping from

Gaussian mixtures to SVMs (and vice versa) is defined, that yields the ex-

act same decision boundaries for both approaches. Using such a mapping

πBT�SVM can be designed similar to πBT�MM , i.e. one mixture model for each

label is extracted from the Bayes tree, optimized using SVM and the new

parameters are transferred back to the tree. Analogously back propagation

as in neural networks using RBF kernels as neurons can by exploited to de-

sign πBT�NNet. For |L| > 2, it must be ensured that the optimizer returns a

single set of parameters per Gaussian. Also the bias resulting from SVM or

NNet training must be integrated into BT .

138 The Classifier Family: Learn from your Relatives

7.2.3 Decision Design

Let Fl(t) denote the frontier of label l ∈ L at time t. Then the decision

function for the Bayes tree is

fBT (Θ, x, t) = arg max
l∈L

{
P (l) ·

∑
e∈Fl(t)

ne
nl

g(x, µe, σe)

}
(7.13)

To estimate the class conditional density for a class l̂ at time t the entries

that are stored in the current frontier Fl̂(t) are evaluated and summed up

according to their weight. Since that set of entries is a subset of all entries

in the hierarchy, an appropriate term to describe the action necessary for the

decision design is selecting.

NN. The nearest neighbor classifier finds a decision based on the object

that is the closest to the query object x, i.e. it selects only the most promis-

ing object from T . This concept can be transferred to the Bayes tree in a

straightforward way by using the modified decision function

fBT�NN(Θ, x, t) = arg max
l∈L

{
P (l) ·max

e∈Fl(t)

{ne
nl

g(x, µe, σe)
}}

(7.14)

Variants of the nearest neighbor classifier use k closest objects. The actual

label can then be assigned based on a simple majority voting among the

neighbors or taking their distance or the prior probability of the labels into

account (cf. Chapter 2). In the experiments the standard nearest neighbor

concept with k = 1 is tested for fBT�NN .

ENS. A second concept that matches the term selecting is the concept of

ensemble classifiers. As discussed in Section 7.1 ensembles are a frequently

used approach. The concept of ensembles is simple and can easily be trans-

ferred to any classification method. A straightforward way for the Bayes tree

would be to build several tree structure, e.g. using different samples of the

training data, and combine the individual outcomes to achieve a classifica-

tion decision. The method we propose here uses a single Bayes tree and

builds an ensemble over time.

7.2. Learning from Relatives 139

In the Bayes tree so far only the most recent frontiers Fl(t) were used in

the decision function. Transferring the ensemble concept to the Bayes tree,

all previous frontiers are combined in the modified decision function

fBT�ENS(Θ, x, t) = arg max
l∈L

P (l) ·
t∑

s=0

∑
e∈Fl(t−s)

ne
nl

g(x, µe, σe)

 (7.15)

The additional computational cost when using the ensemble decision from

Equation 7.15 compared to the original decision from Equation 7.13 is only a

single operation per class. More precisely, we just have to add the most recent

density, which we compute also in the original Bayes tree, to an aggregate of

the previous densities. Since the same amount of frontiers are summed up

for each label, we can skip the normalization without changing the decision

and do not have to account for additional operations.

7.2.4 Summary

Figure 7.1 summarizes the concept transfer approach as well as the results

of the single steps in the Bayes tree. The steps are generally applicable to

a classifer C. The first step is to identify the processes of C, which resulted

in I – model selection, II – parameter optimization and III – decision design

(cf. Eqs. 2.1 - 2.4). The second step is to analyze the actions necessary

in C for the identified processes and characterize them by expressive terms

(cf. Figure 7.1). The third step is to assign approaches Ai ∈ A from a set

A of known approaches, whose concepts match the terms defined in step 2.

The approaches discussed for the Bayes tree in the three processes I, II and

III are {ANN,DT} ⊂ AI , {MM,BW,BN} ⊂ AII and {NN,ENS} ⊂ AIII
(cf. Figure 7.1). For the fourth step we first test the effects of the single

improvements separately, e.g. BT � ANN or BT � MM (cf. Section 7.3).

In further experiments we then seek to find the best combination of several

improvements, e.g. BT � ANN �BW � ENS.

140 The Classifier Family: Learn from your Relatives

actions concepts actions concepts actions concepts

I

M
od

el

se
le
ct
io
n

partitioning
ranking

Decision Tree
ANN Ranking

organizing
selecting

Index structures
Sampling methods

II

Pa
ra
m
et
er

op
tim

iz
at
io
n

fitting
adjusting

Margin Maximization
Bayesian network

Bandwidth estimation
(Neural nets, SVM)

weighting
Density estimation

…

III

D
ec
is
io
n

de
si
gn

selecting
Nearest neighbor

Ensembles
selecting …

step 3: assign known concepts
step 2: analyze actions

step 4: find best combinationsstep 1: identify processes

process
Bayes Tree Nearest neighbor …

…

Figure 7.1: Summary of the concept transfer approach.

7.3. Experiments 141

7.3 Experiments

In all experiments the results for the first r = 200 refinements are reported.

To compare the different approaches the average accuracy avg is used as

well as the maximal accuracy max over all refinements. The third employed

objective, which penalizes descending or oscillating anytime curves, is the

monotonicity

mon = 1− 1

r

r∑
n=1

âcc(n)−min{âcc(n), acc(n)}

where âcc(n) = max1≤n′<n acc(n
′) is the maximal accuracy over all n′ < n.

When choosing best results they are selected according to a linear combi-

nation of all three measures with equal weights. For the Bayes tree the

bandwidth heuristic from Equation 7.11 is used for the baselines and

maxFanout = 7. The approaches are tested on the following data sets (avail-

able at [FA10] except [AS04] for gender):

name #obj d |L| name #obj d |L|
page-blocks 5473 10 5 pendigits 10992 16 10

optdigits 5620 64 10 vowel 990 10 11
letter 20000 16 26 spambase 4601 57 2

segment 2310 19 7 gender 189961 9 2
kr-vs-kp 3196 36 2 covtype 581012 10 7

Model selection. The results for the modified model selections are shown

in Figure 7.2, listing for both approaches the absolute differences in the ob-

jectives compared to the two baselines R and EM . Both ANN and DT show

better performance than the R baseline for nearly all data sets and measures.

Compared to the EM baseline an exceptional improvement (ANN :12.5%

and DT :6.9% for avg) is reached by both approaches for the covtype data

set, which is the largest tested data set. On the other data sets they are

comparable or even slightly worse than the EM baseline.

142 The Classifier Family: Learn from your Relatives

avg max mon avg max mon avg max mon avg max mon

page‐blocks 0.9% 0.5% ‐6.4% ‐0.5% ‐0.5% ‐6.7% 1.4% 1.0% ‐1.0% 0.0% 0.0% ‐1.3%

optdigits 4.0% 3.1% 9.7% ‐0.4% ‐0.1% ‐1.1% 3.6% 2.8% 10.3% ‐0.7% ‐0.4% ‐0.7%

letter 11.2% 11.3% ‐0.4% ‐0.6% ‐0.4% 1.1% 9.2% 10.4% ‐0.2% ‐2.6% ‐1.3% 0.8%

segment 4.7% 2.7% 20.3% 1.5% 1.1% 6.9% 2.3% 2.1% 5.1% ‐0.9% 0.5% ‐8.3%

kr‐vs‐kp 9.0% 5.0% 2.7% ‐0.5% ‐0.1% ‐0.2% 9.7% 5.5% 2.7% 0.2% 0.4% ‐0.2%

pendigits 5.2% 4.2% 11.4% 0.4% 0.1% 2.1% 4.4% 3.7% 9.3% ‐0.4% ‐0.3% 0.1%

vowel 0.2% 0.0% 1.1% 0.3% 0.0% ‐1.0% 0.0% 0.5% 1.1% 0.2% 0.5% ‐0.6%

spambase 1.1% 0.2% ‐7.5% 0.0% 0.4% ‐11.8% ‐0.3% ‐0.7% 6.0% ‐1.4% ‐0.5% 1.7%

gender 5.0% 6.1% 1.1% ‐2.4% ‐1.8% 1.1% 6.5% 7.8% 0.7% ‐0.9% ‐0.1% 0.6%

covtype 18.9% 22.4% 3.0% 12.5% 12.0% 4.9% 15.9% 18.9% 1.9% 6.9% 4.9% 3.6%

averages 6.0% 5.5% 3.5% 1.0% 1.1% ‐0.5% 5.3% 5.2% 3.6% 0.1% 0.4% ‐0.4%

ANN‐Ranking (BT ◊ ANN) Decision Tree (BT ◊ DT)

diff. to R baseline diff. to EM baseline diff. to R baseline diff. to EM baseline

Figure 7.2: Model selection approaches.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200

ac
cu
ra
cy

refinements

Effect of single approaches on letter

BT*
BT ◊ ANN
BT ◊ DT
R ◊ BW
R ◊ BN
R ◊ ENS
R ◊ NN
R‐Baseline
R ◊MM

Figure 7.3: Effects of single approaches on letter.

7.3. Experiments 143

avg max mon avg max mon

page‐blocks 1,5% 1,1% 5,2% 0,6% ‐0,3% 9,8%

optdigits 0,7% 0,8% 2,4% 0,0% 0,0% 0,0%

letter 7,3% 9,5% 2,9% 5,5% 4,7% 3,7%

segment 3,9% 2,1% 24,8% 6,2% 3,1% 23,5%

kr‐vs‐kp 0,0% 0,0% 0,0% 1,1% 0,5% ‐1,4%

pendigits 2,7% 2,9% 11,4% 1,1% 0,8% 3,0%

vowel 6,0% 4,1% 8,0% 4,9% 3,8% 6,4%

spambase 0,8% ‐0,3% 1,2% 0,0% 0,0% 0,0%

gender 2,6% 3,9% 1,2% 3,5% 3,9% 1,3%

covtype 3,4% 5,6% 3,0% 14,3% 12,3% 5,4%

averages 2,9% 3,0% 6,0% 3,7% 2,9% 5,1%

diff. to R baseline diff. to EM baseline

Bandwidth Estimation (BT ◊ BW)

Figure 7.4: Approaches for parameter optimization I (BW).

Figure 7.3 shows the anytime accuracy results for the single approaches

and the R baseline as a comparison. BT ∗ refers to the final combination

that is found as the result of the evaluation and which is introduced at the

end of the section. BT � ANN and BT �DT are located between the base-

line and the final solution, i.e. they yield a significant improvement, but are

outperformed by the combination in BT ∗. Moreover, neither of the model se-

lection approaches can diminish the oscillation of the anytime curve, which

is achieved by other concepts as we see in the following.

Parameter optimization. Figures 7.4 and 7.5 show the results for the

tested parameter optimization approaches. The shown results for the band-

width estimation in Figure 7.4 are the best results over the three heuristics

from Equations 7.10 to 7.12, where for the fα heuristic the following α val-

ues were tested: α ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. In the 20 results (EM

and R on 10 data sets) haerdle and langley were both chosen three times,

twice f0.01 was the best choice and the remaining results were achieved by

f0.05. By the optimized bandwidth estimation all accuracy values, i.e. avg

and max on both R and EM , could be improved with the exception of max

for EM on page-blocks and max for R on spambase. The largest improve-

ment is achieved for the monotonicity with the single exception of EM on

kr-vs-kp. The anytime plot in Figure 7.3 illustrates the good performance of

BT �BW in all three measures.

144 The Classifier Family: Learn from your Relatives

avg max mon avg max mon avg max mon avg max mon

page‐blocks 0,2% 0,3% ‐18,0% 0,1% ‐0,2% ‐8,9% ‐0,9% ‐0,5% ‐1,1% ‐0,5% ‐0,4% 4,7%

optdigits 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% ‐1,0% ‐0,3% 8,3% ‐0,6% ‐0,3% 0,2%

letter 3,6% 4,0% ‐1,7% 1,5% 1,5% ‐1,1% ‐1,3% 0,1% 0,4% ‐1,5% ‐0,6% 1,3%

segment 0,0% ‐0,3% 10,8% ‐0,1% ‐0,1% 6,4% ‐5,8% ‐2,6% 23,9% ‐1,3% ‐0,7% 20,2%

kr‐vs‐kp 0,0% 0,0% ‐0,5% 0,0% 0,0% ‐0,1% ‐0,5% ‐1,1% ‐2,3% ‐18,7% ‐13,1% ‐17,4%

pendigits 1,8% 2,0% ‐3,4% 0,2% 0,1% ‐2,5% 0,0% 0,3% 3,3% ‐0,6% ‐0,5% 1,1%

vowel 0,2% 0,9% ‐5,1% 0,3% 0,1% ‐1,9% ‐0,8% ‐1,1% 4,7% ‐1,8% ‐1,5% 4,4%

spambase 0,0% 0,0% 0,7% 0,0% 0,0% 0,1% ‐7,1% ‐5,1% ‐0,2% ‐6,3% ‐3,1% ‐1,9%

gender 0,0% 0,0% 0,0% 0,0% 0,0% ‐0,2% 1,1% 1,3% 5,9% ‐4,7% ‐3,3% 0,7%

covtype ‐2,4% ‐2,4% 2,3% ‐0,3% ‐0,3% 1,7% ‐ ‐ ‐ ‐ ‐ ‐

averages 0,3% 0,5% ‐1,5% 0,2% 0,1% ‐0,7% ‐1,8% ‐1,0% 4,8% ‐4,0% ‐2,6% 1,5%

diff. to R baseline diff. to EM baseline diff. to R baseline diff. to EM baseline

Bayesian Network (BT ◊ BN) MaxMargin (BT ◊ MM)

Figure 7.5: Approaches for parameter optimization II (MM and BN).

The performance of transferring the Bayesian network approach to BT

is hardly better than any of the two baselines. As above, the results shown

in Figure 7.5 are the best among all parameter settings for BT � BN , i.e.

over all block sizes s and numbers of levels m (cf. Section 7.2.2). The largest

improvements are achieved on the letter data set with s = d and m = 1. The

performance gain was less for smaller block sizes (results not shown). As

assumed in Section 7.2.2, the additional degrees of freedom gained through

the covariances are useless or even harmful on lower levels of the tree, i.e.

the displayed results, which are the best among allm and s, all usem = 1 and

s = d. Nonetheless, as stated above, the performance gain is only marginal

on 9 of 10 data sets.

The margin maximization approach BT �MM does not add covariances

but only seeks to improve the weights, means and variances of the Gaussians

in the Bayes tree. The results on the 10 tested data sets are shown in Figure

7.5 (The results for covtype could not be achieved with 4GB RAM). As above

the best results over all parameter settings are shown where κ ∈ {1..10},
λ ∈ [0, 10] and m from 1 to the maximal tree height. On average BT �MM

improves the monotonicity over the baselines, but neither of the accuracy

measures. The detailed results show slight improvements over theR baseline

on three data sets. This result is surprising at first sight, since the original

concept from [PW10] is designed for improving Gaussian mixture models.

7.3. Experiments 145

‐1%

1%

3%

5%

7%

9%

MaxMargin improvements on static mixture models

7 components 49 components

Figure 7.6: Results for MM on static mixture models of size 7 and 49.

To exclude the possibility that the poor performance ofBT �MM is solely

due to the data set characteristics, the implementation of MM is tested on

static Gaussian mixture models. Using the same EM clustering that was used

for constructing the Bayes tree in the EM baseline, for each data set two

mixtures were created, each containing one model per class. In the first mix-

ture each model has 7 components, in the second 49 components. (Multiples

of 7 were chosen since they correspond to the chosen fanout of the Bayes

tree.) The plots show the resulting absolute gain in classification accuracy

from the optimized over the initial mixtures in Figure 7.6. MM improves the

accuracy for at least one mixture on 8 data sets and for both mixtures on 5

of 10 data sets in the experiments. For the vowel data set the improvement

is 3% for the 49 components and nearly 8% for the 7 components. However,

neither avg nor max are improved by BT �MM on vowel (cf. Fig. 7.5). One

reason for this is the fact that πBT�MM optimizes the mixtures in the Bayes

tree level by level, but the decision fBT uses arbitrary mixtures that can con-

tain components from many different levels of the tree. These components,

or rather these mixtures, were never optimized together. Optimizing all pos-

sible mixtures is not feasible, since on the one hand the sheer number of

possible mixtures makes the optimization computationally infeasible, and on

the other hand such an approach does not yield a single set of parameters

values per Gaussian.

146 The Classifier Family: Learn from your Relatives

avg max mon avg max mon avg max mon avg max mon

page‐blocks 1.2% 0.4% 10.7% 0.8% ‐0.2% 9.7% 0.7% 0.5% 3.8% ‐46.3% ‐0.8% ‐47.2%

optdigits ‐1.1% ‐2.0% 11.4% ‐3.2% ‐3.5% 1.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0%

letter 1.7% 0.7% 3.1% 1.6% 0.0% 3.8% 0.1% 0.2% ‐0.3% ‐0.2% 0.3% 1.5%

segment 5.9% 1.5% 37.7% 4.2% 0.5% 24.3% 0.0% 0.0% ‐0.1% 4.4% 2.4% 18.6%

kr‐vs‐kp ‐1.7% ‐3.4% 2.0% ‐2.7% ‐1.6% 0.7% ‐0.1% ‐0.1% ‐1.1% 0.1% 0.1% ‐0.2%

pendigits 2.0% 1.1% 12.5% 0.3% ‐0.1% 3.1% 0.1% 0.0% 0.8% 0.6% 0.3% 2.7%

vowel 2.4% 0.7% 8.1% 2.8% 1.1% 4.8% 4.9% 4.0% 7.4% 3.6% 3.9% 5.4%

spambase 2.1% ‐0.2% 12.9% ‐4.0% ‐5.7% ‐3.8% 0.0% 0.0% 0.0% ‐0.2% ‐0.2% ‐0.6%

gender 0.4% 1.5% 1.3% 2.3% 1.7% 1.4% ‐2.1% ‐1.7% ‐4.4% ‐3.4% ‐0.8% ‐17.3%

covtype 2.3% 3.4% 3.0% 6.2% 1.8% 5.4% ‐0.5% ‐0.1% ‐3.2% ‐11.9% ‐6.9% ‐37.9%

averages 1.5% 0.4% 10.3% 0.8% ‐0.6% 5.1% 0.3% 0.3% 0.3% ‐5.3% ‐0.2% ‐7.5%

diff. to R baseline diff. to EM baseline diff. to R baseline diff. to EM baseline

Ensemble (BT ◊ ENS) Nearest Neighbor (BT ◊ NN)

Figure 7.7: Decision design approaches.

Decision design. For the process of decision design fBT�ENS and fBT�NN
were tested; the absolute improvements for the three objectives are shown

in Figure 7.7. Combining the ensemble concept with the Bayes tree (cf.

Equation 7.15) yields on average a slight increase in the accuracy measures

avg and max for the R baseline and is rather neutral on the EM baseline.

The monotonicity, however, is drastically increased by BT �ENS, on average

by more than 10% compared to the R baseline and more than 5% compared

to the EM baseline. This is underlined by the anytime accuracy plot of

BT �ENS in Figure 7.3, which shows a smooth and monotonically increasing

behaviour.

In contrast, the results of BT � NN hardly show any improvement over

the R baseline except for vowel. The anytime plot for BT � NN is hardly

visible in Figure 7.3, since it coincides with the curve of the R baseline. This

is another surprising result. It signifies that taking per label only the one

single Gaussian, which yields the highest class conditional density for the

query object, results in almost exactly the same decisions as taking the entire

mixture models. As can be seen in Figure 7.7, this strongly holds for 7 of

the 10 tested data sets on the R baseline. Compared to the EM baseline the

performance of BT �NN is worse on average.

7.3. Experiments 147

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200

ac
cu
ra
cy

refinements

Effect of combined approaches on letter

EM ◊ BW ◊ ENS ◊ BN
EM ◊ BW ◊ ENS
EM ◊ BW
EM ◊ BN ◊ ENS
EM ◊ BN
EM ◊ ENS
EM‐Baseline

Figure 7.8: Anytime plots for combined approaches.

Combining approaches. Next we study the cumulative performance

gain when combining BT with more than one concept. Figure 7.8 shows

the anytime accuracy plots on letter for the EM baseline and the combined

versions using ENS and/or BN and/or BW . The curve of the EM baseline

exhibits a strong oscillation. EM � BN improves the accuracy throughout

on this data set, but cannot diminish the oscillation. Near perfect mono-

tonicity is reached when using ENS, either alone (EM � ENS) or com-

bined (EM � BN � ENS). The cumulation of the two positive effects, i.e.

increased accuracy and monotonicity, is clearly expressed by the correspond-

ing anytime plots. EM � BW pushes up the accuracy and can also improve

the monotonicity. Adding ENS yields again near perfect monotonicity (cf.

EM �BW �ENS). Finally combining the three concepts with EM yields the

best results in this setting.

To find the globally best results all combinations are allowed and per data

set the best setting is selected with respect to the linear combination of all

three measures. This is denoted as free choice, the settings and corresponding

results are shown in Figure 7.9 along with the two baselines and the results

for BT ∗ (see below). The values shown are the absolute values for the mea-

sures. Highlighted cells indicate an improvement over both baselines.

148 The Classifier Family: Learn from your Relatives

avg max mon avg max mon

page‐blocks 94,0% 95,9% 87,0% 95,4% 96,8% 87,3%

optdigits 92,9% 94,6% 87,9% 97,2% 97,8% 98,8%

letter 76,1% 78,8% 96,8% 87,9% 90,5% 96,1%

segment 86,3% 92,0% 59,3% 89,4% 93,6% 72,6%

kr‐vs‐kp 84,4% 90,1% 96,1% 93,9% 95,2% 99,0%

pendigits 93,1% 94,6% 87,3% 97,9% 98,7% 96,6%

vowel 91,0% 94,4% 90,8% 90,8% 94,4% 92,5%

spambase 87,4% 91,5% 81,4% 88,5% 91,4% 85,7%

gender 73,1% 73,9% 98,4% 80,5% 81,8% 98,5%

covtype 62,4% 63,1% 96,0% 71,4% 77,2% 94,4%

averages 84,1% 86,9% 88,1% 89,3% 91,7% 92,2%

R baseline EM baseline

avg max mon avg max mon buildup bw ens opt

page‐blocks 96,6% 96,9% 98,2% 96,5% 97,0% 99,1% ANN langley yes
optdigits 96,8% 97,0% 100,0% 96,9% 97,2% 99,9% EM f0.05 yes MM
letter 93,5% 95,3% 99,9% 94,5% 95,7% 99,9% EM f0.05 yes BN
segment 94,4% 95,1% 96,4% 95,6% 96,1% 99,7% DT langley yes
kr‐vs‐kp 93,9% 94,6% 99,3% 98,0% 98,6% 99,3% DT f0.05 yes
pendigits 99,0% 99,4% 99,7% 99,0% 99,4% 99,7% EM f0.05 yes
vowel 97,4% 98,7% 99,6% 97,8% 98,6% 99,9% EM f0.05 yes MM
spambase 91,9% 92,5% 98,5% 91,9% 93,0% 98,4% ANN f0.05 yes
gender 84,3% 85,7% 99,9% 84,4% 86,2% 99,9% DT f0.05 yes
covtype 79,8% 82,7% 99,8% 92,1% 94,9% 100,0% ANN f0.05 yes

averages 92,8% 93,8% 99,1% 94,7% 95,7% 99,6%

BT* free choice

Figure 7.9: Baseline results, results for BT*, and the globally best results and
setups.

7.3. Experiments 149

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200

ac
cu
ra
cy

refinements

BT* results for all data sets

pendigits kr‐vs‐kp

vowel optdigits

page‐blocks segment

letter covtype

spambase gender

Figure 7.10: Anytime accuracy results for BT ∗.

On all data sets all three measures are improved by the free choice except

for avg and max on optdigits, where the actual values are slightly smaller

(due to picking the best result according to the linear combination of all

three measures). In the settings of free choice, ENS was used on all data sets

and f0.05 was used eight times for BW , other parameter optimizations were

rarely employed (once BN and twice MM). For the model selection, i.e. the

buildup of the Bayes tree, EM , ANN and DT have a roughly equal shares.

To have one final setting that is used on all data sets BT ∗ = EM � f0.05 �
ENS is chosen. The choice of EM is due to the fact that the improvement of

ANN and DT over EM on average is mainly only due to the covtype data

set (cf. Figure 7.2). As can be seen in Figure 7.9, BT ∗ exhibits improvements

over both baselines similar to free choice except for max on kr-vs-kp, where

it shows slightly worse performance compared to EM , and for the covtype

data set as discussed above.

Overall, improving BT to BT ∗ by transferring three concept yields very

good results on all tested data sets. Figure 7.10 shows the anytime accu-

racy plots for BT ∗ which illustrate the great performance w.r.t. to all three

measures. Figure 7.11 visually summarizes the average results of the single

concepts, free choice and BT ∗, underlining the effectiveness of the concept

transfer approach to classifier improvement.

150 The Classifier Family: Learn from your Relatives

‐01%

02%

04%

06%

08%

10%

12%
Average differences to R baseline

avg
max
mon

‐01%

02%

04%

06%

08%

BT ◊
ANN

BT ◊
DT

BT ◊
BW

BT ◊
BN

BT ◊
MM

BT ◊
ENS

BT ◊
NN

free
choice

BT*

model sel. optimization decision combined

Average differences to EM baseline

avg
max
mon

Figure 7.11: Average absolute differences over all 10 data sets for single and
combined approaches.

7.4 Conclusion

In this chapter related concepts were transferred to the Bayes tree to improve

its anytime classification performance. Experimental evaluation showed the

effects of the single improvements and yielded a best combination of several

concepts, that outperformed the baselines on a multitude of data sets. The

improved version BT ∗ of the Bayes tree that resulted from the investigations

in this chapter shows near perfect results on all tested data sets (cf. Figure

7.10). BT ∗ constitutes the final version of the proposed Bayesian anytime

classifier as a first result of this thesis. In the remainder of Part II an ap-

plication of the Bayes tree is presented in Chapter 8. In Chapter 9 novel

approaches are introduced to harness the strengths of anytime algorithms

on constant streams, future work in the area of anytime stream classification

is discussed in Chapter 10.

Chapter 8

Application: Anytime
Classification in HealthNet
Scenarios

∗ Demographic change will pose a major challenge for our society as peo-

ple live longer due to enhanced living conditions. Especially the increas-

ing amount of elderly people which need medical assistance and supervision

must be considered. In todays health environments medical supervision is an

expensive task as it can only be achieved by health professionals in hospitals

or other health facilities. A major contribution in this area is the development

of remote monitoring systems that provide health assistance and supervision

at home. Such a health monitoring provides not only economical savings as

it can save expensive health professional costs, but it also increases the living

quality of elderly people as they can stay in their familiar environment. One

major task for such a remote health monitoring is to provide an emergency

detection system. Based on a semi-automated classification of a patient’s

situation the system should automatically detect an emergency to pose an

alert. This alert is then manually verified by a health professional. The ap-

plicability of this scenario to emergency detection has been shown as proof

∗This chapter has been published in Plant C., Bhm C. (eds.): Database Technology for Life
Sciences and Medicine, World Scientific Publishing [KMA+10] and presented at the 9th IEEE
International Conference on Mobile Data Management (MDM 2008) [KKK+08].

151

152 Application: Anytime Classification in HealthNet Scenarios

body sensor
network

full
classifier

pre-
classifier

Normal

Emergency

professional
decision

automatic detection

detail request

Figure 8.1: Multi-step patient health classification from the body sensor net-
work up to the health professional.

of concept in a framework for “Mobile Mining and Information Management

in HealthNet Scenarios” [KKK+08].

8.1 Scenario and Prototype

Health monitoring tasks pose major challenges for data processing. In gen-

eral, automated monitoring produces a huge amount of stream data that

cannot be manually handled by humans. An automated analysis to assist the

health professionals is essential for a scalable system monitoring hundreds of

patients. Although automated analysis cannot take the final decision about

an emergency, it can dramatically reduce the number of patients by high-

lighting the most urgent cases. The health professional can then focus on a

more detailed analysis of these patients, which leads to an overall scalable

semi-automated processing.

For the data analysis components in such an emergency detection sys-

tem there are special requirements derived out of the health surveillance

application. Due to the huge amount of streaming data one must consider

scalability issues for the automated analysis. While servers in a data farm

may analyze terabytes of data, computers in hospitals can only process giga-

bytes of data. Mobile clients, which collect the data from sensors, have even

less resources and may process megabytes of data. Even the sensors in a

body sensor network have capabilities of processing some kilobytes of data,

however only with very restricted algorithms. A requirement in today’s het-

8.1. Scenario and Prototype 153

erogeneous architectures is thus to design an adaptive analysis which scales

with the available resources in a multi-step approach.

The general aim of such a multi-step classification is to provide an adap-

tive classifier applicable on various layers of the health surveillance process.

Especially for mobile devices with limited resources an efficient pre-classifier

is required. Based on the decision of the pre-classification the required level

of detail of the sensor measurements is decided. As shown in Figure 8.1 the

full sensor information is sent only in emergency cases while only aggregated

information is sent in normal situations. This way adaptive aggregation min-

imizes the communication cost and the energy consumption of the mobile

devices. Every decision is refined on the next layer of the multi-step classi-

fication, since the pre-classification is tailored for limited resources and its

lower classification accuracy may lead to false positives and false negative

decisions.

1st step:
pre-classification

2nd step:
refined classification

Figure 8.2: Multi-step anytime classification accuracy.

Each of the classifiers on the different levels must cope with streams of

variable size and speed. This is on the mobile device due to the varying

amount and frequency of data sent by the patients depending on their con-

dition as preclassified locally on the sensor controller. The receiving server

must classify all incoming patient data as accurately as possible. With many

patients potentially sending aggregated or detailed data, the amount of data

and their arrival rate may vary widely. Moreover, the number of patients

currently connected to the system may also vary. To treat each patient in a

154 Application: Anytime Classification in HealthNet Scenarios

global emergency situation, e.g. an earthquake, classification for each indi-

vidual observation must be performed quickly and be improved as long as

time permits. A solution to these requirements is offered by algorithms that

are based on the anytime paradigm.

A further challenging characteristic of medical data is the diversity of the

data. Depending on the disease to be detected there are various possible

measurements to be sensored. ECG, temperature and accelerometer data

has already been included in a proof of concept [KKK+08]. However, there

are far more possible non-invasive measures like respiration quotient, pulse

oximetry, humidity, body posture, respiration frequency and many more com-

plex medical measures. There can be also derived measures like features ex-

tracted out of the ECG signal [RGI05]. Especially the dependencies between

some of these measures are important for an emergency detection, as respi-

ration has a huge impact on ECG measurement artifacts, for example. The

system must fulfill this requirement of multivariate classification by handling

many different measurements.

Finally, since new patient data is constantly coming in and parts of these

data, e.g. from supervised hospital situations, can be used as additional train-

ing data, the classifier should be able to incrementally learn from new train-

ing data. New training data can be learned while the patient is supervised

and in the next moment the status can be switched back to classification.

In summary up, the overall classification task must fulfill three main re-

quirements derived out of the health surveillance scenario:

• Anytime processing of varying stream rates

• Incremental learning based on multivariate data

• Multi-step processing for classification in a cascade of devices

The Bayes tree fulfills all of the above requirements. As an anytime classi-

fication approach it adapts to different classification times given for example

by sensor measurement frequency. Furthermore, it can handle multivariate

data provided by multiple different sensors. As the classifier includes an in-

dexing structure for secondary storage it can handle huge amount of stream

8.1. Scenario and Prototype 155

data collected at medical facilities. Parts of this index structure can be used

in multi-step approaches in a cascade of classifiers with increasing accuracy.

Moreover, it also adapts to evolving data through an incremental learning of

the underlying model.

8.1.1 Prototype

The achieved results on benchmark data (cf. Chapters 4 to 7) show the appli-

cability of anytime classification, incremental learning and multi-step classi-

fication and suggest its use in future body sensor network scenarios. For a

remote health monitoring system, this ensures scalability as huge amounts of

information from multiple hospitals can be collected, stored and processed

in data farms. Moreover, incorporating existing medical data bases through

the presented bulk loading approaches improves the resulting anytime clas-

sification performance.

The anytime classification approach focuses on a multi-step patient health

classification based on multivariate sensor data. As depicted in Figure 8.1

there are multiple steps from the body sensor network where sensor mea-

surements are collected up to the health professional. Challenges for the

overall system arise on multiple layers from the extraction of vital signals out

of sensor measurements up to the health surveillance system for the health

professional. A prototype addressing all of these layers showed the applica-

bility of this concept. The developed prototype provides an overall mobile

system with textile sensors as shown in Figure 8.3. The underlying sensor

network is based on a MSP430 microcontroller (Texas Instruments, USA)

which serves as a master controller for the deployed sensors. In the pro-

totype three types of sensors are integrated: an ECG sensor, a temperature

sensor and an accelerometer. The ECG sensor is used to monitor the elec-

trical activity of the heart. The three-axis accelerometer is used to monitor

the activity of the user and to detect and identify artefacts due to movement.

For example, the ECG sensor is sensible to displacement of the electrodes.

In this case the acceleration data can be correlated to distinguish movement

artefacts from an irregular ECG due to disease related irregular patterns. As

156 Application: Anytime Classification in HealthNet Scenariosbody sensor network (meditBSN) are integrated into the textile, the sensor data is collected in
a small electronic unit (MeditBSN Base Board, Figure 3) and sent to a mobile device via
Bluetooth.

The mobile device first semantically integrates several data streams into one data stream.
Then, the device pre-analyzes and aggregates the sensor data using techniques for mining on
data streams. Further components for integration of the data with hospital information systems
are currently in progress.
The prototype has been successfully presented at several national and international
conferences and workshops, such as the IEEE Benelux Chapter on Engineering in Medicine
and Biology 2007 [AKK*07], the IEEE International Conference on Mobile Data
Management (MDM) [KKK*08] and the International Workshop on Wearable and
Implantable Body Sensor Networks (BSN2008) [KLZ*08].
The results of this prototype are based on individual results of the research groups
participating in this project. In the following sections, the main research results of the groups
are summarized. Details can be found in the referenced publications.

2 Data Modeling and Data Integration at Informatik 5
Informatik 5 addresses the data integration challenges in HealthNet. On the one hand,
integration is required at the level of sensor data streams. The set of sensors which is used by
a patient varies for each patient, and can even vary depending on the life context of the patient
(e.g. different sensors for day and night). Therefore, ad hoc integration of sensors is necessary
such that one uniform data stream is produced. Informatik 5 developed a framework for the
data processing on the mobile device which enables the semantic integration of sensor data.
On the other hand, once the data has been aggregated and more “abstract” medical events
have identified by data mining techniques, the integration of this information into medical
information systems is necessary. However, predefined and fixed integration processes as in
classical data warehouse systems cannot be used in this context, as patients, doctors, hospitals,

Figure 3 MeditBSN Base Board

Figure 2 Prototype of the Body Sensor

Shirt Figure 8.3: Application of anytime classification in body sensor networks
[KKK+08, MBZ+07, KBP+09, KCB+09].

textile sensors the shirt has three integrated electrodes for the monitoring

of heart rate signals. The electrodes are made from silver coated polyamide

yarn (Shieldex 110/34) which yields both highly conductive surfaces and

elastic behavior for ease of use and wearing comfort. The garment must be

close-fitting so that a permanent contact between the electrodes and the skin

can be guaranteed both for direct and capacitive use [MBZ+07].

The master controller of this body sensor network is connected to the

mobile device via a wireless communication channel. On the mobile device

a J2ME application processes the sensor data stream and decides on the data

to be forwarded to the back-end server. In depth analysis can then be done

on the server and detailed data can be requested automatically or by inter-

8.2. Summary 157

action of a health professional. Thus, in addition to the pre-classification on

the mobile device, further decision refinement about emergency situations is

included on a central server with a more complex classifier. The integration

of multiple classification steps into this process ensures a scalable emergency

detection system. First, on a mobile device carried by the patient, which

includes data aggregation based on the pre-classification. Second, classifi-

cation on a central server in a health facility which collects data of various

patients and performs a more accurate classification to refine the classifica-

tion results of the mobile devices. Overall the system is controlled by a health

professional taking final decisions about the patients situation.

8.2 Summary

In this chapter major challenges derived out of next generation mobile health

surveillance were discussed. Semi-automated classification was highlighted

for the emergency detection task and it was shown how novel index-based

classifiers can build the core for multivariate multi-step classification in

health surveillance. By supporting anytime learning and anytime classifi-

cation the Bayes tree can handle huge amounts of data, which makes it a

consistent solution for the described medical scenario. Moreover, as was laid

out in this chapter, the Bayes tree fulfills all requirements which are crucial

for classifying medical patient data in a scalable health surveillance.

Future challenges include extending the existing framework and evaluat-

ing the Bayes tree classifier based on sensor measurements in a broad health

surveillance project. This project will include extensions of textile sensors,

body sensors and preprocessing techniques as well as the integration and

merging of sensor data in electronic health record systems. Emergency de-

tection on multiple levels will show the benefits of multi-step classification

and further enhance the scalability of emergency detection systems.

Chapter 9

Anytime Algorithms on Constant
Streams

∗ Anytime algorithms have been proposed for many different applications,

we discussed anytime algorithms for data mining in Chapters 3 and 4 - 7.

Their strengths are the ability to first provide a result after a very short ini-

tialization and second to improve their result with additional time. There-

fore, anytime algorithms are mostly used when the available processing time

varies, as in the case of varying data streams. In this chapter the use of any-

time algorithms on constant data streams is discussed, suggesting anytime

algorithms for tasks with constant time allowance. Two approaches are in-

troduced that harness the strengths of anytime algorithms on constant data

streams and thereby improve the overall quality of the result with respect to

the corresponding budget algorithm. A theoretic model for the expected per-

formance gain is derived and the effectiveness of the proposed approaches is

demonstrated using existing anytime algorithms on benchmark data sets.

∗This chapter has been published in the Data Mining and Knowledge Discovery Journal,
Special Issue on Best Papers from the European Conference on Machine Learning and Princi-
ples and Practice of Knowledge Discovery in Databases (ECML PKDD 2009) [KS09a, KS09b].

159

160 Anytime Algorithms on Constant Streams

9.1 Introduction

As discussed in Chapter 3 data streams can generally be divided into two

groups, the first one being constant data streams, where the time between

each two consecutive stream data items is equal (constant), and the second

one being varying data streams, where the time between two items varies.

Items on a conveyor belt are an intuitive example for a constant stream.

They are often evenly arranged before being sorted or before passing an au-

tomated quality check etc. We use this for illustration as a running example

throughout the chapter (cf. Figure 9.1), keeping the abundance of applica-

tions from machine monitoring and sensor networks etc. in mind. Moreover,

classification of stream data items is used as an example application. At point

tf features are taken for each item e.g. through cameras or sensors. At point

td a classification decision must be made for the item passing to sort it into

the correct bin.

In practice and in the literature it was so far not usual to employ an any-

time algorithm on constant data streams, since there was no necessity to

bother with additional implementation effort if the time budget is constant

and known in advance. For any given time amount a budget algorithm can

be developed that satisfies this allotted time. The goal which was set and

achieved in the research presented here is to improve the quality of the re-

sult over that of the respective budget algorithm. In other words, for the

abundance of constant data streams and mining applications the proposed

methods achieve an improvement of the output quality.

type 1constant data stream
tf td

type 1
type 2

…

constant data stream

type m

…

arrival interval taarrival interval ta

Figure 9.1: Items on a conveyor belt as a constant data stream. Features are
extracted at tf , a decision must be made at td.

9.2. Novel Approaches for Constant Data Streams 161

The proposed approaches are not anytime algorithms by themselves.

They constitute meta approaches that enable applications with constant data

streams to benefit from the strengths of anytime algorithms. The basic idea

underlying these meta approaches is to spend less time on data items that

have a good result early on and use the acquired extra time on data items

with poor results.† Both approaches are based on a quality measure for the

current result of the anytime algorithm with respect to the current item. As

stated above stream classification is used as a running example; the confi-

dence of the current classification decision is used as a quality measure. The

proposed approaches are described in Section 9.2 and evaluated in Section

9.3. Section 9.4 concludes the chapter.

9.2 Novel Approaches for Constant Data Streams

In this Section novel approaches are presented that allow for profiting from

anytime algorithms on constant data streams. In Section 9.2.1 formal def-

initions are provided and the expected improvement is discussed using a

theoretic model. Sections 9.2.2 and 9.2.3 introduce the batch and the fifo

approach respectively.

9.2.1 Definitions and Models

Definition 9.1 Let S be a constant data stream and algo a stream mining
algorithm working on S. Then tf (o) is defined as the time when the features
of an item o ∈ S become known to algo and td(o) is the time when algo must
provide a result for o. The arrival time between oi and oi+1 is defined as ta and
is constant for all i.

If td − tf ≤ ta a budget algorithm with a time budget of td − tf is the

best choice. If td − tf > ta the proposed approaches can improve the overall

quality of the result. The running example assumes six items passing per

†The meta approaches presented in this chapter are applicable to both constant and
varying streams. They are discussed and evaluated on constant streams to highlight the
benefits over budget algorithms, which are commonly used in practice and literature.

162 Anytime Algorithms on Constant Streams

second and two seconds between the camera (feature extraction at tf) and

the decision (classification at td). The proposed approaches can increase the

number of correctly classified stream items (improve the overall classification

accuracy). Besides the anytime algorithm they require a confidence measure

that assesses the certainty of the current decision. This confidence measure

must be provided by the user and is justified by its performance in an actual

application.

Definition 9.2 For a classifier C the confidence of its classification decision on
an item o states how certain the decision is and ranges from 0 (no confidence)
to 1 (certain):

confC(o) : o→ [0, 1]

A confidence measure is called reliable if the accuracy is monotonically

increasing with the confidence: the higher the average confidence the bet-

ter the accuracy of a classifier. In this section at first a linear dependency

between confidence and accuracy is assumed, the influence of confidence

measures is discussed at the end of the section.

To build a theoretical model, it is assumed that after initialization the av-

erage confidence of an anytime classifier’s decision increases over time; it is

the same confidence as that of the corresponding budget classifier with equal

time allowance. Moreover, for any given time budget the confidence of the

individual decisions for this budget are assumed to be scattered around the

expected value. The amount of scattering is assumed to decrease over time.

Figure 9.2 illustrates the assumptions (right). The time axis is normalized

to [0, 1]; at t = 1 the anytime classifier has performed all possible improve-

ments. The model assumes an anytime classifier that performs one initial

step and n improvement steps that all take the same amount of time (the

anytime nearest neighbor classifier [UXKL06] is an example, cf. Chapter 3).

Let ζ(x, t) denote the probability density function that describes the scat-

tering of the confidences where t is the allowed time budget (figure 9.2 gives

an example (left)). Then we can calculate the probability that the confidence

9.2. Novel Approaches for Constant Data Streams 163

F(c t)^F(c, t)

budget confidence [μ(t)]

ĉ

budget confidence [= μ(t)]

scattering [= σ(t)]

*

*

Figure 9.2: Expected confidence and scattering.

c(t) at time t is larger than some confidence ĉ by

F (ĉ, t) = p(c(t) ≥ ĉ) =

∫ ∞
ĉ

ζ(t, x)dx

Recall the n improvement steps tj, j = 1 . . . n, of the anytime classifier.

If F (c, t) is used as a cumulative distribution function, then the probability

that we exceed ĉ for the first time between tj−1 and tj can be derived as

h(ĉ, tj) = F (ĉ, tj) − F (ĉ, tj−1). (Note that F (ĉ, 0) +
∑n

v=1 h(ĉ, tv) = 1.) Now

we can determine the expected time that is necessary to reach ĉ by

t(ĉ) = F (ĉ, 0) · 1

n
+

n∑
v=1

h(ĉ, tv) ·
v

n
(9.1)

As an example we assume the scattering to follow a Gaussian distribution

g(µ, σ, x) = (1/(σ
√

2π)) · e(−0.5·(x−µ
σ

)2) where the mean is the budget confi-

dence following µ(t) = c0 + (1− c0) · (1− e−α·t) and the variance (scattering)

decreases by σ(t) = σ0 · e−β·t. F (ĉ, t) is plotted in Figure 9.3 (left) for ĉ = 0.3.

The gray line corresponds to the probability that we did not yet exceed ĉ.

Figure 9.3 (right) shows the corresponding graph for t(ĉ) (batch) compared

to the inverted budget confidence µ−1(ĉ). The inverse of equation 9.1 tells us

164 Anytime Algorithms on Constant Streams

Figure 9.3: Left: F (0.3, t) corresponds to the probability that we exceeded a
confidence of 0.3 at time t. Right: The gray lines corresponds to the expected
time we need to reach a given confidence when processing multiple objects
at the same time.

which confidence can be achieved using an anytime classifier in an average
time. More precisely, to be able to benefit from the above, several items must

be processed simultaneously while striving to distribute the available time

among them so as to optimize the resulting accuracy. This means fewer im-

provement steps should be spent on items that have a high confidence early

on to use the acquired extra time to improve less certain decisions.

So far we assumed a reliable confidence measure, that is, a linear depen-

dency between confidence and accuracy of a classifier. If the confidence is

not fully reliable, then the average time needed to reach a certain accuracy

will increase. This corresponds to a higher necessary confidence as is indi-

cated by the dashed gray line in Figure 9.3 (right). Instead of elaborating

this part for the theoretical model, the actual approaches are described in

the next sections and evaluated in Section 9.3 using real algorithms and real

confidence measures. Moreover, the confidence distributions resulting from

the experiments are analyzed in comparison with the theoretical model in

that section.

9.2.2 Batch Approach

As described in the last section several items must be processed simultane-

ously and the available time must be distributed among them to be able to

9.2. Novel Approaches for Constant Data Streams 165

time: t0
type 1

tf td

… 17 16 15 14 13

batch approach

12 5 4 3 2 111 10 9 8 7 6

type 1
type 2

…1 1 1 1 1

Buffer

1 1 1

arrival interval ta
type m

…

batch approach
time: t0 + 5∙ta

arrival interval ta

type 1

…

batch approach

11 10 9 8 7 614 13 1217 16 15

yp
type 2

…

Buffer

type m

Figure 9.4: Illustration of the batch approach. When the classify buffer
reaches td it is swapped (bottom).

improve the overall quality of the result. The first approach therefore uses an

object buffer and processes the whole buffer until a decision must be made

at td. This approach is referred to as the batch approach; it is illustrated in

Figure 9.4.

The number of items between points tf and td is r = b(td − tf)/ta)c, the

capacity of the buffer is set to br/2c. In the running example r = 12, hence

the buffer holds six items. At time t0 (Figure 9.4, top) the buffer is filled ({6,

7, 8, 9, 10, 11}) and there is still 5 · ta time left to improve the classification

on those six items. At time t0 + 5 · ta (Figure 9.4, bottom) the decision for

item 6 is required and hence the buffer is cleared and the next six stream

data items are added to it. The decisions for items 6 to 11 do not change

thereafter and they are sorted into their corresponding bins when passing td.

The implementation of the batch approach uses two buffers, a collect-
Buffer to collect the next br/2c items and a classifyBuffer, which is used to

distribute the processing time among the included items according to their

confidence. Figure 9.5 provides a pseudocode description of the batch ap-

proach. When a new item snew arrives, it is initialized and stored in the

collectBuffer (lines 5-7). Initialization is done using the actual anytime algo-

rithm, hence a first result and a first confidence is available for snew when

it is stored in the buffer. When br/2c items have been collected, the buffers

166 Anytime Algorithms on Constant Streams

01 // Input: confidence measure conf, constant data stream S
03 collectBuffer = Ø, classifyBuffer = Ø;
03 capacity = floor((td–tf)/(2*ta));
04 while (true) {
05 if (new item snew arrived) {
06 init(snew);
07 collectBuffer.add(snew);
08 if (collectBuffer.size() == capacity) {
09 classifyBuffer = collectBuffer;
10 collectBuffer = Ø;
11 }
12 } else {
13 minConf = ∞;
14 itemToImprove = null;
15 for (Item s : classifyBuffer) {
16 if (conf(s) < minConf) {
17 minConf = conf(s);
18 itemToImprove = s;
19 }
20 }
21 improve(itemToImprove);
22 }
23 }

Resize to 160%

Figure 9.5: Pseudocode description of the batch approach.

are swapped and the collectBuffer is cleared (lines 8-10). Hence, the classify-
Buffer then contains br/2c initialized items. If no new item has arrived, one

item out of the classifyBuffer is improved, i.e. processed further using the

anytime algorithm. For this purpose the object with the lowest confidence is

chosen according to the given confidence measure conf (lines 12-21). After

improving the item, its assigned class label may have changed as well as the

confidence of the decision.

For classification on constant data streams using the batch approach the

best would be to always refine that item in the buffer first, which requires the

least number of improvements until it is classified correctly. Since this num-

ber is unknown, no confidence measure can be derived from it. In Section

9.3 details are provided about the actual confidence measures that are used

and evaluated in the experiments. In the next section the second approach

is described, which incorporates an additional time function for the priority

decision.

9.2. Novel Approaches for Constant Data Streams 167

9.2.3 FiFo Approach

In the batch approach the classifyBuffer’s capacity was set to br/2c to enable

a meaningful swapping; the second approach uses a FiFo queue that holds

all r elements between tf and td. As a consequence each item in the queue

has an individual amount of time remaining for further improvement steps.

In the batch approach each item contained in the classifyBuffer had the same

remaining time due to the swapping of the two buffers. The FiFo approach

uses the FiFo queue to store the items and to keep track of the order of arrival.

The decision about which item in the queue is chosen to be improved is done

separately by assigning priorities to the items as explained below.

The individual remaining time can be incorporated in determining the

item to be improved next. Still, the confidence of the current result for the

respective items is an important factor for the choice. If all items in the

queue have the same confidence, then priority should be given to the item

with the lowest remaining time. Even if the oldest item has a slightly higher

confidence than the rest, we still prefer improving that item, because it is the

next to be removed from the queue and we may therefore lose the opportu-

nity of improving it once more. Hence, a weighting function is required that

decreases with the remaining time:

ω(tr) : R+ → R
+ : tr → [ωmin, 1] (9.2)

with

t1 < t2 ⇒ ω(t1) ≤ ω(t2).

In the above equation tr is the remaining time and ωmin is the minimal

weight. Using a weight function as in Equation 9.2 can artificially decrease

the confidence for items with a small amount of remaining time by simply

multiplying the confidence conf(s) of each item s with its weight ω(tr(s))

according to the remaining time:

conf(s) · ω(tr(s))

168 Anytime Algorithms on Constant Streams

01 // Input: confidence measure conf, constant data stream S,
02 // time weighting function weight
03 fifoQueue = Ø;
04 capacity = floor((td–tf)/ta);
05 while (true) {
06 if (new item snew arrived) {
07 init(snew);
08 fifoQueue.put(snew);
09 if (fifoQueue.size() > capacity)
10 fifoQueue.get();// remove oldest item from FiFo
11 } else {
12 minConf = ∞;
13 itemToImprove = null;
14 for (Item s : fifoQueue) {
15 tempConf = conf(s) * weight(remainingTime(s));
16 if (tempConf < minConf) {
17 minConf = tempConf;
18 itemToImprove = s;
19 }
20 }
21 improve(itemToImprove);
22 }
23 }

Resize to 160%

Figure 9.6: Pseudocode description of the FiFo approach.

Two common weighting functions are evaluated in the experiments:

linear: ω(tr) = ωmin + (1− ωmin) · tr
(td − tf)

(9.3)

exponential: ω(tr) = ωmin + (1− ωmin) · 1− e−λ·tr
1− e−λ·(td−tf)

(9.4)

Figure 9.6 shows a pseudocode description of the fifo approach. Newly

arrived items are initialized and added to the queue (lines 6-8). If the FiFo

capacity is exceeded, the oldest item is removed from the queue (lines 9-

10). If no new item arrived, an item to improve is chosen from the queue

according to minimal time weighted confidence as described above (lines 14-

20). As in the batch approach the chosen item is improved (line 21) possibly

affecting its assigned class label and confidence.

9.3. Experiments 169

9.3 Experiments

As introduced above, anytime classification is used as an example applica-

tion. The employed algorithms and corresponding confidence measures are

introduced in the next section. In Section 9.3.2 the effectiveness of the pro-

posed approaches is demonstrated and their performance is compared. Sec-

tion 9.3.3 provides an investigation of the confidence distributions in com-

parison with the theoretical model. A short discussion concludes this section.

9.3.1 Algorithms and Confidence Measures

The proposed meta approaches are evaluated using anytime versions of the

nearest neighbor classifier, Bayes classifier and support vector machines

(cf. Chapter 3). Simple confidence measures are employed here; more so-

phisticated measures can be developed but are not the focus of this research.

Recent approaches to classification confidence are discussed in Section 9.3.4.

For the anytime nearest neighbor (knn for short), with nns
i being the

nearest neighbors of the current object s and d(s, nns
i) the Euclidean distance

between s and its i-th nearest neighbor, the following confidence measure

assigns a higher confidence if the involved neighbors are closer to the object:

confknn(s) = e−
∑k
i=1 d(s,nns

i)

To determine a confidence for the current decision of the anytime SVM,

the difference between the highest output value hj1(o) and the second high-

est output value hj2(o) is computed to express the certainty. confsvm is calcu-

late as
confsvm(o) = 1− e−(hj1 (o)−hj2 (o)).

Similar to the SVM the confidence of the current decision for the Bayes

tree is calculated as the difference between the highest probability P (Ci1 |o)
and the second highest probability P (Ci2|o):

confbt(o) = P (Ci1|o)− P (Ci2|o)

These simple choices are justified empirically in the following.

170 Anytime Algorithms on Constant Streams

0,86

0,88

0,9

ac
y

letter, 5nn

Budget

0,78

0,8

0,82

0,84

0,12 0,15 0,17

ac
cu
r

time

Budget

WS 4

WS 7

WS 10

1

pendigits, 5nn

0 96

0,98

0,94

0,96

ac
y

0,9

0,92

ac
cu
r

Budget

WS 5

0,86

0,88 WS 9

0,84

,

0 05 0 15 0 290,05 0,15 0,29 time

Figure 9.7: Evaluating the batch approach on different window sizes (WS)
using anytime 5nn on the letter (left) and pendigits (right) data set.

9.3.2 Evaluation

As in section 9.2.1 the time is normalized to [0, 1], where 0 represents the

result just after initialization (i.e. zero improvements done) and 1 indicates

that all information has been processed (i.e. no more improvements possi-

ble). All experiments use a 4-fold cross validation an benchmark data sets

from [HB99] to evaluate the classification accuracy.

The first experiment evaluates the batch approach starting off with the

anytime nearest neighbor with k = 5 (5nn). Figure 9.7 (left) shows the

results on the letter data set (20000 object, 16 dimensions, 26 classes) for

various window sizes. In all experiments, the corresponding budget classifier

is trained for the respective time allowance such that each item is allowed the

same processing time dictated by the arrival rate. The improvement of the

budget classifier’s accuracy when more time is given (slower stream) shows

its effectiveness with respect to the allotted time.

For the same time allowance (one group of bars) the accuracy increases

with growing window size, which proves the effectiveness of the proposed

batch approach in this experiment. Similar results can be seen for 5nn on

the pendigits data set (10992 objects, 16 dimensions, 10 classes) in Figure

9.7 (right). The relative accuracy increase due to the batch approach is the

largest for small window sizes, i.e. the improvement from Budget to WS

4 is higher than the improvement from WS 4 to WS 7 on letter (compare

Budget to WS 5 and WS 5 to WS 9 on pendigits respectively). On pendigits
the accuracy for WS 9 is even slightly less than for WS 5 for t = 0.15 (i.e.

when 15% of the model (training set) have been evaluated).

9.3. Experiments 171

1,20

vowel, 5nn (accuracy gain)

1,15

,

1,10

y
ga
in

Budget

1,00

1,05

ac
cu
ra
cy Budget

WS 4

WS 7

0,95

1,00a WS 7

WS 10

0,90

0 05 0 16 0 270,05 0,16 0,27 time

Figure 9.8: The relative accuracy gain w.r.t. the budget classifier for 5nn on
vowel is up to 15%.

1

pendigits, 1nn

0 96

0,98

0,94

0,96

ac
y

0,9

0,92

ac
cu
r

Budget

WS 3

0,86

0,88 WS 5

0,84

,

0 05 0 15 0 290,05 0,15 0,29 time

1
vowel, 1nn

0 8

0,9

0,7

0,8
ra
cy

Budget

0 5

0,6ac
cu
r Budget

WS 7

WS 10

0,4

0,5 WS 10

0,3

0 0 0 1 0 2 0 30,0 0,1 0,2 0,3 time

Figure 9.9: Performance of the batch approach.

Figure 9.8 shows the relative accuracy gain w.r.t. Budget for 5nn on the

vowel data set (990 objects, 10 dimensions, 11 classes). Once more the

accuracy increases with growing window sizes. Moreover, the accuracy gain

with respect to the budget classifier is higher for faster streams (i.e. less time

between objects): The accuracy increases by 15% using WS 10 at t = 0.05

while the increase is only 5% for the same window size at t = 0.27.

Setting k = 1 improves the result for the anytime nearest neighbor on

pendigits (cf. Figure 9.9 left). Still the batch approach shows its effectiveness

as the accuracy increases with the window size. Figure 9.9 (right) shows

the performance of 1nn on vowel for a wide range of time intervals. The

improvement from Budget to WS 7 is significant throughout while the im-

provement from WS 7 to WS 10 is rather small. This shows that the batch

approach is very effective already for small window sizes, which implies that

there are fewer objects that need to be ’helped out’ by receiving additional

processing than confident objects ’willing’ to spare processing time.

Figure 9.10 shows the results for the SVM and Bayes tree classifiers on

172 Anytime Algorithms on Constant Streams

0,7

vowel, SVM

0,6

,

0,4

0,5

ac
y

0,3

ac
cu
r

Budget

WS 4

0,1

0,2 WS 7

0

0 1 0 18 0 260,1 0,18 0,26 time

0,85

0,9

0,95

1

ac
y

vowel, BT

Budget

0,6

0,65

0,7

0,75

0,8

0,00 0,01 0,03 0,04 0,06 0,07 0,09 0,10 0,11

ac
cu
r

time

Budget

WS 4

WS 7

WS 10

Figure 9.10: Testing the batch approach using anytime SVM (left) and Bayes
tree (right) on vowel.

vowel. For all stream speeds both classifiers improve their accuracy with a

larger window size. This proves the effectiveness of the batch approach also

for different anytime algorithms. For the rest of the evaluations the vowel
data set is used unless mentioned otherwise.

To relate to the theoretic assumptions made in Section 9.2.1 the depen-

dency between confidence and accuracy for the three anytime classifiers

is analyzed (additional analysis is provided in Section 9.3.3). Figure 9.11

(left) shows the accuracy over confidence plots for SVM, BT and 5nn respec-

tively. Each point represents the accuracy and the corresponding average

confidence for one experiment (one time interval tested using 4-fold cross

validation as above). All three classifiers show a monotonic increase of ac-

curacy over the respective confidence. Interestingly, for all tested classifiers

and confidence measures the behavior is close to a linear dependency. Simi-

lar observations resulted from experiments on other data sets.

Completing the evaluation of the batch approach the expected time to

reach a given confidence is reported in Figure 9.11 (right). These plots di-

rectly relate to Figure 9.3 from Section 9.2.1 (cf. page 164). The results show

that, using the batch approach, the expected time decreases for all three any-

time classifiers and for any given confidence. As above it can be seen that

the largest impact appears for small window sizes (e.g. Budget to WS 4 for

BT in Figure 9.11, middle). Due to the relationship between accuracy and

confidence discussed above, similar plots and results can be obtained for the

expected time to reach a given accuracy.

9.3. Experiments 173

1

SVM, batch approach

0,8
0,9

0,6
0,7

ac
y

0 3
0,4
0,5

ac
cu
r

WS 1

WS 4

0 1
0,2
0,3 WS 7

0
0,1

0 0 2 0 4 0 6 0 8 10 0,2 0,4 0,6 0,8 1
confidence

0,2

0,25

0,3

e

SVM, t(c)

0

0,05

0,1

0,15

0 0,2 0,4 0,6 0,8 1

ti
m

confidence

Budget

WS 4

WS 7

1

BT, batch approach

0 9

0,95

0,85

0,9

ac
y

WS 1

0,75

0,8

ac
cu
r WS 1

WS 4

WS 7

0,65

0,7
WS 7

WS 10

0,6

,

0 6 0 7 0 8 0 9 10,6 0,7 0,8 0,9 1

confidence

0,16

BT, t(c)

0 12

0,14

,

0,10

0,12

e Budget

0,06

0,08

ti
m Budget

WS 4

WS 7

0,02

0,04
WS 7

WS 10

0,00

,

0 8 0 85 0 9 0 95 10,8 0,85 0,9 0,95 1
confidence

1

knn, batch approach

0,8
0,9

0,6
0,7

ac
y

WS 1

0 3
0,4
0,5

ac
cu
r WS 1

WS 4

WS 7

0 1
0,2
0,3 WS 7

WS 10

0
0,1

0 0 2 0 4 0 6 0 8 10 0,2 0,4 0,6 0,8 1
confidence

0,3

knn, t(c)

0,25

,

0,2

e Budget

0,1

0,15

ti
m Budget

WS 4

WS 7

0,05

0,1 WS 7

WS 10

0

0 0 2 0 4 0 6 0 8 10 0,2 0,4 0,6 0,8 1
confidence

Figure 9.11: Left: Relation between the average confidence and the observed
accuracy with the batch approach. Right: The time needed to reach a given
confidence with the batch approach. Results are shown for all three classi-
fiers tested on the vowel data set.

174 Anytime Algorithms on Constant Streams

1
cy

5nn, FiFo approach

0,9
ac
cu
ra

0 7

0,8
Budget

0,6

0,7 QS 4

QS 7

0,5

,
QS 10

0,4

0 08 0 11 0 13 0 16 0 19 0 22 0 24 0 27 0 30 0 32 0 350,08 0,11 0,13 0,16 0,19 0,22 0,24 0,27 0,30 0,32 0,35 time

1

BT, FiFo approach, varying mtf

0 9

0,95

0,85

0,9

ac
y mtf 1.0

0,75

0,8

ac
cu
r

mtf 0.5

mtf 0.1

0,65

0,7 mtf 0.0

Budget

0,6

,

0 00 0 05 0 10 0 150,00 0,05 0,10 0,15

time

Figure 9.12: Top: Evaluating different queue sizes for the FiFo approach
using the anytime nearest neighbor with k = 5. Bottom: Evaluating different
time weighting functions for queue size 13 using the Bayes tree on vowel.

Next the FiFo approach is evaluated starting off again with the anytime

nearest neighbor for k = 5. A linear time weighting function is used with

ωmin = 0.5 (cf. Section 9.2.3). Figure 9.12 (top) shows the results for

four different queue sizes from faster streams (ta = 0.08) to slower streams

(ta = 0.35). As in the batch approach the performance of the respective bud-

get classifier is shown for comparison. The FiFo approach proves its effective-

ness similar to the batch approach: with larger queue sizes the classification

accuracy improves for all stream speeds. Similar results hold for the other

9.3. Experiments 175

classifiers, details are omitted. The influence of the time weighting function

is analyzed instead.

Figure 9.12 (bottom) shows the performance of the Bayes tree using the

FiFo approach with varying time weighting functions. As a reference the

results for budget classifier are given as well. The other results have been

obtained using queue size 13. The employed time weighting functions are

linear and the minimal value mtf (minimal time factor) varies from 0 to 1

(cf. ωmin in Section 9.2.3). mtf = 1 corresponds to a constant factor of 1, i.e.

as if no time weighting would be applied.

All FiFo variants outperform the budget classifier. The linear time weight-

ing function with ωmin = mtf = 0 does not yield the same results as the

budget classifier, because there is still more than one improvement possible

between two items (except for t = 0). Surprisingly the results improve con-

stantly with growing mtf for all stream speeds. More precisely, a constant

time weighting function, where time has no impact on the weighting, yields

the best results. The same observation resulted for the exponential time

weighting function, where ωmin = 1 also corresponds to a constant function

(cf. Equation 9.4). This indicates that simply using the confidence value is

sufficient for distributing the available processing time even if items have in-

dividual remaining times. Therefore only the confidence value is used in the

following when comparing the two approaches.

Figure 9.13 shows a comparison between the FiFo approach and the batch

approach for anytime SVM and anytime nearest neighbor respectively. Both

approaches outperform the budget classifier throughout. In the comparison

the queue sizes are twice as big as the window sizes since the batch approach

can only process half of the objects between tf and td due to window swap-

ping (cf. Section 9.2.2). For both classifiers the FiFo approach outperforms

the batch approach slightly throughout different window sizes and different

stream speeds. This seems obvious since the FiFo approach has more ”room”

(objects) for optimization. Still, the batch approach is only slightly behind,

showing that the approach is effective even for very small settings in terms

of td − tf .

176 Anytime Algorithms on Constant Streams

0,46

0,57

0,44

0,56

0,39
0,47

ac
cu
ra
cy

SVM on vowel (FiFo vs. batch)
Budget WS 4 QS 8

,

0,08 0,2

a

time

SVM on vowel (FiFo vs. batch)
Budget WS 7 QS 14

0,590,58

cy

Budget WS 7 QS 14

0,490,47
0,39

0,47

ac
cu
ra
c

,a

0 08 0 2 i0,08 0,2 time

0,77

0,90

0,72
0,83

0,68

0,82

ac
cu
ra
cy

KNN on vowel (FiFo vs. batch)
Budget WS 4 QS 8

0,16 0,27

a

time

KNN on vowel (FiFo vs. batch)
Budget WS 7 QS 14

0,82 0,85
0 77

0,91

cy
Budget WS 7 QS 14

0,68
0,73 0,77

ac
cu
ra
c

a

0 16 0 27 i0,16 0,27 time

Figure 9.13: Evaluating FiFo versus batch approach using the anytime SVM
(left) and 5nn (right) classifier. Both outperform the budget classifier.

9.3.3 Confidence distributions

One hypothesis in the theoretical model (cf. Section 9.2.1) is that the budget

confidence (the average confidence over all classified objects) increases with

increasing time allowance. The experimental results presented in the previ-

ous section confirmed this assumption for all three classifiers tested (cf. Fig-

ure 9.11). In the example of Section 9.2.1 we assumed that for a given time

allowance the individual confidences follow a Gaussian distribution about

their mean value. The following examines the confidence distributions ob-

tained from the experimental evaluation.

Figure 9.14 shows the confidence distributions for the anytime nearest

neighbor on three data sets (letter, pendigits and vowel from top to bottom),

once in 3d-view (left) and the same plot seen from above (right). As can be

seen on the very left edge of the 3d-plots, initially the confidences roughly

9.3. Experiments 177

follow a normal distribution centered at 0.5 for pendigits and vowel and 0.7

for letter. While the mean increases over time, the scattering, i.e. the vari-

ance, decreases, even though only slightly. An explanation lies in the em-

ployed confidence measure: it increases with increasing proximity of the

current nearest neighbors, which is naturally the case over time. These plots

strongly resemble Figure 9.2 from the theoretical model confirming the as-

sumptions made.

For the Bayes tree the confidence plots are shown in Figure 9.15 (top

and center) for the Forest Covertype (left) and Gender data set (right). The

bottom row shows the confidences of the anytime nearest neighbor on these

data sets. The y-axis (count) is cut off to enhance visibility of the described

aspects. The nearest neighbor plots show a similar behavior as described

above. The confidences are higher on these two data sets, since their large

size yields denser data distributions and hence smaller distances. The confi-

dence distributions for the Bayes tree do not resemble Gaussian distributions

per time allowance. The initial confidences seem to be rather equally dis-

tributed at lower confidences while a large fraction of the objects has a very

high confidence early on. With increasing time fewer items exhibit a medium

confidence while the large fraction of high confidences remains and a second

accumulation grows at very low confidences. Similar results were obtained

on other data sets. The reason lies once again in the employed confidence

measure. For the Bayes tree the difference between the highest and the sec-

ond highest probability is calculated in the exponent of the confidence mea-

sure (cf. Section 9.3.1). While for most objects the probability for a single

class soon excels those of the remaining classes, a fraction of the objects lies

at a boundary between two classes yielding similar probabilities the more the

mixture models are refined over time. Nonetheless, the average confidence

as well as the average accuracy of the Bayes tree increase over time.

The theoretical model is defined for arbitrary probability density func-

tions (pdf) describing the confidence distribution. The results show that the

actual pdfs for given confidence measures can be largely different. Nonethe-

less, the proposed meta approaches improved the accuracy in all tested sce-

narios.

178 Anytime Algorithms on Constant Streams

Figure 9.14: Confidence distributions for the anytime nearest neighbor on
letter (upper row), pendigits (middle row) and vowel (bottom row). Left:
3d-view, Right: birds eye-view.

9.3. Experiments 179

Figure 9.15: Confidence distributions on Forest Covertype (left) and Gender
(right). The upper two rows show the resulting confidences for the Bayes tree
(3d and birds eye), the bottom row shows the corresponding confidences of
the anytime nearest neighbor (birds eye).

180 Anytime Algorithms on Constant Streams

9.3.4 Discussion

We have seen that both the batch and the FiFo approach improve the classi-

fication accuracy of three prominent classification approaches (Bayes, SVM,

nearest neighbor) on constant data streams even for small window or queue

sizes. The small size implies a very small overhead in terms of space and time

complexity, as can directly be seen from the provided pseudocodes. More-

over, the results presented in Section 9.3.2 prove that the small time over-

head does not negatively affect the output quality, but improves the quality

instead through the better distribution of available time.

While simple confidence measures were employed in the experiments,

one may develop more sophisticated ones tailored to individual applications

or classifiers. There are several approaches to classification confidence in

the literature that either focus on specific classifiers such as neural networks

[Wan90] or case based reasoning [Che00], or proposed solutions for a spe-

cific application like spam filtering [DCDZ05] or natural language processing

[DCP08]. Along with the proposed approaches for classification on constant

data streams this is an interesting area for further research.

9.4 Conclusion

In this chapter two novel approaches have been proposed that harness the

strengths of anytime algorithms for constant data streams. The goal was to

improve the quality of the result w.r.t. traditional budget approaches, which

are used in an abundance of stream mining applications. Using anytime

classification as an example application experimental results have shown for

SVM, Bayes and nearest neighbor classifiers that both approaches improve

the classification accuracy for slow and fast data streams. The results con-

firm the general theoretic model and show the effectiveness of the proposed

approaches. The simple yet effective idea can be employed for any anytime

algorithm along with a quality measure and motivates further research in

classification confidence measures and anytime algorithms.

Chapter 10

Future Work

Many aspects of the algorithmic solution to anytime Bayesian classification

on continuous attributes have been investigated and evaluated. The final

version of the Bayes tree as it results from Chapter 7 shows very good results

on various domains. An interesting future research objective is the combina-

tion of the Bayes tree with subspace methods. In a subspace Bayes tree the

entries would store probability density functions that consider only a subset

of the attributes. While a global dimensionality reduction can be achieved

by preprocessing the data, for example using principle component analysis

(PCA) or linear discriminant analysis (LDA), individual reductions per node

can be achieved by applying subspace clustering in a top down manner for

tree construction. Another interesting option for a subspace Bayes tree re-

sults from the concept transfer of Bayesian networks as used in Chapter 7:

using an empty initialization for both the network structure and the covari-

ance matrix before the hill climbing search can yield individual subspaces

per node.

Further research questions regarding the Bayes tree include the inves-

tigation of different kernels such as the Epanechnikov kernel, and further

construction methods such as those in X-trees or Ball-trees. The properties

of created trees can be analyzed using statistical methods such as χ2 tests.

Characteristic values can be developed and evaluated that predict the ex-

pected performance based on the measured properties. Finally, to enable a

consistent use on data sets with mixed attribute types the Bayes tree can be

181

182 Future Work

combined with existing anytime classifiers for categorical attributes such as

SPODEs [YWKT07] (cf. Chapter 3.2).

The benefits of the meta-approaches proposed in Chapter 9 can be inves-

tigated for other anytime algorithms and tasks. An example is provided in

Chapter 14 for anytime outlier detection. The development of confidence

measures for classifiers and other algorithms employed using the proposed

meta-approaches is a promising research direction.

Finally, anytime classifiers can be further developed to serve as a static

classifier. While this may sound absurd at first it offers interesting oppor-

tunities, since it can yield faster classification. Similar to their application

on constant streams, a prerequisite is a confidence measure for the current

decision. The classification process could then be terminated based on the

current confidence value or the variance (or slope) of the most recent confi-

dences. Further options include a fix number of improvement steps for the

anytime algorithm, e.g. fix number of kernels or Gaussians for the Bayes tree.

For the Bayes tree another possibility to terminate the refinement individu-

ally based on the current object is to determine lower and upper bounds for

the densities per subtree and stop the descent if it cannot affect the decision

anymore.

Part III

Anytime Stream Clustering

183

Chapter 11

Self-adaptive Anytime Stream
Clustering

∗ Clustering data streams with varying inter-arrival times can profit from

anytime algorithms. For clustering, this means that the algorithm is capable

of processing even very fast streams, but also uses greater time allowances

to refine the clustering model. In this chapter a parameter free algorithm

is proposed that automatically adapts to the speed of the data stream. It

makes best use of the time available under the current constraints to provide

a clustering of the objects seen up to that point. The proposed approach in-

corporates the age of the objects to reflect the greater importance of more

recent data. For efficient and effective handling the ClusTree is introduced

as a compact and self-adaptive index structure for maintaining stream sum-

maries. The ClusTree makes no a priori assumption on the size of the clus-

tering model, but dynamically self-adapts. It is shown that the algorithm can

be combined with existing techniques for aging objects in the stream using

decay functions, reporting cluster snapshots at different points in time, and

comparing views at different points in time (cf. Chapter 3).

∗This chapter has been published in the Proceedings of the 9th IEEE International Con-
ference on Data Mining (ICDM 2009) [KABS09].

185

186 Self-adaptive Anytime Stream Clustering

11.1 The ClusTree Algorithm

The proposed self-adaptive anytime stream clustering relies on an index

structure for storing and maintaining a compact view of the current clus-

tering. The size of the clustering model automatically adapts to the stream

speed, which cannot be achieved by any buffering outside the storage struc-

ture. Moreover, to preserve a complete model no data object is dropped; any

object from the stream is inserted into the index and possibly merged with

aggregates of previously inserted objects. The following describes strategies

for dealing with varying time constraints for anytime clustering, i.e. how the

process of inserting an object is interruptible at any time.

11.1.1 Micro-clusters and anytime insert

The proposed approach is based on micro-clusters [ZRL96] as compact repre-

sentations of the data distribution. By maintaining measures for incremental

computation of mean and variance of micro-clusters, the infeasible access to

all past stream objects is not necessary (cf. Chapter 3). Existing micro-cluster

approaches lack support for varying stream inter-arrival times. It is, however,

crucial to provide the means for anytime clustering and self-adaptation to

stream speed. The proposed solution maintains cluster features (CFs) by ex-

tending index structures from the R-tree family [Gut84, BKSS90, SAK+09].

Such hierarchical indexing structures provide the means for efficiently locat-

ing the right place to insert any object from the stream into a micro-cluster.

The idea is to build a hierarchy of micro-clusters at different levels of granu-

larity. Given enough time, the algorithm descends the hierarchy in the index

to reach the leaf entry that contains the micro-cluster that is most similar

to the current object. If this micro-cluster is similar enough, it is updated

incrementally by the object’s values. Otherwise, a new micro-cluster may be

formed.

The important observation for anytime clustering of streaming data is,

that there may not always be enough time to reach the leaf level to insert the

object. Therefore novel strategies for anytime inserts are presented. There

11.1. The ClusTree Algorithm 187

are several possibilities for handling object arrivals before the current object

insert reaches leaf level. The straightforward solution keeps a global queue.

This approach is very simple, but it may require an infinite buffer. Also, we

may never have the time to empty the queue, resulting in outdated clustering

results. To reduce memory consumption, one could maintain a global aggre-

gate, i.e. instead of the queue a single cluster feature. However, aggregating

arbitrary objects loses too much information as they may be diverse.

To maintain the necessary information for clustering, and to ensure that

any newly arriving object can be inserted at once, the proposed solution in-

terrupts the insertion process. The object must be temporarily stored in a

local aggregate from which we can continue at a later time. This yields

foreseeable space demands like with a global aggregate, albeit slightly larger

ones. For the invested space we obtain a greater accuracy. The great ad-

vantage of local aggregates over local queues is that we can easily use the

time for regular inserts to take a buffered local aggregate along as a “hitch-

hiker”. Moreover, they can be naturally integrated into the tree structure. We

will discuss this in more detail shortly, after describing the structure of the

ClusTree hierarchical index for maintaining the micro-cluster information.

11.1.2 The ClusTree data structure

The ClusTree approach consists of a hierarchy of entries that describe the

cluster feature properties of their respective subtrees. The structure of an

inner entry and a leaf entry is illustrated in the left part of Figure 11.1:

Each entry contains a cluster feature of the number of objects n that were

aggregated, their dimension-wise linear sum LS, and squared sum SS, as

well as a pointer to the respective subtree. The ClusTree integrates local

aggregates into the tree structure for temporary objects. More precisely, an

inner entry provides an additional buffer b for temporary insertions of local

aggregates (CFs). Leaf nodes’ entries do not contain a buffer, since inserts at

leaf level are final.

Definition 11.1 ClusTree. A ClusTree with fanout parameters m,M and leaf
node capacity parameters l, L is a balanced multi-dimensional indexing struc-

188 Self-adaptive Anytime Stream Clustering

LS (t) SS (t) LS (t) SS (t)

inner entry
.LS1

…
LSd

(t)

n(t)
SS1
…
SSd

(t) LS1
…
LSd

(t)

n(t)
SS1
…
SSd

(t)

b b

bb

. . .

LS1
…
LSd

(t)

n(t)
SS1
…
SSd

(t)

b
leaf entry . . .LSd SSdleaf entry

Figure 11.1: Left: inner node and leaf node structure. Right: insertion ob-
ject, hitchhiker and buffer.

ture with the following properties:

• an inner node nodes contains between m and M entries. Leaf nodes con-
tain between l and L entries. The root has at least one entry.

• an entry in an inner node of a ClusTree stores:

– a cluster feature of the objects it summarizes.

– a cluster feature of the objects in the buffer. (May be empty.)

– a pointer to its child node.

• an entry in a leaf of a ClusTree stores a cluster feature of the object(s) it
represents.

• a path from the root to any leaf node has always the same length (bal-
anced).

The tree is created and updated like any multidimensional index such

as R-tree, R*-tree, etc. [Gut84, BKSS90, SAK+09]. Unlike the minimum

bounding rectangles that they maintain in addition to the objects, the Clus-

Tree stores only CFs. During insertion an object descends into the subtree

with the closest mean with respect to Euclidean distance. Splitting is based

on pairwise distances between the entries, where entries are combined into

two groups such that the sum of the intra-group distances is minimal. We will

see in Section 11.2 that M = 3 is a good choice, hence there are maximally

six pairwise distances per node which yields a fast split operation.

11.1. The ClusTree Algorithm 189

The important property that reflects anytime capability of the ClusTree is

its buffer in each entry. It serves as a temporary storage place for aggregates

or objects that do not reach leaf level during insertion. Whenever insertion

is interrupted, the current CF is simply stored in the buffer of the entry that

corresponds to the subtree into which to descend next. At any future time

when this subtree is next accessed, the temporary entry in the buffer is taken

along as a “hitchhiker”. This makes sure that future descent down the same

subtree is used for continuing the insertion process. Whenever the descent

destination of the current insertion CF and the hitchhiker differ, the latter is

placed in the corresponding buffer again to wait for the next ride down the

tree.

The right part of Figure 11.1 illustrates this process. Assume that the in-

sertion object (drawn blue in the dashed box to the left of the root) belongs

to the leaf that is marked by the dashed arrow (at the second leaf). Assume

also, that the leftmost entry on the second level has a filled buffer (second

distribution symbol in the entry), which belongs to a different leaf than the

insertion object (indicated by the red solid arrow at the first leaf). The in-

sertion object first descends to the second level, and next descends into the

left entry. It picks up the left entry’s buffer in its buffer CF for hitchhikers

(depicted as the solid box at the right of the insertion object). The inser-

tion object descends to level three, taking the hitchhiker along. Because the

hitchhiker and the insertion object belong to different subtrees, the hitch-

hiker is stored in the buffer of the left entry on the third level (to be taken

along further down in the future) and the insertion object descends into the

right entry alone to become (part of) a leaf entry.

The buffer concept and the algorithmic idea of taking hitchhikers along

are key to the proposed anytime clustering algorithm. It allows the algorithm

to be interrupted at any point in time and making best use of future descents

down the tree. Moreover, unlike global aggregates, objects are kept separate

as long as time permits.

When a leaf node is reached and the insertion would cause a split, the

algorithm checks whether there is still time left. If there is no time for a split,

the closest two entries are merged. For tracking of concept drift, novelty, etc.

190 Self-adaptive Anytime Stream Clustering

in the output clustering, leaf node entries contain a unique id. When they

are created they are assigned a unique number in increasing order. When

entries are merged, this is recorded as a pair of ids in a merging list.

The ClusTree can be initialized to improve the starting structure of the

tree. Given an initial set of objects, each is transformed to a new CF. The leafs

and internal nodes may be ordered for best structural properties through re-

cursive top-down partitioning along the dimension with the largest variance

and such that each partition contains equally many objects. Or any cluster-

ing algorithm, e.g. expectation maximization (EM) [DLR77] or k-means, can

be used to group the objects in a top-down or bottom-up fashion to initialize

the tree. However, the focus is not on optimizing the initialization phase,

and the experiments are performed without it.

11.1.3 Maintaining an up-to-date clustering

In order to maintain an up-to-date view, we would like new objects to be

more important than older objects. A common solution is to weigh ob-

jects with an exponential time-dependent decay function ω(∆t) = β−λ∆t (cf.

Chapter 3). The decay rate λ controls how much more one favors new ob-

jects compared to old ones. The higher λ is, the faster the algorithm “forgets”

old data. In the ClusTree β = 2. For this basis the half life of objects is 1
λ
.

To incorporate decay, temporal information must be added to the Clus-

Tree nodes. We ensure that the inner entries of the ClusTree still summarize

their subtrees accurately by making elements of a cluster feature vector de-

pendent on the current time t as in Definition 3.4:

n(t) =
n∑
i=1

ω(t− tsi), LS(t) =
n∑
i=1

ω(t− tsi) · xi,

SS(t) =
n∑
i=1

ω(t− tsi) · x2
i

n denotes the (unweighted) number of contributing objects and tsi is the

time stamp at which object xi was added to the CF.

The additive properties of cluster features are preserved as well as the

11.1. The ClusTree Algorithm 191

temporal multiplicity [AHWY04]: If no object is added to a CF (t) during the

time interval [t, t+ ∆t] then

CF (t+∆t) = ω(∆t) · CF (t).

Details and a proof of this property can be found in [AHWY04].

Each insertion object x carries the time stamp tsx of its arrival time. Fur-

thermore, each entry es has a time stamp es.ts specifying its last update. It

is used to compute the time that passed between the last update of an en-

try and x.ts as the input of the decay function. Upon descending into a

node, we update all entries es in the node to x.ts by position-wise multi-

plication with the decay function and resetting the time stamp: es.CF ←
ω(x.ts − es.ts) · es.CF, es.buffer ← ω(x.ts − es.ts) · es.buffer, es.ts ← x.ts.

Entries in the same node always have the same time stamp, as we update all

entries in the node we descend into.

The following shows that inner entries summarize their subtrees correctly.

We derive an invariant that incorporates the time aspect. The cluster feature

of a parent entry es that was last updated at t+ ∆t equals the sum of the CFs

of the entries in its child node updated from time t of their last update to the

parent’s time plus the parent’s buffer.

Lemma 11.1 (ClusTree Invariant) For each inner entry es with time stamp
t+ ∆t and decay function ω(∆t) = 2−λ∆t it holds

es.CF
(t+∆t) = (ω(∆t) ·

νs∑
i=1

es◦i.CF
(t)) + es.buffer(t+∆t)

Proof 11.1 Each inner entry es is created first due to a split. Its summary is
calculated directly as the sum of the cluster features in its child node entries es◦i.
The child node entries are all on the same time, because we update all entries
in a node. The time stamp of the children is the insertion time x.ts of the object
x that caused the split. There can only be a change in one of the es◦i, if there
was first a change in es, because we always start from the root and descend
downwards.

192 Self-adaptive Anytime Stream Clustering

Take the case of updating parent entry es (with filled buffer) to the new time
t+ ∆t+ Γt, and addition of object y, where y descends into nodes and gives the
buffer a ride. Upon descending into nodes, all its entries es◦i are updated and y
is added to the CF of exactly one of the es◦i. es has a buffer, which y takes along.
The buffer is also added to exactly one of the child entries’ cluster features.

Following the above reasoning, we know that after updating es it holds that:

es.CF
(t+∆t+Γt) = (ω(∆t+ Γt) ·

νs∑
i=1

es◦i.CF
(t))

+es.buffer(t+∆t+Γt).

Because y descends into nodes, we update the child entries:

=
νs∑
i=1

es◦i.CF
(t+∆t+Γt) + es.buffer(t+∆t+Γt).

Now we give es.buffer(t+∆t+Γt) a ride. Afterwards es.buffer(t+∆t+Γt) contains
zeros, and the values that it held before are added to the cluster feature of
one of the child entries. Also adding y on both sides of the equation, once to
es.CF and once to the CF of one of the child node entries, leaves the invariant
unchanged. This is also true for “hitchhiking” objects temporarily in a buffer o
(replace y.CF (t+∆t+Γt) with y.CF (t+∆t+Γt)+ o.CF (t+∆t+Γt)), and if nodes is a
leaf node.

The last case to be check for violation of the invariant is a split. Let us
consider the split of a leaf node nodes◦i. Then two summaries in nodes are
computed from scratch. One overwrites the existing entry es◦i that pointed to
the split node. The other one is the start of a new entry. The two new summaries
naturally fulfill the invariant. The invariant also holds true for es, the entry
pointing to nodes, because only the distribution of the summaries changed on
the levels below es, not the total of the values.

11.1. The ClusTree Algorithm 193

Thus, maintaining a single additional field in each node with a time stamp

value of its last update, and weighing according to the above scheme, ensures

that decay with time is correctly captured. Weighing does not require addi-

tional memory; the weighted CFs simply replace the non-weighted cluster

features.

Weighing with time provides an interesting way of avoiding splits to save

valuable time. If a node is about to be split, the algorithm checks whether

the least significant entry can be discarded, because it no longer contributes

significantly to the clustering. Assuming that a snapshot of the ClusTree is

taken regularly after tsnap time, the significance is tested by checking whether

the entry ê with the smallest n(t)
ê satisfies

n
(t)
ê < β−λ·tsnap (11.1)

If this is the case, ê is discarded, making room for the entry to be inserted,

and avoiding a split. The summary statistics of ê are subtracted from the

corresponding path up to the root. Note that according to Equation 11.1 no

entry is discarded if a new object has been added to it after the last snapshot

has been taken. Moreover, Equation 11.1 guarantees that each entry is stored

in at least one snapshot.

We discuss in Section 11.1.5 how the ClusTree results can be used to

detect clusters of arbitrary shape and time horizon. Moreover, applicability

of recent approaches to concept drift detection is shown.

11.1.4 Speed-up through aggregation

What happens to the index structure when it faces an exceptionally fast data

stream? If insertion is interrupted at the top levels most of the time, the

root and upper levels of the tree aggregate many objects in their buffers that

have little chance of getting a ride down to a leaf. Worse yet, dissimilar

objects which belong to different subtrees and leaves become inseparable in

a buffer. The quality of the results is bound to deteriorate if we are constantly

interrupted on higher levels.

194 Self-adaptive Anytime Stream Clustering

The proposed solution is a speed-up through aggregation before inser-

tion: if we do not insert each object individually, there is more time to de-

scend deeper with an aggregate of objects. Naively, one could add up a cer-

tain number m of incoming objects, insert the aggregate, sum up the next m

objects, and so on. This is essentially a global aggregate with the problem of

merging arbitrary objects, even very dissimilar ones, to the same aggregate.

Clearly we need to exercise some control over which objects should –

literally – “go together”. Ideally, we want to aggregate objects that would end

up in the same leaf if we could descend the tree with them. Most probably,

the arriving objects are not all similar to each other, but we expect subgroups

with inter-similarity – representatives of the clusters we also find in the tree.

The proposed solution is to create several aggregates for dissimilar ob-

jects. This makes sure that the objects summarized in the same aggregate

are similar. To this end, a maxradius is set for the maximum distance of ob-

jects in the aggregate. maxradius does not need to be set by the user. The

value is determined from the leaf level as the average variance of the leaves.

This way, the aggregates for fast streams do not deteriorate the quality of the

tree disproportionally.

For very fast streams, we store interrupted objects in their closest ag-

gregate with respect to the distance to the mean, if this distance is below

maxradius. If maxradius is exceeded, we open up a new aggregate. We insert

aggregates, just as we insert single objects. Whenever the insertion thread

is idle, it simply picks the next aggregate (ordered first by the number of

objects in the aggregates and then by their age). The number of aggregates

is limited by the stream speed, i.e. it cannot exceed the number of distance

computations that can be done between two arriving items. In the case of

a varying data stream the maximum number of aggregates must be set by

the user, constituting the only parameter of the proposed approach. The ag-

gregation is done by a different thread (second processor kernel), i.e. the

insertion of aggregates works in parallel and is not affected in terms of pro-

cessing time. If no aggregate violates the max-radius constraint, the fullest

aggregate is inserted. If several aggregates are equally full, the oldest of

these is inserted. Figure 11.2 summarizes the complete ClusTree algorithm.

11.1. The ClusTree Algorithm 195

Use Aggre‐

Stream object
arrives

AggregateyesUse Aggre
gation?

Descend tree,
updating current
node’s timestamp

Aggregate Aggregate
to insert?

yes

Reached
leaf level?

Hitchhiker
exists?

Node full?

Insert
hitchhiker

Merge
hitchhiker
to closest

yes

yesyes

Find closest entry
to object

as entry

Insert object as
entry

to closest
entry

Hitchhiker
exists?

Find closest entry
to hitchhiker

Same closest
entries?

yes

yes

New object
arrived? yes

Node
overfull?

yes

Buffer hitchhiker,
continue alone

New object
Buffer object (and

ibl hit hhik)
Ascendyes

Merge the
closest
pair

yes

e object
arrived?

possibly hitchhiker)
in current entry

Entry’s
buffer filled?

Node
overfull?

Split node

yes

yes

Add buffer to
hitchhiker

Continue on
stream

yes

Figure 11.2: Flow chart of the ClusTree algorithm.

196 Self-adaptive Anytime Stream Clustering

11.1.5 Cluster shapes and cluster transitions

The clustering resulting from the ClusTree is the set of CFs stored at leaf

level, i.e. the finest representation maintainable w.r.t. the speed of the data

stream. This can be seen as the online component and it allows for us-

ing various offline clustering approaches. Taking the means of the CFs as

representatives we can apply a k-center clustering as in [OMM+02] or den-

sity based clustering as proposed in [CEQZ06] to detect clusters of arbitrary

shape. One main advantage of the proposed approach is that it can main-

tain a way larger number of micro-clusters compared to other approaches

[AHWY03, AHWY04, OMM+02, CEQZ06] and hence the offline clustering,

e.g. density based, has finer input granularity.

Regarding cluster transitions, e.g. concept drift or novelty, many ap-

proaches proposed in the literature can directly be applied to the output

of the ClusTree. Using the unique ids to every new leaf entry, we are able

to track micro-clusters. Pyramidal time frames (cf. Chapter 3) allow the user

to view clusterings of arbitrary time horizons. Furthermore, the ids allow us

also to apply the transition detection and distinction techniques described in

[SNTS06], including outlier, novelty and concept drift detection.

11.2 Analysis and experiments

We assess the performance of the ClusTree in the following. First we examine

the time and space complexity of building and maintaining a ClusTree in Sec-

tion 11.2.1. In Section 11.2.2 we evaluate the anytime clustering property of

the ClusTree and show the benefits of the speed-up through aggregation. Fi-

nally the adaptive clustering performance is demonstrated in Section 11.2.3

by comparing the obtained results against CluStream [AHWY03] and Den-

Stream [CEQZ06]. The algorithms were implemented in C, all experiments

were run on Windows machines with 3GHz.

11.2. Analysis and experiments 197

11.2.1 Time and space complexity

The goal for efficient and effective clustering is a high granularity with low

processing costs. Therefore we investigate the effect of the fanout and of

the number of distance computations required to insert an object from the

stream on the granularity, i.e. the number of cluster features (CFs) at leaf

level. Figure 11.3(a) shows the results for fanouts from 2 to 12. Depending

on the speed of the stream, 12 to 72 distance computations are possible

before interruption (multiples of 12 were chosen on the x-axis because it

is the smallest multiple of all tested fanouts). As can clearly be seen in all

groups of bars, a fanout of three yields the highest granularity independent of

the number of distance computations, i.e. independent of the stream speed.

Next we evaluate the space demands with respect to the dimensional-

ity and granularity in Figure 11.3(b). It shows the results for a fanout of

3 (assuming 4 Bytes per value). The space demands for the ClusTree are

moderate even for high granularities and high dimensionality. For 128.000

CF at leaf level and 20 dimensions the ClusTree only needs 68 MB space,

while the number of distance computations to reach the leaf level is only

33. Fanout 3, dimensionality 20 and one million CF at the finest level con-

sume roughly 500 MB, i.e. still main memory, and the number of distance

computations is still less than 40. This is opposed to any stream clustering

algorithm that maintains one million micro-clusters and checks a new item

against each of these. CluStream [AHWY03] for example stores q micro-

clusters and must hence calculate q distances (plus possible delete O(q) and

merge O(q2) checks). The ClusTree only needs O(log(q)) many distance cal-

culations and only stores O(q) CF (cf. Figure 11.3).

Figure 11.3(c) shows the space demand of the ClusTree for 128.000 CF

at leaf level, different dimensionality and different fanout values. While a

higher fanout yields less space demands, the number of distance computa-

tions that are necessary to reach the same granularity is significantly higher.

Combining the results from Figure 11.3 we conclude that a fanout of 3 is the

best choice in terms of time and space complexity.

198 Self-adaptive Anytime Stream Clustering

100000000000

1000000000000

Diagrammtitel

1000000000

10000000000

100000000000

10000000

100000000

f l
ev
el

2

fanout

100000

1000000

#C
F
at
 le
af 3

4

6

100

1000

10000# 6

12

1

10

100

12 24 36 48 60 72

#distance computations

(a)

1,0,E+07

1,0,E+08

1,0,E+09

s

Space demands for different granularities, fanout 3

1.024.000

512.000

256.000

128 000

CF leaf
at level:

1,0,E+03

1,0,E+04

1,0,E+05

1,0,E+06

5 10 15 20 25 30 35 40 45 50

by
te
s

dimensionality

128.000

64.000

32.000

16.000

8.000

4.000

2.000

1.000

dimensionalty: 20
finest level: 128.000 CF
space needed: 68 MB
max. #dists: 33

(b)

1,0,E+09

Space demands for 128.000 CF at leaf level, different fanout

1,0,E+08

fanout

1,0,E+07

s

2

3

4

fanout

1,0,E+06

by
te
s 4

5

6

7

1 0 E+04

1,0,E+05
7

8

9

dimensionality 20 20 20
fanout 2 3 10
space needed: 90 MB 68 MB 50MB

1,0,E+03

1,0,E+04 10space needed: 90 MB 68 MB 50MB
max. #dists: 34 33 60

5 10 15 20 25 30 35 40 45 50

dimensionality

(c)

Figure 11.3: a: Granularity (number of CF at leaf level) w.r.t. fanout and
number of distance computations. b&c: Space consumption w.r.t granularity,
fanout and dimensionality

11.2. Analysis and experiments 199

Given the fanout of 3, the costs for a single split are low: 4 entries are

present during split, hence 6 distances are calculated. A new node and one

new entry for the parent node are created, and the old node and the old

entry pointing to it are updated. In the worst case, the number of splits is

equal to the height of the tree. Moreover, once the tree size is adapted to the

stream speed and decay invalidates old entries, the number of splits is low.

11.2.2 Anytime clustering and aggregation

To evaluate the clustering quality of the ClusTree we evaluate the average

purity of the clusters on the different levels of the tree. To determine the

purity synthetic data is used as well as real world data that contains objects

labeled with one of several classes. For a set K of CFs the purity is then cal-

culated as the weighted average purity of all CFs in K:
∑|K|

k=1
nk
n
· maxc(nck)

nk
=

1
n

∑|K|
k=1 maxc(nck), where nk is the number of objects in the CF k, nck those

belonging to class c and n =
∑

k∈K nk. The real world data set Forest Cover-

type is available from [HB99] and contains roughly 580.000 objects from

7 classes and 10 continuous attributes. To investigate the scalability of the

ClusTree in terms of dimensionality and the number of clusters the employed

synthetic data sets contain 550.000 objects each (including 5% noise) and a

varying number of attributes and classes. The clusters are generated as a

hierarchy of Gaussians, where centers lie at a uniformly distributed angle

and distance from their parents. To simulate a varying stream the arrival

intervals are generated according to a Poisson process, a stochastic model

that is often used to model random arrivals [DHS01] (cf. Chapter 4). For the

anytime experiments the generated streams contained an expected number

of 90000 points per second, i.e. λ = 1/90000.

Figure 11.4(a) shows the results for Forest Covertype (bottom) and the

synthetic data set containing four classes and four dimensions (top). The

results shown are the purity values after the complete data set has been

processed. The top most bar (orange) represents the purity value at the

root level and each following bar corresponds to the next deeper level. (For

synthetic data the root level bar is not visible as the axis has been formatted

200 Self-adaptive Anytime Stream Clustering

to show the difference on the lower levels.) The resulting ClusTree had ten

levels for the synthetic data and 9 levels for the Forest Covertype data set.

The most interesting purity value is that of the leaf level representing the

finest micro-clustering granularity. It is above 99% for the synthetic data and

still 88% for Forest Covertype. The purity values on the higher levels of the

tree give an indication for the clustering quality for higher stream speeds.

Further results on varying stream speed are shown in Section 11.2.3. Except

for the leaf level, the purity values on the synthetic data set are above 95%

on all levels, showing that the noise objects have been separated very well.

The purity decreases more significantly for the Forest Covertype data, but is

still above 70% even three levels underneath the root.

Figures 11.4(b) and 11.4(c) show the results regarding scalability using

the same anytime stream as before. The number of classes varied from 2

to 8 at four dimensions and the number of dimensions from 2 to 8 using 4

classes (synthetic data). For 2 and 4 classes the quality is consistently high

on all levels, just the root level purity drops at 4 classes, and further (below

the shown area) for 8 classes. Increasing the number of classes to 8 shows a

higher impact on the root level and also one level below the root. Although

the purity decreases also on the other levels it is still above 95% on six levels,

indicating a good separation of classes and even of noise objects. Comparing

the results on different dimensionalities shows that the quality is similar for

4 to 8 dimensions, but lower in the 2-dimension case. This is due the fact

that the overlapping of the classes is higher if the dimensionality decreases.

However, once again the majority of the levels has a purity above 95%.

Finally, the expected number of points per second (stream speed in pps)
was varied from 60000 to 150000. Figure 11.5 shows the resulting purity

values for the leaf level and the middle level of the ClusTree for Forest Cover-

type. For the slowest stream the purity on the leaf level reaches 93%. While

the purity is still very good (87%) at 120000 pps it drops below 70% for

even faster streams with 150000 pps. For the proposed speed-up through

aggregation (cf. Section 11.1), the results for 150000 pps are shown in the

left part of Figure 11.5. Thanks to the aggregation the purity on the leaf level

is significantly improved.

11.2. Analysis and experiments 201

0.95 0.96 0.97 0.98 0.99 1

Measure: Purity

naive

0.6 0.65 0.7 0.75 0.8 0.85 0.9

Measure: Purity

naive

(a)

0.
6

0.
64

0.
68

0.
72

0.
76

0.
8

0.
84

0.
88

0.
92

0.
96

1

L0
L1
L2
L3
L4
L5
L6
L7
L8

Number of Classes

M
ea

su
re

: P
ur

ity

2 4 8

(b)

0.
95

0.
96

0.
97

0.
98

0.
99

1

L0
L1
L2
L3
L4
L5
L6
L7
L8

Number of Dimensions

M
ea

su
re

: P
ur

ity

2 4 8

(c)

Figure 11.4: a: Clustering purity on synthetic data (top) and on Forest
Covertype [HB99] (bottom). b: Scalability w.r.t. the number of clusters;
c: Scalability w.r.t. the number of dimensions.

202 Self-adaptive Anytime Stream Clustering

11.2.3 Adaptive clustering

To evaluate the adaptive clustering behavior of the ClusTree constant data

streams were simulated with different numbers of points per second using

the Forest Covertype data set. The obtained performance is compared against

CluStream [AHWY03] and DenStream [CEQZ06]. For all approaches the re-

sults correspond to the online component, i.e. we analyze the properties of

the resulting micro clusters and do not employ an additional offline compo-

nent afterwards.

First of all we investigate the number of micro clusters that can be main-

tained by the individual approaches for different stream speeds. The results

are shown in Figure 11.6, exact numbers are listed in Figure 11.7. As indi-

cated, the ClusTree can maintain roughly 430000 micro clusters at 49,000

pps. With a stream speed of 140000 pps the ClusTree can still maintain 435

micro clusters. The competing approaches on the other hand can only pro-

cess less than 10000 pps when maintaining 500 micro clusters. This drastic

difference is due to the hierarchical structure of the ClusTree which yields

only a logarithmic amount of distance computations. In other words, the

number of micro clusters that can be maintained is exponential compared

to CluStream or DenStream. This large number is beneficial, since the out-

put of the online component is given to the offline component to compute

the final clustering (using a clustering method of choice). A more detailed

input to the final clustering enables more accurate results and detection of

0,56
0,49

0,59 0,63
0,68

0,85

0,67

0,83
0,88

0,93

pu
ri
ty

Stream speed comparison and speedup through aggregation

Middle Level Leaf Level

0,56
0,49

0,59 0,63
0,68

0,85

0,67

0,83
0,88

0,93

150000 with
speedup

150000 120000 90000 60000

pu
ri
ty

stream speed [pps]

Stream speed comparison and speedup through aggregation

Middle Level Leaf Level

Figure 11.5: Purity with and without aggregation w.r.t. stream speed for
Forest Covertype.

11.2. Analysis and experiments 203

100

1000

10000

100000

1000000

m
ic
ro
 c
lu
st
er

micro clusters over stream speed

ClusTree:
435 micro clusters at
140,000 pps

ClusTree:
430,000 micro clusters at
49,000 pps

1

10

100

0 50000 100000 150000
stream speed [pps]

ClusTree

DenStream

CluStream

500 micro clusters:
CluStream: 6,500 pps
DenStream: 7,600 pps

Figure 11.6: Number of micro clusters that can be maintained w.r.t. stream
speed.

possible outliers. Moreover, the major advantage here is that the ClusTree

automatically self-adapts to the stream speed without parametrization.

The question is at which price comes this benefit? Does the quality of the

individual micro clusters deteriorate, because new points may not be added

to the optimal micro cluster? To answer this question we evaluate the ra-

dius and the purity of the resulting micro clusters from all three approaches.

Figure 11.8 shows the results for the ClusTree; results for CluStream and

DenStream are listed in Figure 11.7.

MC pps
radius

(median) radius (max.) purity
DenStream

5000 2000 0.21 151.8 0.53
2000 3700 0.24 195.1 0.55
1000 5000 3.35 160.9 0.66
500 7600 14.01 83.7 0.53

CluStream
5000 1500 0.02 37.4 0.70
2000 1700 0.03 224.4 0.87
1000 2500 0.33 238.8 0.90
500 6500 0.58 177.6 0.62

ClusTree
5000 80,000 0.44 13.8 0.72
2000 94,000 0.51 18.9 0.71
1000 105,000 0.55 21.8 0.70
500 120,000 2.25 29.7 0.67

Figure 11.7: Overall results on Forest Covertype.

204 Self-adaptive Anytime Stream Clustering

35s

ClusTree Radius

30

35

ra
di
us

Maximum (trend)
Maximum

20

25 75% percentile (trend)
Median (trend)

15

20

5

10

0

5

0 50000 100000 150000
stream speed [pps]

0,4

0,6

0,8

1

pu
ri
ty

ClusTree purity

0

0,2

0 50000 100000 150000
stream speed [pps]

Figure 11.8: Radius (top) and purity (bottom) for ClusTree micro clusters
w.r.t stream speed.

11.3. Conclusion 205

Figure 11.8 shows for the radius the maximum as well as the 75 per-

centile and the median. Since the actual numbers are skewed a moving

average value is plotted. Naturally, with increasing stream speed, and hence

decreasing number of micro clusters, the radii generally become larger. How-

ever, while we see a constant increase in the maximum value, the median

and even the 75 percentile stays very low even for 100000 to 150000 pps.

While DenStream produces larger micro clusters, CluStream shows a similar

performance for the same amount of micro clusters. However, to maintain

this amount of micro clusters CluStream can again only process slow streams

where it is outperformed by the ClusTree.

The purity values for CluStream, DenStream and the ClusTree approach

underline the above findings (cf. Figure 11.7). DenStream does not exceed

an average purity of 70%. Clustream shows a higher purity than the ClusTree

for 1000 micro clusters (90% for CluStream vs. 78% for the ClusTree), but

again these numbers are not comparable due to the huge difference in terms

of points per second. In conclusion it can be said that the ClusTree can

maintain an equal amount of micro clusters on streams that are faster by

orders of magnitude and that it can maintain an exponential amount of micro

clusters at equal stream speed while providing good results in terms of cluster

size (radius) and quality (purity).

11.3 Conclusion

Clustering streaming data is of increasing importance in many applications.

In this chapter, a parameter free index-based approach was proposed that

self-adapts to varying stream speed and is capable of anytime clustering. The

ClusTree maintains the values necessary for computing mean and variance of

micro-clusters. By incorporating local aggregates, i.e. temporary buffers for

“hitchhikers”, the ClusTree provides a novel solution for easy interruption of

the insertion process that can be simply resumed at any later point in time.

For very fast streams, aggregates of similar objects allow insertion of groups

instead of single objects for even faster processing. In comparison to recent

206 Self-adaptive Anytime Stream Clustering

approaches it was shown that the ClusTree can maintain the same amount

of micro clusters at a stream speed that is faster by orders of magnitude and

that for an equal stream speed the obtained granularity is exponential w.r.t.

competing approaches. Moreover, a discussion was provided on the compat-

ibility of the proposed approach with finding clusters of arbitrary shape and

modeling cluster transitions and data evolution using recent approaches.

Chapter 12

Exploiting additional time in the
ClusTree

∗ In this chapter novel descent strategies are proposed that improve the Clus-

Tree’s clustering result on slower streams as long as time permits.

12.1 Alternative descent strategies

Alternative strategies are suggested for inserting objects into micro-clusters.

Assuming that the insertion process of an object is not interrupted, it contin-

ues down a single path. This path corresponds to always picking the child

with the respective smallest distance between the object and the children

reachable from the current node. This descent strategy down the tree can

be considered a single-try depth first approach; it proceeds down a path that

has been chosen and does not reconsider. More precisely, it does not explore

continuing a path that branches further up the tree. The advantage of this

approach is that the (unknown) time available to the anytime insertion pro-

cess is spent on trying to reach a level as far down the tree as possible (cf.

Figure 12.1). The further down the tree the object is inserted, the more fine-

grained the resolution of the micro-clusters becomes. When the insertion

∗This chapter has been published (together with the contents of the previous chapter) in
the Knowledge and Information Systems Journal (KAIS 2011) [KABS11].

207

208 Exploiting additional time in the ClusTree

process reaches the leaf level and additional time is available, the leaf is split

and hence the model size is automatically adapted to the stream speed.

For very fast streams frequent insertions on higher levels are prevented by

the aggregation mechanisms (cf. Section 11.1.4). For slower data streams,

however, we are very likely to often reach the leaf level and hence the model,

i.e., the tree, continues to grow. As stated in the introduction, stream clus-

tering algorithms naturally must cope with limited memory, i.e., there is a

maximal model size, either dictated through the available memory or given

by the user or the context program. Continuous growth of the model is thus

limited by the maximal tree size and hence not ideal if more time is available.

Employing the proposed depth first strategy in this case would leave the

algorithm idle once the leaf level is reached. And such idle times actually oc-

cur. One of the reasons is that the anytime processing is fast, so it reaches the

leaf level after few computation steps. In the ClusTree algorithm the number

of distance computations is only logarithmic in the number of maintained mi-

cro clusters, so time for further model improvement is often available even

for larger model sizes. As we will see in the experimental section 12.2, main-

taining 400000 micro clusters at a stream speed of 50000 points per second

already yields idle times, which can be used for further computations and

improvements of the clustering result.

In the following two tasks are considered: 1) finding alternative ways of

choosing paths down the tree. 2) defining heuristics to exploit time that is

available after reaching the leaf level.

12.1.1 Priority Breadth First Traversal

The first alternative descent strategy is a priority breadth first descent. The

single path depth first descent does not perform any kind of backtracking

and hence cannot correct any misguided choice that may occur due to over-

lapping entries on higher levels of the tree. In other words, even if we chose

the closest entry on level k we cannot be sure that the closest entry on level

k + 1 is one of its children. To assure finding the closest entry on each level

all entries per level are evaluated in the first heuristic. While doing this, the

12.1. Alternative descent strategies 209

entries are sorted by the distance of their corresponding parent to quickly

find the closest option. Figure 12.1 b) illustrates the priority breadth first

descent: instead of checking a single node on each level as in depth first

descent, each level is evaluated entirely to find the closest entry by going

through a list of entries sorted by the distance between the parent node and

the current insertion object.

While at first the breadth first traversal sounds like many additional com-

putations compared to linearly checking against all maintained micro clus-

ters as in e.g. [AHWY03, CEQZ06], a closer look reveals advantages of this

strategy. In the case of a binary tree the number of non-leaf entries is about

equal to the number of leaf entries. However, for a higher fanout the number

of inner entries is relatively smaller. Taking the fact into account that the en-

tries are sorted according to the distance of their corresponding parent entry,

we are likely to find the closest leaf level entry, i.e., the closest maintained

micro cluster, within the first entries of the priority queue on the leaf level.

Moreover, we are still able to perform anytime clustering, since the buffering

strategies described in Section 11.1.2 are always used. The only change is

that the entries on the final path are updated at the time of interruption and

not as we go down the path. That means that we add the number, linear

and quadratic sum when the object is inserted. Since maintaining 50000

micro clusters with a fanout of 3 yields a tree height of 10, the number of

operations (additions) is negligible.

entries on current
l l t d b

√
√

unrefined entries
seen so far sorted by

level sorted by
distance of their
parent to the object

√ distance to object

priority queue

a) depth first b) priority breadth first c) best first

Figure 12.1: Descent strategies depth first, priority breadth first and best
first.

210 Exploiting additional time in the ClusTree

12.1.2 Best First Traversal

As mentioned before, the underlying idea for the alternative descent strate-

gies is based on the observation that by descending the tree depth first, we

basically use a greedy approach that is not able to revise the decision for

any given subtree. However, it is possible that the aggregate information

on upper levels in the tree is misleading. Misleading in the sense that we

may find at lower levels that an entry that had a short distance to the cur-

rent object actually separates into micro-clusters at lower levels that have a

comparatively high distance to the object.

In such a situation, it may be beneficial for the structure of the obtained

micro-clusters to not continue on this path, but instead evaluate the situation

at the children of the next-best choice. This means that we need to keep

track of which options existed on the current path. This allows us to decide

whether one of the branches further up on the current path has a distance

to the object that is smaller than what we see for the current entry. If this is

the case, we can go back and follow a different path. In query processing on

indexing structures, this approach corresponds to a best first strategy [HS95,

SAK+09] (cf. Chapter 4). To implement it, we need to maintain a priority

queue while making the descent down the tree.

The priority queue contains the entries seen so far that have not been

refined yet and their corresponding distance to the insertion object. Given

the time to make the next step in descending down the tree, the best first

approach always takes the first element from the queue, i.e., the entry which

has the smallest distance to the object. The distances from the object to the

entries in the corresponding child node are computed and inserted into the

priority queue (refinement). This process continues until insertion is inter-

rupted or until all nodes have been visited. As in the priority breadth first

descent we keep the property of anytime clustering and update the path with

cluster features (CFs) when we buffer or insert the object on interruption.

The best first strategy implies that the decision which node to refine is

now based on all the information that the algorithm has at the time of the

decision making. The next descent step is always to the entry that has the

12.1. Alternative descent strategies 211

smallest distance to the object, regardless of whether it yields the deepest

path or not. In this sense, best first descent is a global strategy that takes all

nodes into account, whereas depth first descent is local in the sense that a

choice is only made among the children of the currently visited node. Figure

12.1 c) illustrates this strategy. As we can see, this algorithm maintains a

priority queue of the lowest entries on all paths started so far, i.e., unrefined

entries sorted by their distance to the object. The path is always continued

on the path corresponding to the first entry in the queue.

12.1.3 Iterative Depth First Descent

In terms of anytime clustering, best first descent tries to optimize the selec-

tion of insertion nodes. A possible drawback of this strategy is that depend-

ing on how often the algorithm must go back and continue from upper nodes

and on how soon it is interrupted, the algorithm may remain at the upper

levels and buffer the object there. Similar drawbacks can be expected from

the priority breadth first strategy. In contrast, depth first processing is most

often able to reach leaf level.

Based on this analysis, an alternative descent strategy is suggested that

tries to reach leaf level, and if more time is available uses this time to validate

the decisions that were taken. This can be considered a compromise between

depth first, priority breadth first and best first strategies. The approach is

denoted as the iterative depth first descent strategy. The idea here is to start

with the original depth first descent. Upon reaching leaf level we iteratively

evaluate the alternatives for decisions taken at the nodes on the depth first

path as long as time permits. This differs from iterative deepening as known

in artificial intelligence, where a depth limit is iteratively grown to avoid

ending up in infinite paths. In our case all paths are finite.

Figure 12.2 illustrates the strategy. The algorithm starts by descending

down the tree as in the depth first approach (top left). Assuming that it is not

interrupted, it then goes back to the root level and descends into the siblings

of the entry chosen during the first iteration down the tree. Following down

these alternatives to the leaf level, we eventually obtain two more candidate

leaves (best fanout is 3, cf. Chapter 11) among which we can choose to insert

212 Exploiting additional time in the ClusTree

First level:

x x

Second level:

x x

Third level …

Figure 12.2: Iterative depth first descent. When the algorithm is interrupted
the best leaf seen so far is chosen for insertion.

(top center of Figure 12.2). Among these three options, we now pick the best

one as shown at the top right of Figure 12.2.

If there is still time, we repeat this process on the path leading to the

current leaf (bottom left of Figure 12.2). We descend down the paths corre-

sponding to the siblings of the node one level below the root on the currently

chosen path (bottom center of Figure 12.2). This yields once again three op-

tions to choose from (bottom right of Figure 12.2). This process is continued

until the algorithm is interrupted or until no more unchecked siblings on

the path remain. On interrupt we buffer/insert and update as in the other

strategies described above. All in all, using this strategy we will have at most

log2(n) comparisons, e.g. for 50000 micro-clusters and a fanout of 3 about

100 comparisons, which is in stark contrast to 50000 comparisons as in e.g.

[AHWY03, CEQZ06].

These alternative descent strategies complete the concept of anytime clus-

tering in the sense that we can now use possible idle time to improve the

insertion process. Whereas the depth first descent strategy stops once the

12.2. Evaluation of descent strategies 213

maximal model size is obtained and a leaf is reached, priority breadth first,

best first and iterative depth first descent make use of additional time to

check alternative insertion options. In this manner, the anytime clustering

accounts for very short time spans per object through aggregation and for

very long time spans through further improvement of inserts.

12.2 Evaluation of descent strategies

Due to the logarithmic number of distance computations that are necessary

to maintain a certain number of micro-clusters in the ClusTree, in a given

time frame we can maintain an exponential number of micro-clusters com-

pared to linear approaches. This fact is inherent to the hierarchical ClusTree

approach and was confirmed by the results in the previous chapter. If the

model size, i.e., the tree size, is limited either through limited memory or

user constraints, the ClusTree algorithm will be idle on slower streams once

the maximal model size has been reached.

This can also be seen in some of the previous experimental results. For

example, in Figure 11.6 (page 203) at the top left: the algorithm maintains

approximately the same number of micro-clusters for a large range of stream

speeds. It reaches the maximal number of micro-clusters at approximately

50000 pps. This means that for streams below this, the algorithm is idle once

it has reached leaf level.

In this section the workings and benefits of the proposed alternative de-

scent strategies are evaluated. depth first, breadth first, best first and iterative
depth first are tested on the Forest Covertype data set using different tree

heights and varying stream speeds. The tested tree heights 7, 9 and 11 cor-

respond to roughly 2000, 20000 and 170000 possible micro-clusters at leaf

level. The stream speed was varied from 600 pps to 60000 pps; on the x-axis

the time per object (in µs/object) is reported such that there is more time

per insertion from left to right. As in the previous experiments both the aver-

age purity values and the median of the resulting radii are measured. Figure

12.3 summarizes the results.

214 Exploiting additional time in the ClusTree

0,61

0,63

0,65

0,67

0,69

0,71

0,73

0,75

pu
ri
ty

tree height 7

depth first

breadth first

b fi

0,55

0,57

0,59

0,61

µs/object

best first

iterative depth

[≈60,000 pps] [≈600 pps]

(a)

0,750s

tree height 7

0,700

,

ra
di
u

0,600

0,650
depth first

breadth first

0 500

0,550 best first

iterative depth

0,450

0,500

0,400

µs/objectµs/object

[≈60,000 pps] [≈600 pps]

(b)

0,9y

tree height 9

0,85

,

pu
ri
ty

0,75

0,8

0 65

0,7
depth first

breadth first

b fi

0,6

0,65 best first

iterative depth

0,55

µs/objectµs/object

[≈60,000 pps] [≈600 pps]

(c)

0,300

0,400

0,500

0,600

0,700

0,800

ra
di
us

tree height 9

depth first

breadth first

best first

iterative depth

0,000

0,100

0,200

µs/object

[≈60,000 pps] [≈600 pps]

(d)

1y

tree height 11

0,9

0,95

pu
ri
ty

0,8

0,85

0,7

0,75 depth first

breadth first

b fi

0,6

0,65
best first

iterative depth

0,55

µs/objectµs/object

[≈60,000 pps] [≈600 pps]

(e)

0,8s

tree height 11

0 6

0,7

,

ra
di
u

0 4

0,5

0,6
depth first

breadth first

0,3

0,4
best first

iterative depth

0,1

0,2

0

µs/objectµs/object

[≈60,000 pps] [≈600 pps]

(f)

Figure 12.3: Left: purity values for different tree heights and varying stream
speeds. Right: the corresponding radii (median).

12.3. Conclusion 215

Throughout the results in Figure 12.3 the primary descent strategy depth

first and the novel iterative depth first descent show the same results on the

fastest stream speed setting (17 µs/object, corresponding to roughly 60000

pps). This is due to the fact that both strategies start with the same initial

solution. While the depth first approach stops once the leaf level is reached,

the iterative depth first uses additional time and may find a better micro-

cluster to insert the current object. For all tested tree heights the iterative

depth first slightly improves in both measures for slower streams, i.e., higher

purity values and smaller radii are achieved. Since the number of distance

computations is in O(log2(n)), the iterative depth first strategy cannot profit

from even more time per object. This means that for even slower streams the

corresponding graphs show a stagnating behavior early on.

The best first and the priority breadth first strategies show nearly equal

performance. Since neither of these strategies favors an initial descent to

reach the leaf level, they process all (many) entries on the upper levels of

the tree before continuing on the next level. As a consequence, these ap-

proaches do not reach the maximal tree size on faster streams. As can be

seen in the left part of Figure 12.3, the full tree height is only reached at 600

µs/object for tree height 7 and 1200 µs/object for tree height 9. With this

time allowance, the strategies evaluate all possible option and hence no fur-

ther improvement is reached on even slower streams for the respective max-

imal model size. However, for all tested tree heights, both the best first and

the priority breadth first strategy outperform the two depth first approaches

in terms of the average purity. Regarding the achieved radii the depth first

approaches are outperformed on the smaller tree and their performance is

met on the larger trees for slower streams (cf. Figure 12.3 right). The results

are summarized in the next section.

12.3 Conclusion

Summarizing the results for the four proposed descent strategies we see that

the simple depth first descent yields already good results, especially on larger

216 Exploiting additional time in the ClusTree

tree/model sizes. The best first approach and the priority breadth first ap-

proach improved the results consistently on slower streams, which can be

attributed to their strategy of testing all possible options (if time permits).

The iterative depth first descent strategy constitutes an excellent alternative

insertion strategy, since it starts with the same high performance as the depth

first strategy, has very low runtime (O(log2(n))) and yet improves the initial

solutions on all tested settings. Moreover, it finally reaches comparable high

quality results compared to all other approaches.

Chapter 13

Robust Anytime Stream Clustering

∗ In this chapter the structure and working of the LiarTree are described. In

the previously described ClusTree algorithm (cf. Chapter 11) the following

important issues are not addressed:

• Overlapping: the insertion does not try to improve possible overlap-

ping of inner entries (clusters).

• Noise: no noise detection is employed, since every point is treated

equally and eventually inserted at leaf level. As a consequence, no

distinction between noise and newly emerging clusters is performed.

The name LiarTree is due to the fact that the algorithm adds fake nodes to

the hierarchy, which are not a direct result of aggregated streaming objects.

13.1 The LiarTree

The following describes how the issues listed above are tackled and how the

drawbacks of the ClusTree are removed. Section 13.1.6 briefly summarizes

the LiarTree algorithm and inspects its time complexity.

∗This chapter has been published in the Proceedings of the 23rd International Conference
on Scientific and Statistical Database Management (SSDBM 2011), [KRSS11].

217

218 Robust Anytime Stream Clustering

13.1.1 Structure and overview

The LiarTree summarizes the clusters on lower levels in the inner entries of

the hierarchy to guide the insertion of newly arriving objects. As a structural

difference to the ClusTree, every inner node of the LiarTree contains one

additional entry which is called the noise buffer.

Definition 13.1 LiarTree. For m ≤ k ≤ M a LiarTree node has the structure
node = {e1, . . . , ek, CF

(t)
nb }, where ei = {ptr, CF (t), CF

(t)
b }, i = 1 . . . k are en-

tries as in the ClusTree and CF (t)
nb is a time weighted cluster feature that buffers

noise points. The amount of available memory yields a maximal height (size)
of the LiarTree.

The noise buffer consists of a single CF which does not have a subtree

underneath itself. Its usage is described in Section 13.1.3.

Algorithm 13.1 illustrates the flow of the LiarTree algorithm for an ob-

ject x that arrives on the stream. The variables store the current node, the

hitchhiker (h) and a boolean flag indicating whether we encourage a split in

the current subtree (details below). After the initialization (lines 1 to 2) the

procedure enters a loop that determines the insertion of x as follows: first

the exponential decay is applied to the current node in line 4. If nothing

special happens, i.e. if none of the if -statements is true, the closest entry

for x is determined (line 8) and the object descends into the correspond-

ing subtree (line 24). As in the ClusTree, the buffer of the current entry is

taken along as a hitchhiker (line 23) and a hitchhiker is buffered if it has a

different closest entry (lines 9 to 12). Being an anytime algorithm the in-

sertion stops if no more time is available, buffering x and h in the current

entry’s buffer (line 21). The issues listed above are solved in the four proce-

dures, namely calcClosestEntry (line 8), liarProc (line 6), noiseProc (line

14) and leafProc (line 17). Details on the three methods to handle noise,

novelty (liarProc) and drift (leafProc) are provided in subsections 13.1.3

to 13.1.5. The following describes how to descend and reduce overlapping

of clusters using the procedure calcClosestEntry.

13.1. The LiarTree 219

Algorithm 13.1: Process object (x)
1 currentNode = root; encSplit = false;
2 h = empty; // h is the hitchhiker
3 while (true) do /* terminates at leaf level latest */
4 update time stamp for currentNode;
5 if (currentNode is a liar) then
6 liarProc(currentNode, x); break;
7 end if
8 ex = calcClosestEntry(currentNode, x, encSplit);
9 eh = calcClosestEntry(currentNode, h, encSplit);

10 if (ex 6= eh) then
11 put hitchhiker into corresponding buffer;
12 end if
13 if (x is marked as noise) then
14 noiseProc(currentNode, x, encSplit); break;
15 end if
16 if (currentNode is a leaf node) then
17 leafProc(currentNode, x, h, encSplit); break;
18 end if
19 add object and hitchhiker to ex;
20 if (time is up) then
21 put x and h into ex’s buffer; break;
22 end if
23 add ex’s buffer to h;
24 currentNode = ex.child;
25 endwhile

13.1.2 Descent and overlap reduction

The main task in inserting an object is to determine the next subtree to de-

scend into. This is done by finding the closest entry; algorithm 13.2 illus-

trates the single steps. Besides determining the closest entry, the algorithm

checks whether the object is classified as noise w.r.t. the current node and

sets a encSplit flag, if a split is encouraged in the corresponding subtree. The

three blocks in the code correspond to the three tasks.

220 Robust Anytime Stream Clustering

Algorithm 13.2: calcClosestEntry(node, x, encSplit) .
// returns closest entry and marks x as noise
1 if (node has an irrelevant entry eirr) then
2 if (node is a leaf) then
3 return (eirr, false, false);
4 end if
5 encSplit = true;
6 end if

7 calculate noise probability np(x);
8 if (np(x) ≥ noiseThreshold) then
9 mark x as noise;

10 end if

11 eclosest = closest entry;
12 if (!(node is a leaf)) then
13 e1 = eclosest; e2 = 2nd closest entry;
14 if (e1 and e2 overlap) then
15 look ahead: ei∗ = closest entry in ei’s child;
16 reorganize: swap ei∗ if radii decrease,
17 update the parent cluster features of ei;
18 eclosest = e1, if it contains the closest child entry; e2 otherwise;
19 end if
20 end if
21 return eclosest;

In the first block (lines 1 to 6) we check whether the current node con-

tains an irrelevant entry. This is done as in Chapter 11, i.e. an entry e is ir-

relevant if it is empty (unused) or if its weight n(t)
e does not exceed one point

per snapshot. In contrast to the ClusTree, where such entries are only used

to avoid split propagation, we explicitly check for irrelevant entries already

during descent to actively encourage a split on lower levels. The reason is

that a split below a node that contains an irrelevant entry does not cause an

increase of the tree height, but yields a better usage of the available memory

by avoiding unused entries. In case of a leaf node we return the irrelevant

entry as the one for insertion (line 3), for an inner node we set the encSplit

flag (line 5).

13.1. The LiarTree 221

In the second block (lines 7 to 10) we calculate the noise probability for

the insertion object and mark it as noise if the probability exceeds a given

threshold. The noise threshold noiseThreshold constitutes a parameter of

the algorithm and is evaluated in Section 13.2.

Definition 13.2 Noise probability. For a node node and an object o, the
noise probability of o w.r.t. node is

np(o) = min
ei∈node

{d(o, µi)/ri, 1}

where ei are the entries of node, ri the corresponding radius (standard deviation
in case of cluster features) and d(o, µi) the Euclidean distance from the object
to the cluster mean µi.

The last block (lines 11 to 20) finally determines the entry for further

insertion. If the current node is a leaf node we return the entry that has the

smallest distance to the insertion object. For an inner node we perform a

local look ahead to avoid overlapping, i.e. we take the second closest entry

e2 into account and check whether it overlaps with the closest entry e1 (line

14). Figure 13.1 illustrates an example.

x x

e1 e1

x x

e2 e22 2

Figure 13.1: Look ahead and reorganization.

If an overlap occurs, we perform a local look ahead and find the closest

entries e1∗ and e2∗ in the child nodes of candidates e1 and e2 (line 15, dashed

circles in Figure 13.1 left). Next we calculate the radii of e1 and e2 if we

would swap e1∗ and e2∗. If they decrease, we perform the swapping and

update the cluster features on the one level above (Figure 13.1 right). The

closest entry that is returned is the one containing the closest child entry, i.e.

e1 in the example.

222 Robust Anytime Stream Clustering

Algorithm 13.3: noiseProc (node, x, encSplit) .
// determines whether a noise buffer has become a cluster
1 add x to node’s noise buffer;
2 if (encSplit == true) then
3 navg = average weigth of node’s entries;
4 ρavg = average density of node’s entries;
5 ρNB = density of node’s noise buffer;
6 if (gompertz(n

(t)
nb , navg) · ρn ≥ ρavg) then

7 create a new entry enew from noise buffer;
8 create a new empty liar root under enew;
9 insert enew into node;

10 end if
11 end if

The closest entry is calculated both for the insertion object and for the

hitchhiker (if any). If the two have different closest entries, the hitchhiker is

stored in the buffer CF of its closest entry and the insertion objects continues

alone (cf. Algorithm 13.1 line 11).

13.1.3 Noise

As one output of algorithm 13.2 we know whether the current object has

been marked as noise with respect to the current node. If so, the noise

procedure is called, which is listed in algorithm 13.3. In this procedure it

is regularly checked whether the aggregated noise within the buffer is no

longer noise but a novel concept. Therefore, the identified object is first

added to the noise buffer of the current node. To check whether a noise

buffer has become a cluster, we calculate for the current node the average

of its entries’ weights n(t), their average density and the density of the noise

buffer (lines 3 to 5).

Definition 13.3 Density. The density ρe = n
(t)
e /Ve of an entry e is calculated

as the ratio between its weighted number of points n(t)
e and the volume Ve that

it encloses. The volume for d dimensions and a radius r is calculated using the
formula for d-spheres, i.e. Ve = Cd · rd with Cd = πd/2/Γ(d

2
+ 1) where Γ is the

gamma function.

13.1. The LiarTree 223

Having a representative weight and density for both the entries and the

noise buffer, we can compare them to decide whether a new cluster emerged.

A cluster that forms on the current level should be comparable to the existing

ones in both aspects. Yet, a significantly higher density should also allow the

formation of a new cluster, while a larger number of points that are not

densely clustered are further on considered noise. To realize both criteria

the density of the noise buffer is multiplied to a sigmoid function, that takes

the weights into account, before we compare it to the average density of the

node’s entries (cf. line 6). As the sigmoid function the Gompertz function

[BGH+97] is used:

gompertz(nnb, navg) = e−b(e
−c·nnb)

The parameters b (offset) and c (slope) are set such that the result is close to

zero (t0 = 10−4) if nnb is 2 and close to one (t1 = 0.97) if nnb = navg by

b =
ln(t0)

1
1.0−(2.0/navg)

ln(t1)
2

navg−2

c = − 1

navg
· ln(− ln(t1)

b
)

Definition 13.4 Noise-to-cluster event. For a node node = (e1, . . . , ek, CF
(t)
nb)

with average weight navg = 1
k

∑
n

(t)
ei and average density ρavg = 1

k

∑
ρei the

noise buffer CF (t)
nb becomes a new entry, if

gompertz(n
(t)
nb , navg) · ρn ≥ ρavg

We check whether the noise buffer has become a cluster by now, if the

encourage split flag is set to true. A single inner node on the previous path

with an irrelevant entry, i.e. old or empty, suffices for the encourage split

flag to be true. Moreover, the exponential decay regularly yields outdated

clusters. Hence, a noise buffer is likely to be checked.

If the noise buffer has been classified as a new cluster, we create a new

entry from it and insert this entry into the current node. Next we create

a new empty node, which is flagged as liar, and direct the pointer of the

new entry to this node (cf. lines 7 to 9 in Algorithm 13.3). Figure 13.2 a-b)

illustrate this noise to cluster event.

224 Robust Anytime Stream Clustering

e e n e e ne

e e ne

X

e e ne

L L

a) c)

d) e)

e e ne

L

b)

L L L

L L L

e e n
f)

e

Figure 13.2: The liar concept: a noise buffer can become a new cluster and
the subtree below it grows top down, step by step by one node per object.

13.1.4 Novelty

So far new nodes were only created at the leaf level, such that the tree grew

bottom up and was always balanced. By allowing noise buffers to transform

to new clusters, new entries and, more importantly, new nodes are created

within the tree. To avoid getting an increasingly unbalanced tree through

noise-to-cluster events, we treat nodes and subtrees that represent novelty

differently. The main idea is to let the subtrees underneath newly emerged

clusters (entries) grow top down step by step with each new object that is

inserted into the subtree until their leaves are on the same height as the

regular tree leaves. Leaf nodes that belong to such a subtree are called liar
nodes, the root is called liar root. When we end up in a liar node during

descend (cf. Algorithm 13.1), we call the liar procedure which is listed in

Algorithm 13.4.

Definition 13.5 Liar node. A liar node is a node that contains no entry. A
liar root is an inner node of the liar tree that has only liar nodes as leafs in its
corresponding subtree and no other liar root as ancestor.

Figure 13.2 illustrates the liar concept, the image is referred to in the de-

scription of the single steps. A liar node is always empty, since it has been

created as an empty node underneath the entry eparent that is pointing to it.

Initially the liar root is created by a noise-to-cluster event (cf. Fig. 13.2 b)).

To let the subtree under eparent grow in a top down manner, additional new

entries ei must be created (cf. red entries in Figure 13.2). Their cluster fea-

tures CFei must fit the CF summary of eparent, i.e. their weights, linear and

13.1. The LiarTree 225

Algorithm 13.4: liarProc (liarNode, x) .
// refines the model to reflect novel concepts
1 create three new entries with dim dimensions enew[];
2 for (d = 1 to dim) do
3 enew[dmod 3].LS[d] = (eparent.LS[d])/3 + offsetA[d];
4 enew[(d+ 1) mod 3].LS[d] = (eparent.LS[d])/3 + offsetB[d];
5 enew[(d+ 2) mod 3].LS[d] = (eparent.LS[d])/3 + offsetC [d];

6 enew[dmod 3].SS[d] = F [d] + (3/eparent.N) · (enew[dmod 3].LS[d])2;
7 enew[(d+ 1) mod 3].SS[d] =

F [d] + (3/eparent.N) · (enew[(d+ 1) mod 3].LS[d])2;
8 enew[(d+ 2) mod 3].SS[d] =

F [d] + (3/eparent.N) · (enew[(d+ 2) mod 3].LS[d])2;
9 end for

10 insert x into the closest of the new entries;
11 if (liarNode is a liar root) then
12 insert new entries into liarNode;
13 else
14 remove eparent in parent node;
15 insert new entries into parent node;
16 split parent node (stop split at liar root);
17 end if

18 if (non-empty liar nodes reach leaf level) then
19 remove all liar flags in corresponding subtree ;
20 else
21 create three new empty liar nodes under enew[] ;
22 end if

quadratic sums must sum up to the same values. We create three new en-

tries and assign each a third of the weight from eparent. We displace the new

means from the parent’s mean by adding three different offsets to its mean

(a third of its linear sum, cf. lines 3 to 5). The offsets are calculated per

dimension under the constraint that the new entries have positive variances.

We set one offset to zero, i.e. offsetA = 0. For this special case, the remain-

ing two offsets can be determined using the weight nte and variance σ2
e [i] of

eparent per dimension as follows

226 Robust Anytime Stream Clustering

offsetB[i] =

√
1

6
· (1−

(
1

3

)4

) · (nte)·σ2
e [i]

offsetC [i] = −offsetB[i]

The zero offset in the first dimension is assigned to the first new entry, in the

second dimension to the second entry, and so forth using modulo counting

(cf. lines 3 to 8). If we would not do so, the resulting clusters would lay on a

line, not representing the parent cluster well. The squared sums of the three

new entries are calculated in lines 6 to 8. The term F [d] can be calculated

per dimension as

F [d] =
nte
3
·
(
σe[d]

3

)4

Having three new entries that fit the CF summary of eparent, we insert the

object into the closest of these and add the new entries to the corresponding

subtree (lines 11 to 17). If the current node is a liar root, we simply insert

the entries (cf. Figure 13.2 c)). Otherwise we replace the old parent entry

with the three new entries (cf. Figure 13.2 d)). We do so, because eparent

is itself also an artificially created entry. Since we have new data, i.e. new

evidence, that belongs to this entry, we take this opportunity to detail the

part of the data space and remove the former coarser representation. After

that, overfull nodes are split (cf. Figure 13.2 d-e)). If an overflow occurs

in the liar root, we split it and create a new liar root above, containing two

entries that summarize the two nodes resulting from the split (cf. Figure 13.2

e)). The new liar root is then put in the place of the old liar root, whereby

the height of the subtree increased by 1 and it grew top down (cf. Figure 13.2

e)).

In the last block we check whether the non empty leaves of the liar sub-

tree already reach the leaf level. In that case we remove all liar flags in the

subtree, such that it becomes a regular part of the tree (cf. line 19 and Figure

13.2 f)). If the subtree does not yet have full height, we create three new

empty liar nodes (line 21), one beneath each newly created entry (cf. Figure

13.2 c)).

13.1. The LiarTree 227

Algorithm 13.5: Leaf proc. (leafNode, x, h, encSplit) .
// inserts object x and hitchhiker h (if any) into leaf node
1 if (time is up) then
2 insert x and h as entries, possibly merging closest pairs on

overflow;
3 else
4 if (node is full and encSplit == false) then
5 merge hitchhiker to closest entry;
6 else
7 insert hitchhiker as entry;
8 end if

9 insert x as entry;
10 if (node is overfull) then
11 split node and propagate split;
12 end if
13 end if

13.1.5 Insertion and Drift

Once the insertion object reaches a regular leaf, it is inserted using the leaf

procedure (cf. algorithm 13.5). If there is no time left, the object and its

hitchhiker are inserted such that no overflow, and hence no split, occurs (line

2). Otherwise, the hitchhiker is inserted first and, if a split is encouraged,

the insertion of the hitchhiker can also yield an overflowing node. This is in

contrast to the ClusTree, where a hitchhiker is merged to the closest entry to

delay splits. In the LiarTree splits are explicitly encouraged to make better

use of the available memory (cf. Definition 13.1). After inserting the object

we check whether an overflow occurred, split the node and propagate the

split (lines 9 to 12).

Three properties of the LiarTree help to effectively track drifting clusters.

The first property is the aging, which is realized through the exponential de-

cay of leaf and inner entries as in the ClusTree. The second property is the

fine granularity of the model. Since new objects can be placed in smaller

and better fitting recent clusters, older clusters are less likely to be affected

through updates, which gradually decreases their weight and they eventu-

228 Robust Anytime Stream Clustering

ally disappear. The third property stems from the novel liar concept, which

separates points that first resemble noise and allows for transition to new

clusters later on. These transitions are more frequent on levels close to the

leaves, where cluster movements are captured by this process.

13.1.6 Logarithmic time complexity

The LiarTree algorithm is summarized in the following and a proof of its

worst case time complexity is sketched. Summary: To insert a new object,

the closest entry in the current node is calculated. While doing this, a lo-

cal look ahead is performed to possibly improve the clustering quality by

reduction of overlap through local reorganization. If an object is classified

as noise, it is added to the current node’s noise buffer. Noise buffers can be-

come new clusters (entries) if they are comparable to the existing clusters on

their level. Subtrees below newly emerged clusters grow top down through

the liar concept until their leaves reach the regular leaf level. If the insertion

is interrupted the current object is buffered as in the ClusTree to allow for

anytime clustering.

Lemma 13.1 LiarTree time complexity The clustering model M of a liar
tree consists of the micro clusters stored in its leaf nodes. A liar tree has by
definiton a maximal height (cf. Def. 13.1) and hence its model has a maximal
size |M| =: m. The time complexity for inserting an object o into a liar tree of
model size m is O(logm)

A sketch to prove lemma 13.1 is provided using Algorithm 13.1.

Proof 13.1 (Sketch.) Let h be the height of the LiarTree, then h is logarithmic
in m. The initialization takes constant time. The same holds for adding ob-
jects to cluster features (lines 11, 19, 21 and 23) and for the noise procedure
noiseProc (line 14). The two methods liarProc (line 6) and leafProc (line
17) basically have also constant complexity except for the split, which can be
called maximally h times. Hence, these two methods are in O(logm). Since
all three of the above methods are maximally called once per insertion object
and afterwards the loop is left with a break statement (same lines), we are

13.2. Experiments 229

still in O(logm). We still must prove the complexity of lines 8 and 9 and the
termination of the while loop. Since the look ahead is local (one level only)
the calcClosestEntry procedure (lines 8 and 9) has a constant time complex-
ity. The loop is called once per level (after each descent), i.e. it only depends
on h and is therefore also in O(logm). Hence, the total time complexity of the
LiarTree algorithm is logarithmic in the size of the clustering model, i.e. the
number of maintained micro clusters at the leaf level.

13.2 Experiments

To evaluate the performance of the LiarTree different stream scenarios are

simulated to evaluate the radii of the resulting clusters as well as the recall,

precision and F1 measure. Synthetic data is generated (details below) such

that the ground truth is known for comparison. Precision and recall are

calculated using a Monte Carlo approach: for the recall points are generated

inside the ground truth and checked whether these are included in the found

clustering. For the precision the process is reversed, i.e. points are generated

inside the found clustering and checked whether they are inside the ground

truth. In other words, the recall corresponds to the ground truth area that is

found by the algorithm, precision corresponds to the proportion of the found

area that is correct, i.e. without the unnecessary parts.

The synthetic data stream is generated using an radial basis function ap-

proach with additional noise. For a given number of clusters k and a given

radius r points are generated equally at random within k hyperspheres of ra-

dius r. Noise is added equally distributed at random in the unit cube. Novelty

is simulated by adding new clusters, drift is generated by moving the clus-

ter means along individual vectors with a given drift speed. The drift speed

sets the distance that a cluster moves every 1000 points (total). If a cluster

is about to drift out of the unit cube, its corresponding movement vector is

reflected such that it stays inside. If not mentioned differently the parame-

ters are set to k = 5, r = 0.05 and drift speed= 0.02 at 20% noise in the four

dimensional unit cube. Single parameters are varied when mentioned and

the average values of the measures are reported per algorithm.

230 Robust Anytime Stream Clustering

1,0,E+03

1,0,E+04

1,0,E+05

1,0,E+06

1,0,E+07

1,0,E+08

1,0,E+09

1,0,E+10

5 10 15 20 25 30 35 40 45 50

by
te
s

dimensionality

Necessary storage the LiarTree with fanout 3

1.024.000

512.000

256.000

128.000

64.000

32.000

16.000

8.000

4.000

2.000

1.000

dimensionalty: 20
finest level: 128.000 CF
space needed: 75 MB
max. #dists: 51

CF leaf
at level:

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

100000000000

1000000000000

12 24 36 48 60 72

gr
an

ul
ar
ity

#distance computations

2
3
4
6
12

fanout

Figure 13.3: Influence of fanout and granularity on the LiarTree.

The liar tree is compared to the ClusTree algorithm on varying data

streams using a Poisson process (cf. Def. 4.8, p. 94) as in previous chapters.

On constant data streams, the liar tree is compared to DenStream [CEQZ06]

and to the CluStream approach proposed in [AHWY03].

Figure 13.3 shows an evaluation of the influence of the fanout on the

granularity and the number distance computations to reach the leaf level.

Since the LiarTree extends the ClusTree, the results regarding time and space

complexity are similar and can partly be transferred from the detailed anal-

ysis presented in Chapter 11. Due to the additional noise buffer the LiarTree

needs one more distance computation per node and the additional function-

ality such as the liar concept are more expensive than the simple buffering in

the ClusTree. However, as shown in Section 13.1.6 the additional methods

are called maximally once per object and therefore the total descend is still

logarithmic. As Figure 13.3 shows, a fanout of 3 yields the highest granular-

ity at leaf level for the liar tree. This is in accordance with the results from

MC
pps

DenStream
pps

CluStream pps ClusTree
pps

LiarTree
5000 2000 1500 80000 72000
2000 3700 1700 94000 84000
1000 5000 2500 105000 93000
500 7600 6500 120000 105000

Figure 13.4: The maximal points per second that can be processed by the
approaches for differnet model sizes.

13.2. Experiments 231

0,9

1
F1

0,7

0,8

,

0 5

0,6

0,7

0 3

0,4

0,5
0% noise

50% noise

0 1

0,2

0,3

0

0,1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

noiseThreshold

0.5
0 6 0,2

0,4

0,6

0,8

1 F1

0.6
0.7

0.8

0.9

1.0

0

,

0%
10%

20%
30%

40%
50%

noiseThreshold
noise

Figure 13.5: Robustness of the LiarTree to noise and the noise threshold
parameter.

Chapter 11, where it yielded the best trade off between space demands and

computation time. Hence, the fanout of the LiarTree is set to 3, i.e. three

entries (plus noise buffer) per inner node of the tree.

Figure 13.4 shows for different model sizes (number of micro clusters

#MC) the maximal number of points per second (pps) that can be processed

by the individual approaches. For CluStream and DenStream the model size

was fixed and the maximal pps were counted. For ClusTree and LiarTree

the stream speed was fixed and the resulting maintainable model size was

measure. The results are again in line with Chapter 11 and can be explained

by the logarithmic time complexity of the tree approaches, i.e. at the same

speed they can maintain a model that is larger by orders of magnitude.

To evaluate the noise threshold parameter of the LiarTree (cf. Section

13.1.2), the left part of Figure 13.5 shows the resulting F1 measure for 0%

noise and 50% noise over the whole range of the noise threshold, the right

part of the figure shows the corresponding values for all noise levels from 0%

to 50% and noise thresholds from 0.5 to 1.0. The most important observa-

tion from this experiment is that the LiarTree shows good performances on a

rather wide range, i.e. for a noise threshold from 0.2 up to 0.7 or 0.8. To both

ends of the scale, i.e. close to zero or one, the performance drastically drops

(except for 0% noise at a noise threshold close to 1.0). The performance drop

for very low parameter values results from a decreasing recall, since nearly

every point is considered noise in that case. For very high noise thresholds a

232 Robust Anytime Stream Clustering

0,9

1

F1

0 7

0,8

0 5

0,6

0,7

0,4

0,5 LiarTree

ClusTree

CluStream

0,2

0,3 CluStream

0

0,1

0% 10% 20% 30% 40% 50% noise

0,25

di
i

0,2ra
d

0,15

LiarTree
0,1

LiarTree

ClusTree

Cl St
0,05

CluStream

0

0% 10% 20% 30% 40% 50% noise

Figure 13.6: F1 measure and resulting radii for LiarTree, ClusTree and CluS-
tream for different noise levels.

loss in precision causes the F1 measure to drop, since new points from drift-

ing clusters are then more likely to be added to existing micro clusters rather

than creating a new micro cluster using the liar concept. As a consequence

the area covered by the older micro cluster increases and is likely to cover

unnecessary parts of the data space. From the above results any choice be-

tween 0.2 and 0.8 for the noise threshold can be justified, 0.7 is used in the

following. Summarizing Figure 13.5 we can notice that the LiarTree is rather

robust against the choice of the noise threshold parameter.

Figure 13.6 (left) shows the F1 measures of LiarTree, ClusTree and CluS-

tream for noise levels from 0% to 50%. To compare to the CluStream ap-

proach a maximal tree height of 7 was set and CluStream was allowed to

maintain 2000 micro clusters. The parameters for the DenStream algorithm

are difficult to set and greatly affect the quality of its results, such that it was

only used for the performance comparison. Comparing LiarTree and Clus-

Tree one can see that the ClusTree obtains an even slightly better F1 measure

for 0% noise, but that it falls significantly behind that of the LiarTree in the

presence of noise. CluStream meets the performance of the ClusTree in the

presence of noise, but cannot profit from 0% noise and exhibits a significantly

worse F1 measure in that case. The reason for the superiority of the LiarTree

lies in its explicit handling of noise. As can be seen in the right part of Figure

13.6, the radii of the resulting offline clusters are more compact (compare to

0.05 ground truth) and hence the precision improves, i.e. less unnecessary

covered area.

13.2. Experiments 233

0,3

0,4

0,5

0,6

0,7

0,8
F1

LiarTree

ClusTree

CluStream

0

0,1

0,2

2 4 6 8 10 # cluster

CluStream

0,8

0,9

F1

0,7

,

0,5

0,6

Li T

0,3

0,4
LiarTree

ClusTree

CluStream

0,2

0,3 CluStream

0

0,1

0,02 0,04 0,06 0,08 0,1 kernel radius

Figure 13.7: Varying the data stream’s number of clusters and their radius.

Next the parameters k and r are varied, i.e. the number of ground truth

clusters and their radius. Figure 13.7 shows the results for the three ap-

proaches. While the performance of the approaches obviously does not de-

pend on the number of ground truth clusters, the results differ for varying

radii (cf. Figure 13.7 right). The F1 measure for CluStream improves with an

increasing radius. This is in line with the previous results. The missing noise

handling causes the found clusters to be larger and consequently the preci-

sion drops due to unnecessarily covered areas, but with an increasing ground

truth radius, the area covered by the ground truth increases and the above

effect is slightly diminished. While this effect is not equally distinct for the

ClusTree, the LiarTree clearly outperforms both approaches on all settings in

this experiment.

To test the performance of the approaches in case of newly emerging

clusters, data streams were generated where the number of clusters k is in-

creased abruptly. We expect the recall of the approaches to drop significantly

shortly after the introduction of novelty. However, the results did not show

any salience in either measure, i.e. the transition was always smooth and

the absolute values did not differ (cf. Figure 13.7 left). While all approaches

seem capable to immediately react to newly emerging clusters, the overall

performance of the LiarTree was above that of the other approaches regard-

less of the number of clusters (cf. Figure 13.7 left).

The next experiments evaluate the performance of the three approaches

on data streams with varying drift speed. Figure 13.8 shows the resulting

values for F1 and radii. As can be seen in the left part, both the LiarTree

234 Robust Anytime Stream Clustering

0 7

0,8

F1

0,6

0,7

0 4

0,5

0,3

0,4 LiarTree

ClusTree

CluStream
0,2

CluStream

0

0,1

0,02 0,04 0,06 0,08 0,1 drift speed

0,25

di
i

0,2ra
d

0,15

LiarTree
0,1

LiarTree

ClusTree

Cl St
0,05

CluStream

0

0,02 0,04 0,06 0,08 0,1 drift speed

Figure 13.8: Varying the drift speed for LiarTree, ClusTree and CluStream.

and the ClusTree are not affected by higher stream speed, i.e. their F1 mea-

sure exhibits a stable value regardless of the speed. However, the LiarTree

consistently outperforms the ClusTree, which proves the liar concept to be

effective in the presence of drift and, as seen before, in the presence of noise.

The main reason for the difference in the F1 measure is the poorer precision

values of the ClusTree, details are provided below. The CluStream approach

can compete with the ClusTree for slow drift speeds in this experiment, but

falls significantly behind when the drift accelerates. Its drop in performance

results from both decreasing recall and precision, while the latter has clearly

the stronger influence.

Before looking at the details of precision and recall we shortly inspect

the resulting radii over varying drift speeds in the right part of Figure 13.8.

As before, the radii shown in the plot correspond to the offline component

and must be compared to 0.05 for the ground truth. All three approaches

show constant values over the various drift speeds, which is due to their

property of removing older data to keep track of the more important recent

data. The radii resulting from the CluStream approach are two to three times

larger than the ground truth. Similar values are obtained by the ClusTree for

this setting, i.e. allowing a comparable number of micro clusters to both

approaches. As was detailed in Chapter 11, the ClusTree can maintain way

more clusters in the same time due to its logarithmic time complexity in

contrast to CluStream. The same holds for the LiarTree, since it has the same

logarithmic complexity.

13.3. Conclusion 235

0,7

0,75

0,8

0,85

0,9

0,95

1

0,02 0,04 0,06 0,08 0,1
drift speed

Recall for varying drift speeds

LiarTree ClusTree CluStream

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,02 0,04 0,06 0,08 0,1
drift speed

Precision for varying drift speeds

LiarTree ClusTree CluStream

Figure 13.9: Precision and recall of the approaches for varying drift speeds.

Figure 13.9 details the precision and recall values of the approaches over

varying drift speeds. The left part shows that the recall values for CluStream

and LiarTree slightly decrease with faster drift speeds (mind the scale com-

pared to the right part). The reason is that both approaches adapt to the

drift and delete the oldest micro clusters in the process. The property of the

LiarTree to actively encourage splits and create new entries can yield early

outdated micro clusters in some cases. In contrast, in the ClusTree the new

points are more likely to be added to existing concepts, which causes slightly

increasing radii and therefore a higher recall value. However, this small ben-

efit of the ClusTree is paid by a significantly worse precision compared to the

LiarTree (cf. right part of Figure 13.9). While the ClusTree can maintain its

level of precision with increasing drift speed, the CluStream approach suffers

a severe loss in precision in the presence of noise and faster drifts. Once more

the LiarTree clearly outperforms both approaches, showing the effectiveness

of its new concepts.

13.3 Conclusion

In this chapter the LiarTree was introduced. It constitutes an anytime stream

clustering algorithm, which avoids overlapping through local look ahead and

reorganization and incorporates explicit noise handling on all levels of the

hierarchy. It allows the transition from local noise buffers to new entries

(micro clusters) and grows novel subtrees top down using its liar concept,

236 Robust Anytime Stream Clustering

which makes it robust against noise and changes in the distribution of the

underlying stream. Experimental evaluation showed for various data stream

scenarios that the LiarTree outperforms competing approaches in the pres-

ence of noise and evolving data, proving its novel concepts to be effective.

This chapter concludes the algorithmic contributions to anytime stream

clustering. In the following an application of the ClusTree is introduced in

Chapter 14. An open source framework for stream data mining is presented

in Chapter 15 along with a novel evaluation measure for clustering on evolv-

ing data streams. Future work in the area of stream clustering is discussed

in Chapter 16.

Chapter 14

Application: Using Modeling for
Anytime Outlier Detection

∗ Besides classification and clustering, outlier detection is another important

mining task on data streams. Anytime outlier detection denotes the task of

determining within any period of time whether an object is anomalous. The

more time is available, the more reliable the decision should be. The solution

presented in this chapter is based on the previously presented ClusTree. The

effectiveness of the proposed method is shown in experimental evaluation

on varying and constant streams.

14.1 Introduction

Outlier detection has been defined by Hawkins as the task of finding “an

observation which deviates so much from other observations as to arouse

suspicions that it was generated by a different mechanism” [Haw80]. Based

on this popular definition, different approaches for formalizing outliers and

for algorithmically uncovering them have been proposed in the literature. In

statistics, the general idea is to analyze the data by assuming that it follows

a certain distribution [BL94]. In distance-based outlier detection, outliers

∗This chapter has been presented at the International Workshop on Novel Data Stream
Pattern Mining Techniques (StreamKDD 2010) in conjunction with ACM SIGKDD [AKBS10].

237

238 Application: Using Modeling for Anytime Outlier Detection

are defined as objects which do not have at least a certain number of objects

within a given threshold distance [KNT00]. Another research direction is

the use of clustering to identify the prevailing groups of data objects, which

defines outliers as objects that are not clustered or far from cluster centers

[EKSX96, HXD03].

For streaming data, some outlier detection algorithms have been pro-

posed recently [Agg05, AF07, SPP+06, YiTWM04]. These algorithms suc-

cessfully determine outliers for streams with constant inter-arrival rates. The

approaches, however, are not capable of working effectively in an anytime

environment. They may not be able to keep up with streams of varying

speed, which leads to loss of data or unpredictable drop in accuracy for

bursty streams. Also, if more time is available, these algorithms are not

capable of using this time in order to improve the reliability of the result.

In anytime outlier detection the time available to the algorithm is used

to refine the outlier detection and to increase the reliability of the result.

The approach presented in this chapter employs the ClusTree to determine

the outlier score based on the distance between object and cluster. Therein,

until interrupted, more fine grained resolutions of the clustering structure

are analyzed.

14.2 Related work

For outlier detection, several paradigms have been introduced in the research

literature. In supervised outlier detection, a problem similar to unbalanced

classification is studied [ZKF05, FZZ09]. However, supervised methods re-

quire training data with labeled outliers, which is often not the case in prac-

tice.

Unsupervised approaches do not assume the availability of training data

but aim to identify outliers based on their deviation from the remainder of

the data, similar in spirit to the widely known Hawkins definition [Haw80].

Among unsupervised outlier detection, different models for determining de-

viation exist. In statistical outlier detection, the core concept is to assume

14.2. Related work 239

that the data follows a certain data distribution, and to identify those objects

that do not well fit this assumption [BL94]. Distance-based outlier detection

finds objects that show a high distance to most other data objects [KNT00].

Parameters to this approach are the proportion of objects at a high distance,

and a distance threshold. Clustering-based outlier detection uses clusters

as a means to identify the inherent structure of valid data, and determines

outliers as objects that are not clustered well [EKSX96, HXD03, MSS11].

While many traditional methods assume that data can be separated into

outliers and inliers (valid data), finding such a clear boundary may prove

difficult for many data sets. The Local Outlier Factor (LOF) method relaxed

this requirement in favor of a scoring function that reflects the degree of

deviation of an object [BKNS00]. The result of the outlier detection is then

not a set of outliers, but a ranking of objects by their degree of outlierness.

This idea has since been incorporated into other outlier detection methods,

such as top-n outlier detection [JTH01]. An extension of LOF for very high

dimensional spaces has recently been proposed in [dVCH10]. The basic idea

is to first find candidate nearest neighbors in a random projection space of

lower dimensionality and refine these in a second step in the original space.

Specialized techniques for different application areas study harmoniza-

tion of local outlier factors to probabilities [KKSZ09] or focus on specific

data types such as time series [MSV04]. While time series bear some re-

semblance with streaming data, the important difference is that time series

data is assumed to be available entirely at the time of outlier detection (cf.

Chapter 2). Moreover, the goal is not to identify outlying objects as in data

streams, but outlying patterns that involve several values that are neighbor-

ing along the time axis. Thus, approaches for time series outlier detection

are not applicable to the problem of finding outliers in streaming data.

Recently, many approaches for outlier detection on data streams have

been proposed [Agg05, AF07, SPP+06, YiTWM04, FG08, ZGW08, VGN08,

ELN+08, RWZH09, YRW09, ZGWW10, CZSC10, SG10]. However, all of

these approaches assume streams of fixed arrival rates and do not meet the

requirement of anytime outlier detection that more time leads to better ac-

curacy.

240 Application: Using Modeling for Anytime Outlier Detection

14.3 Detecting outliers in streaming data

Before introducing the proposed AnyOut algorithm the problem of anytime

outlier detection is introduced more formally.

14.3.1 The anytime outlier detection problem

In outlier detection, the goal is to identify objects which deviate from the

remainder of the data. This is illustrated in a simplified example in Fig-

ure 14.1: The majority of data objects (depicted in black) is considered to

represent valid patterns in the data, whereas singular objects such as the

one at the top left (red colored) are typically assumed to be outliers. As dis-

cussed in the previous section, different research approaches for determining

deviation have been proposed in the literature, and they arrive at different

formalizations of the outlier notion or degree of outlierness. The formal-

ization of the anytime outlier detection problem abstracts from the concrete

notions of what constitutes an outlier. Different outlier detection paradigms

may be followed in order to solve this problem. As stated above, the solution

presented in Subsection 14.3.2 follows a cluster-based approach for solving

anytime outlier detection.

As briefly sketched in Related Work as well, it may prove difficult to de-

termine clear decision boundaries between outliers and inliers. Typically,

objects deviate from the majority of the data objects to a varying degree.

Consequently, many outlier detection techniques aim to capture this degree

of deviation in a corresponding outlier score. In the following discussion it

Figure 14.1: Cluster-based outlier detection: objects deviating from prevail-
ing patterns in the data are considered outliers.

14.3. Detecting outliers in streaming data 241

Gaussian distribution

time
... ...

time for outlier
detection

Kernel densitiesMixture densities

Figure 14.2: Streaming data with varying inter-arrival rates requires flexible
anytime algorithms that are capable of processing each object within a time
window that is unknown a priori, as time available is dictated by the arrival
of the next object in the stream.

is assumed that outlier detection is concerned with the computation of an

outlier score that expresses the degree of outlierness. This is without loss of

generality, as algorithms that separate outliers and inliers in a binary fash-

ion can be considered as special cases that compute just two distinct outlier

scores.

Illustrated in Figure 14.2, as more objects arrive within shorter periods of

time, decisions in outlier detection need to be taken in less time accordingly.

Since the duration of a burst or the number of objects that arrive within a

certain time window is generally not bounded, simply buffering objects until

the stream slows down is not an option. If the buffer size is exceeded, ob-

jects are lost and detection accuracy drops unexpectedly and unpredictably.

On the other hand, if the stream speed is slow, an ideal outlier detection

algorithm should be capable of making use of this time. The accuracy of out-

lier detection should improve as more time is available, which leads to the

definition of the anytime outlier problem.

Definition 14.1 Anytime outlier detection. Given a data stream of data ob-
jects oi arriving at a priori unknown inter-arrival rate, the anytime outlier
detection problem is to compute an outlier score s(oi) in the time ta between the
arrival of oi and its successor oi+1. The larger ta, the more accurate the outlier
score s(oi) should be.

The evaluation of the accuracy of outlier scores s(oi) is not straightfor-

ward. If synthetic or manually labeled data is available for empirical studies,

this constitutes a ground truth for accuracy assessment. In practice, how-

ever, such ground truth is typically not available, and domain experts need

242 Application: Using Modeling for Anytime Outlier Detection

to judge the quality of the outlier scores that are assigned to objects in the

stream. This issue is not specific to streaming environments, but affects out-

lier detection research in general.

14.3.2 Outlier detection using a cluster hierarchy

The general concept underlying the proposed anytime outlier detection ap-

proach is discussed in the following. As outlined in the problem definition

above, there are two main requirements: Being capable of computing outlier

scores even within very short time intervals and being able to improve the

accuracy or reliability of the outlier score computed.

Clustering methods have been successfully used to identify prevailing pat-

terns of the data that serve as an input to the actual outlier detection. In or-

der to meet the requirements of fast initial response and improvement over

time, the AnyOut algorithm employs the ClusTree as a hierarchical cluster-

ing method. Clusters at upper levels of the tree hierarchy subsume the more

fine grained information at lower levels of the tree. The hierarchy of the

tree hence provides a natural organization of the clusters that can be incre-

mentally accessed in order to refine the outlier score of the object in ques-

tion. Initially, the object is compared only to the root node that describes the

data distribution using few clusters. This comparison can be performed effi-

ciently; hence, the first requirement is met. Since more detailed information

on the data distribution is available at lower levels of the tree, the reliability

of the outlier scores is typically improved. This aspect is empirically studied

in the experiments in Section 14.4.

Assessing the degree of outlierness in the AnyOut approach is based on

the degree of accordance of the object with the closest cluster feature at the

current level of resolution. Whenever a new object oi+1 arrives in the stream,

this interrupts the descent down the tree with the current object oi. The

object oi is then compared to the cluster feature to assess the outlier degree.

The mean outlier score computes the degree of outlierness of an object oi as

the extent of deviation of oi from the mean of the closest cluster feature.

Since AnyOut operates directly on the ClusTree, the closest cluster feature

14.4. Experiments 243

is simply the one that is reached through tree traversal until the point of

interruption by the next data object in the stream.

Definition 14.2 Mean outlier score. For any data object oi, the mean outlier
score sm(oi) is defined as sm(oi) := d(oi, µes), where µes is the mean of entry
es in the ClusTree that oi is inserted into when the next object oi+1 of the data
stream arrives and d is the Euclidean distance.

The mean outlier score thus assesses the deviation of the current object

from the mean of the data distribution in the cluster feature of the current

tree entry. By interpreting the cluster features as parameters of a Gaussian

distribution of the data objects in the corresponding subtree, a second outlier

score based on the probability density of the object can be defined.

Definition 14.3 Density outlier score. For any data object oi, the density
outlier score sd(oi) is defined as sd(oi) := g(oi, µes , σei), where es is the entry in
the ClusTree that oi is inserted into when the next object oi+1 of the data stream
arrives and g is a Gaussian distribution according to Definition 2.3.

Both the mean outlier score and the density outlier score reflect the de-

gree of outlierness of the object at the point of interruption. In both cases,

the data distribution of the closest cluster is the basis for the score compu-

tation. They differ in the way the cluster feature is interpreted: the mean

outlier score only takes the center of mass of the data into account, whereas

the density outlier score takes the overall data distribution into account, as-

suming a Gaussian distribution.

14.4 Experiments

Before the performance of the AnyOut algorithm is evaluated, the employed

quality measures are described in Section 14.4.1. The quality of the approach

is tested using the proposed outlier scores on the individual levels of the

ClusTree. Besides the incremental insertion as in the ClusTree algorithm

(cf. Chapter 11) the EM top down bulk loading discussed in Chapter 6 is

244 Application: Using Modeling for Anytime Outlier Detection

employed for constructing the tree. The results for the anytime performance

as well as a comparison between incremental insertion and bulk loading are

presented in Section 14.4.3. Section 14.4.4 contains the results achieved by

AnyOut on constant streams.

14.4.1 Setup

In the experiments real world data sets of different characteristics from the

UCI machine learning repository [HB99] were used in a four fold cross val-

idation. One class was left out in the training set to generate outliers: the

objects from the left out class which are contained in the test set are the

outliers O. The AnyOut algorithm is evaluated after all objects are processed

yielding a complete ranking of all objects with respect to their assigned out-

lier score in descending order. pos(o) gives the position of an object o in the

ranking; the smaller pos(o), the more likely o is an outlier. The ground truth

information whether an object o was an outlier (o ∈ O) or not is used to

compute the quality measures, starting off with the position score

posScore =
∑
o∈O

pos(o)

The smaller the value for posScore, the better the quality of the ranking,

since then the true outliers are on top of the ranking.

The ranking and the ground truth are further used to compute the ROC

curve for the results, which plots the true positive rate (TPR) over the false

positive rate for each prefix of the ranking. From the ROC plots the AUC

value (area under the ROC curve [Bra97]) is derived as a standard mea-

sure. Finally two further standard measures for ranking quality are com-

puted, namely the Spearman ranking coefficient [Spe04] and Kendall’s Tau

[Ken38]. In the plots generally the average performance values over all

classes are reported and detailed results per class are shown for selected

settings.

14.4. Experiments 245

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

0 0,2 0,4 0,6 0,8 1

TP
R

FPR

Vowel ROC Curve

Level 0
Level 3
Level 7

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

0 0,2 0,4 0,6 0,8 1

TP
R

FPR

Letter ROC Curve

Level 0
level 6
Level 13

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

0 0,2 0,4 0,6 0,8 1

TP
R

FPR

Pendigits ROC Curve

Level 0
Level 3
Level 10

Figure 14.3: ROC curves for the vowel, letter and pendigits data sets.

14.4.2 Level analysis

To analyze the individual levels of the resulting tree structures in the AnyOut

algorithm one ranking for each level of the tree is created and the measures

introduced in Section 14.4.1 are computed. Figure 14.3 shows the ROC plots

for the vowel, pendigits and letter data sets. Each plot contains a ROC curve

for the root level, the leaf level and a level in the middle. The tree structures

in this experiment were build using incremental insertion and the employed

outlier score was the mean outlier score. What is clearly visible from the

results on all data sets, is that the basic principle of the AnyOut algorithm is

effective; the quality of the results improves if more time is available (deeper

levels are reachable).

Similar observations can be made using the other quality measures.

Figure 14.4 shows the results for Spearman’s ranking coefficient, AUC and

Kendalls Tau. The two plots show the mean outlier score and the density

outlier score on the vowel data set using bulk loading to construct the tree.

(Incremental insertion and bulk loading are compared in the next section.)

The density outlier score yields slightly worse rankings than the mean outlier

246 Application: Using Modeling for Anytime Outlier Detection

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10 11 12
Level

Quality measures for the mean outlier score

Spearman

AUC

Kendalls Tau

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Level

Quality measures for the density outlier score

Spearman

AUC

Kedalls Tau

Figure 14.4: Quality Measures for mean and density outlier scores on vowel.

score. Moreover, the mean outlier score yields a constant quality improve-

ment, whereas the density outlier score shows a slight reduction in ranking

quality on intermediate levels. The mean outlier score showed better results

throughout the data sets and is therefore employed in the following.

Figure 14.5 shows the results for the posScore measure over the individ-

ual levels on the pendigits data set. Besides the average value, the values for

each class that was left out are shown. While some classes are obviously eas-

ier to separate, the AnyOut principle shows its effectiveness in all cases; the

more time is available to descend the tree structure, the better the resulting

ranking reflects the true outliers.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10

po
sS
co
re

Level

posScore per class

Class 0
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Avg

Figure 14.5: posScore per class and the averaged posScore for the pendigits
data set.

14.4. Experiments 247

0,57 0,59

0,15 0,18

0,70 0,72

0,45 0,47

0,78 0,80

0,58 0,59

Incr Bulk Incr Bulk

AUC Kendalls Tau

Anytime Performance on Vowel
λ = 0.5 λ = 0.3 λ = 0.1

0,70 0,71

0,40 0,42

0,87 0,88

0,69
0,73

0,90 0,92

0,81 0,81

Incr Bulk Incr Bulk

AUC Kendalls Tau

Anytime Performance on Pendigits
λ = 0.5 λ = 0.3 λ = 0.1

Figure 14.6: Results on anytime streams.

0,52 0,52

0,12 0,13

0,69 0,72

0,33 0,36

0,80
0,84

0,63 0,65

Incr Bulk Incr Bulk

AUC Kendalls Tau

Anytime Performance on Letter
λ = 0.5 λ = 0.3 λ = 0.1

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

Incr Bulk Incr Bulk Incr Bulk

Vowel Pendigits Letter

posScore on anytime streams

λ = 0.5
λ = 0.3
λ = 0.1

Figure 14.7: Results on anytime streams.

14.4.3 Anytime streams

In the anytime performance evaluation of AnyOut a unit corresponds to one

level of the tree structure. Figures 14.6 and 14.7 show the results for Poisson

streams (cf. Def. 4.8, p. 94) using the vowel, pendigits and letter data sets. In

these experiments the performance of the incremental insertion is compared

to the proposed bulk loading using the EM algorithm. In each group of

bars the values for three different λ values are shown, while a smaller value

corresponds to a slower stream with more expected time per object.

Starting with the vowel data set in Figure 14.6 (left) we see for the AUC

measure and for Kendall’s Tau, that both the incremental insertion and the

bulk loading yield better qualities on slower stream. This is in line with

the results from the level analysis in Section 14.4.2. Comparing the two

tree construction methods we observe that on the one hand the bulk loading

yields better results for any speed on both measures, but on the other hand

the advantage is smaller than we expected.

248 Application: Using Modeling for Anytime Outlier Detection

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 100 200 300 400 500 600 700 800 900 1000
objects

Outlier positions over outlier score

nomalized outlier score ground truth

Figure 14.8: Outlier Positions.

The results on pendigits (Figure 14.6 right) and letter (Figure 14.7 left)

confirm both of the above findings. With a higher expected time per object

(smaller λ value) the AnyOut algorithm shows its effectiveness and produces

better rankings. The difference between incremental insertion and bulk load-

ing performance are rather small but constant. To complete the analysis on

anytime streams the posScore values for all data sets are shown in Figure

14.7 (right). Summarizing the Evaluation we can conclude that the pro-

posed AnyOut method is effective for anytime outlier detection.

14.4.4 Anytime outlier detection on constant streams

To test the performance of the AnyOut algorithm on streams with constant

data rates a confidence measure for the current outlier score of an object

is required (cf. Chapter 9). To this end the positions of the outliers in the

ranking returned by the AnyOut algorithm are examined. Figure 14.8 shows

the results for the vowel data set (middle level) using the mean outlier score.

Optimally all outliers (green bars) would be at the far left. Obviously the

objects with the highest outlier score are false alarms. Similar distributions

14.4. Experiments 249

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

Spearman AUC Kendalls
Tau

Spearman AUC Kendalls
Tau

slow fast

WS 2
WS 4
WS 6

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

Spearman AUC Kendalls
Tau

Spearman AUC Kendalls
Tau

slow fast

FS 4
FS 8
FS 12

Figure 14.9: AnyOut using the window approach (left) and fifo approach
(right) on constant data streams.

are observable for the other data sets. Therefore

conf(o) = 1− e−s(o)

is employed as a simple and straightforward confidence measure in the fol-

lowing, where s(o) is the current outlier score of object o. Intuitively, we

hence check for the putative outliers (the highest ranked objects) whether

they are really outliers by giving them more computation time.

Figure 14.9 shows the corresponding results for the vowel data set using

the window approach and fifo approach (cf. Chapter 9) respectively using

three different window sizes (WS 2, 4 and 6) and the analogue fifo sizes (FS

4, 8 and 12). As in Section 14.4, four fold cross validation was used and the

quality measures are based on the final ranking of all objects. The results

from Figure 14.9 (left) show that the performance of the AnyOut algorithm

improves with larger window sizes for slow and fast streams. The results

using the fifo approach are even slightly better (cf. Figure 14.9 right), which

is attributable to the greater flexibility according to the comparably larger

set of objects. This is in line with the results from Chapter 9 for anytime

classification on constant streams. The simple confidence measure proposed

above already shows the effectiveness of AnyOut on constant streams. This

motivates further research as in the case of anytime classification.

250 Application: Using Modeling for Anytime Outlier Detection

14.5 Conclusion

The anytime outlier detection problem for varying and constant data streams

was introduced and studied in this chapter. A first algorithm called Any-

Out was proposed and its structure and performance was analyzed on both

types of streams. The algorithm is based on the methods proposed in the

previous chapters and constitutes an application example for the ClusTree.

The promising results of AnyOut motivate further research in both anytime

clustering and anytime outlier detection. A simple and straightforward con-

fidence measure was employed for performance improvement on constant

streams. More sophisticated confidence measures can be investigated; using

the variance of previous outlier scores for an object is one example. Also,

anytime outlier algorithms can be developed using other paradigms such as

density based approaches.

Chapter 15

MOA and CMM

∗ † Working on both classification (cf. Part II) and clustering (cf. Part III)

reveals two very strong advantages of the former over latter when it comes

to experimental evaluation: the chance of being provided with a ground

truth on real world data sets and, given the ground truth, an undisputed

objective evaluation measure (accuracy). The burden of finding data sets

for the evaluation of clustering algorithms increases in the stream mining

scenario, since a gold standard clustering for changing distributions in real

world streaming data is hardly ever available. Therefore, evaluating and,

especially, comparing stream clustering algorithms in a fair and meaningful

way is a challenging task. The MOA framework presented in Section 15.1

constitutes a step towards easier and more repeatable evaluation and com-

parison of stream clustering algorithms. The matter of an appropriate eval-

uation measure for clustering evolving data streams is discussed in Section

15.2, where a short introduction to the cluster mapping measure (CMM) is

provided.

∗An Article on MOA has been published in the Journal of Machine Learning Research
(JMLR) [BHP+10a] and MOA has been presented at different international conferences
including ACM SIGKDD 2010 and IEEE ICDM 2010 [KKJ+10a, KKJ+10b, BHP+10b].
†A research paper describing the CMM has been published in the Proceedings of the

17th ACM International Conference on Knowledge discovery and Data Mining (KDD 2011)
[KKJ+11].

251

252 MOA and CMM

15.1 The MOA Framework

In traditional data mining scenarios, evaluation frameworks were introduced

to cope with the comparison issue. One of these frameworks is the well-

known WEKA Data Mining Software that supports adding new algorithms

and evaluation measures in a plug-and-play fashion [HFH+09, MAK+08,

MAG+09b]. As data stream mining is a relatively new field, the evaluation

practices are not nearly as well researched and established as they are in the

traditional batch setting.

Massive Online Analysis (MOA) [BHKP10] is a framework for stream

mining evaluation that builds on the work in WEKA. MOA contains state-

of-the-art algorithms and measures for both stream classification and stream

clustering and permits evaluation of data stream mining algorithms on large

streams and under explicit memory limits. The main contributions and ben-

efits of the MOA framework are:

• Analysis and comparison both for different approaches (new and state-

of-the-art algorithms) and for different (large) streaming setting

• Creation and usage of benchmark settings for comparable and repeat-

able evaluation of stream mining algorithms

• Open source framework that is easily extensible for data feeds, algo-

rithms and evaluation measures

In the following first the general architecture of MOA is introduced be-

fore classification and clustering on evolving data streams using MOA is de-

scribed.

15.1.1 System architecture

A simplified system architecture is illustrated in Figure 15.1. It shows at the

same time the work flow of MOA and its extension points, since all aspects

follow the same principle. First a data feed is chosen, then a learning algo-

rithm is configured (a stream classification or stream clustering algorithm)

15.1. The MOA Framework 253

and finally an evaluation method is chosen to analyze the desired scenario.

The choice of streams, algorithms and especially evaluation methods differs

between the classification and clustering parts and is therefore described

separately in the following sections. For both tasks, users can extend the

framework in all three aspects to add novel data generators, algorithms or

evaluation measures. To run experiments using MOA users can chose be-

tween the command line or a graphical user interface.

MOA Framework

data feed/ learning evaluationdata feed/
generator

learning
algorithm

evaluation
method Results

Extension points

Figure 15.1: Architecture, extension points and work flow of MOA.

15.1.2 Classification

For the evaluation of stream classification algorithms MOA contains the fol-

lowing components.

Data stream generators for stream classification. MOA contains the

data generators most commonly found in the literature. Streams can be

built using generators, reading ARFF files, joining several streams, or fil-

tering streams. They allow for the simulation of a potentially infinite se-

quence of data. The following generators are available in MOA for stream

classification: SEA Concepts Generator [SK01], STAGGER Concepts Genera-

tor [SG86], Rotating Hyperplane [HSD01], LED Generator [BFSO84, HB99]

and Function Generator [AGI+92].

Considering data streams as data generated from pure distributions, MOA

models a concept drift event as a weighted combination of two pure distribu-

tions that characterizes the target concepts before and after the drift. Within

the framework, it is possible to define the probability that instances of the

254 MOA and CMM

stream belong to the new concept after the drift. It uses the sigmoid function,

as an elegant and practical solution [BHPG09, BHP+09].

Classifiers. For stream classification MOA contains a näıve Bayes classi-

fier and the following variants of Hoeffding trees (cf. Chapter 3): Hoeffding

Tree [DH00], Hoeffding Option Trees [PHK07], ADWIN[BG07], Bagging using

ADWIN[BHP+09] and Adaptive-Size Hoeffding Trees [BHP+09].

Evaluation methods for stream classification. The evaluation proce-

dure of a learning algorithm determines which examples are used for training

the algorithm, and which are used to test the model output by the algorithm.

When considering what procedure to use in the data stream setting, one of

the unique concerns is how to build a picture of accuracy over time. Two

main approaches arise:

• Holdout: When traditional batch learning reaches a scale where cross-

validation is too time consuming, it is often accepted to instead mea-

sure performance on a single holdout set. This is most useful when the

division between train and test sets has been predefined, so that results

from different studies can be directly compared.

• Interleaved Test-Then-Train or Prequential: Each individual example

can be used to test the model before it is used for training, and from

this the accuracy can be incrementally updated. When intentionally

performed in this order, the model is always being tested on examples

it has not seen. This scheme has the advantage that no holdout set

is needed for testing, making maximum use of the available data. It

also ensures a smooth plot of accuracy over time, as each individual

example will become increasingly less significant to the overall aver-

age [GSR09].

MOA is easy to use and extend. A simple approach to writing a new clas-

sifier is to extend moa.classifiers.AbstractClassifier, which will take

care of certain details to ease the task.

15.1. The MOA Framework 255

MOA Framework: Clustering a) Open current result
in WEKA explorer

data feed/
generator

clustering
algorithm

evaluation
measure

b) Store measures
to .csv file

c) Visualize clustering

oi
nt
s

and measures online

tr
ea
m
.

va va

te
ns
io
n
po

us
te
ri
ng
St

us
te
re
r.j
av

ea
su
re
.ja
v

Ex
t

Cl
u

Cl
u

M
e

Figure 15.2: Left: Extension points and work flow of the MOA stream clus-
tering framework. Right: Option dialog for the RBF data generator (by stor-
ing and loading settings benchmark streaming, data sets can be shared for
repeatability and comparison).

15.1.3 Clustering

The stream clustering component of MOA has the following main features:

• data generators for stream clustering on evolving streams (including

events like novelty, merge, etc. (cf. Chapter 3)),

• a set of state-of-the-art stream clustering algorithms,

• evaluation measures for stream clustering,

• visualization tools for analyzing results and comparing different set-

tings.

The left part of figure 15.2 shows the extension points of MOA stream

clustering and illustrates the architecture as well as the usage of the cluster-

ing component. First a data feed is chosen and configured, then a stream

clustering algorithm and its settings are fixed, then a set of evaluation mea-

sures is selected and finally the experiment is run to obtain and analyze the

result. The four aspects are detailed in the following subsections.

256 MOA and CMM

Data feeds and data generators

For stream clustering a new RBF data generator was added that support the

simulation of cluster evolution events such as merging or disappearing of

clusters.

The right part of figure 15.2 shows a screen shot of the configuration di-

alog for the RBF data generator with events. Generally the dimensionality,

number and size of clusters can be set as well as the drift speed, decay hori-

zon (aging) and noise rate etc. Events constitute changes in the underlying

data model such as growing of clusters, merging of clusters or creation of

new clusters [SNTS06]. Using the event frequency and the individual event

weights, one can study the behavior and performance of different approaches

on various settings. Finally, the settings for the data generators can be stored

and loaded, which offers the opportunity of sharing settings and providing

benchmark streaming data sets for repeatability and comparison. New data

feeds and generators can be added to the MOA framework by implementing

the ClusteringStream interface (further description and source code can be

found on the MOA website http://moa.cs.waikato.ac.nz/).

Stream clustering algorithms

The MOA framework contains several stream clustering methods including

StreamKM++ [ALM+10], CluStream [AHWY03], ClusTree [KABS09], Den-

Stream [CEQZ06], D-Stream [CT07] and CobWeb [Fis87]. As for stream

classification, the set of algorithms is extensible through classes that imple-

ment the interface Clusterer.java. These are added to the framework via

reflections on start up. The three main methods of this interface are

• void resetLearningImpl(): a method for initializing a clusterer learner

• void trainOnInstanceImpl(Instance): a method to train a new in-

stance

• Clustering getClusteringResult(): a method to obtain the current

clustering result for evaluation or visualization

15.1. The MOA Framework 257

Internal measures External measures
Gamma [BH75] Rand statistic [Ran71]
C Index [HL76] Jaccard coefficient [FM83]
Point-Biserial [Mil80] Folkes and Mallow Index [FM83]
Log Likelihood [Har75] Hubert Γ statistics [HA85]
Dunn’s Index [Dun74] Minkowski score [BSH+07]
Tau [Roh74] Purity [ZK04]
Tau A [HL76] van Dongen criterion [VD00]
Tau C [HL76] V-measure [RH07]
Somer’s Gamma [HL76] Completeness [RH07]
Ratio of Repetition [HL76] Homogeneity [RH07]
Modified Ratio of Repetition [HL76] Variation of information [Mei05]
Adjusted Ratio of Clustering [HL76] Mutual information [CT06]
Fagan’s Index [HL76] Class-based entropy [SZ08]
Deviation Index [HL76] Cluster-based entropy [ZK04]
Z-Score Index [HL76] Precision [vR79]
D Index [HL76] Recall [vR79]
Silhouette coefficient [KR90] F-measure [vR79]

Table 15.1: Internal and external clustering evaluation measures.

Stream clustering evaluation measures

For cluster evaluation various measures have been developed and proposed

over the last decades. A common classification of these measures is the sep-

aration in so called internal measures and external measures. Internal mea-

sures only consider the cluster properties such as distances between points

within one cluster or between two different clusters. External evaluation

measures compare a given clusterings to a ground truth. Table 15.1 shows

a selection of popular measures from the literature. MOA contains an exten-

sible set of both internal and external measures that can be applied to both

micro and macro clusterings. Comparative studies of clustering evaluation

measures can be found in [Mil80, BSH+07, SZ08, WXC09], an outlook on

evaluation of stream clustering algorithms is contained in Section 15.2.

To extend the available collection with additional or novel evaluation

measures the Measure interface must be implemented. The main methods

are:

258 MOA and CMM

Figure 15.3: Visualization tab of the clustering MOA graphical user interface.

• void evaluateClustering(Clustering clustering, Clustering

trueClustering): uses the implemented measure to evaluate the given

clustering w.r.t. to the provided ground truth.

• double getLastValue(): a method that outputs the last result of the

evaluation measure.

• double getMaxValue(), getMinValue(), getMean(): methods that

provide more statistics about the measure’s distribution.

Analysis and visualization

After the evaluation process is started, several options for analyzing the out-

puts are given: a) the stream can be stopped and the current (micro) clus-

tering result can be passed as a data set to the WEKA explorer for further

analysis or mining; b) the evaluation measures, which are taken at config-

urable time intervals, can be stored as a .csv file to obtain graphs and charts

offline using a program of choice; c) last but not least both the clustering

results and the corresponding measures can be visualized online within the

MOA framework. In the graphical interface MOA allows the simultaneous

configuration and evaluation of two different setups for direct comparison of

two different algorithms on the same stream.

15.1. The MOA Framework 259

The visualization component allows to visualize the stream as well as

the clustering results, choose dimensions for multi dimensional settings, and

compare experiments with different settings in parallel. Figure 15.3 shows a

screen shot of the visualization tab. For this screen shot two different settings

of the CluStream algorithm [AHWY03] were compared on the same stream

setting (including merge/split events every 50000 examples) and four mea-

sures were chosen for online evaluation (F1, Precision, Recall, and SSQ).

The upper part of the GUI offers options to pause and resume the stream,

adjust the visualization speed, choose the dimensions for x and y as well as

the components to be displayed (points, micro- and macro clustering and

ground truth). The lower part of the GUI displays the measured values for

both settings as numbers (left) and the currently selected measure as a plot

over the arrived examples (right, F1 measure in this example). For the shown

setting one can see a clear drop in the performance after the split event at

roughly 160000 examples (event details are shown when choosing the corre-

sponding vertical line in the plot). While this holds for both settings, the left

configuration (red, CluStream with 100 micro clusters) is constantly outper-

formed by the right configuration (blue, CluStream with 20 micro clusters).

A video containing an online demo of the system can be found at the MOA

website along with more screen shots and explanations.

15.1.4 Conclusion

The MOA framework provides a set of data generators, algorithms and eval-

uation measures for stream data mining. Practitioners can benefit from this

by comparing several algorithms in real world scenarios and choosing the

best fitting solution. For researchers the framework yields insights into ad-

vantages and disadvantages of different approaches and allows the creation

of benchmark streaming data sets through stored, shared and repeatable

settings for the data feeds. The sources are publicly available and are re-

leased under the GNU GPL license. Although the current focus in MOA is on

classification and clustering, envisioned extensions to the framework include

regression and frequent pattern learning [Bif10].

260 MOA and CMM

15.2 Evaluation Measures for Stream Clustering

The experience from implementing and using the stream clustering compo-

nent of MOA showed two major disadvantages of existing evaluation mea-

sures: First, none can properly handle the peculiarities of evolving data

streams such as overlapping due to merging or drifting clusters or noisy data

streams; As a consequence the measures cannot effectively reflect the occur-

ring errors. Second, the vast majority of evaluation measures achieve subop-

timal results even if the ground truth clustering is tested. The Cluster Map-

ping Measure (CMM) proposed in [KKJ+11] overcomes these shortcomings

and enables effective evaluation of clustering results on evolving streams.

This section provides a brief overview of the main idea behind CMM.

An evaluation measure for clustering on evolving data streams should

take the following scenarios and circumstances into account:

1. Aging / decay Dealing with this property is probably the simplest task,

because faults caused by a clustering algorithm can be weighted by the

influence (age) of the corresponding points.

2. Missed points Moving clusters yield errors for missed points. These

errors should reflect the seriousness, e.g. how close the point is to its

actual cluster.

3. Misplaced points Evolution, merging, and splitting of clusters yields

overlapping clusters and thereby easily misplaced points. A measure

that punishes these misplaced points equally to misplaced points laying

outside of any overlapping region, does not account for the special

circumstances of evolving streams.

4. Noise Including noise in a found cluster is often inevitable in the model

of the clustering algorithm and should be accounted for by an effective

measure.

Summarizing these properties, three fault cases can be identified that

have to be considered in depth, namely missed points, misplaced points, and

15.2. Evaluation Measures for Stream Clustering 261

noise inclusion. The penalty for such errors of stream clustering algorithms

should reflect their seriousness and take the age of the points as well as the

clustering model into account. CMM is a normalized sum of the penalties for

occurring errors that accounts for all aspects mentioned above. Two impor-

tant prerequisites for the computation are a notion of how well an object fits

into a cluster and a mapping from found clusters to ground truth classes.

The results of the experimental evaluation in [KKJ+11] show that the

cluster mapping measure can precisely reflect various error types in evolving

data streams. In comparison with known and widely used internal and exter-

nal measures the CMM outperformed the competing approaches on real and

synthetic data using both cluster generators and existing stream clustering

algorithms. The CMM is included in the open source MOA framework for

future experimentation and evaluation of novel approaches.

Chapter 16

Future Work

The ClusTree is the first anytime clustering algorithm for streaming data. As

for the Bayes tree in Part II, a subspace variant of the ClusTree is an interest-

ing research topic. The effects of different initializations can be evaluated,

for example using a top down approach similar to the bulk loading proposed

for the Bayes tree. For descending the tree alternative priority measures

can be explored such as the Kullback Leibler divergence or the probability

density of the object w.r.t. to the entry. Moreover, descending with the hitch-

hiker instead of the insertion object may be beneficial if the former fits the

corresponding entry better. Finally, different ways to devise new anytime

clustering algorithms can be investigated.

Anytime outlier algorithms can be developed using other paradigms such

as density based outlier detection. For their application on constant data

streams more sophisticated confidence measures can be investigated; using

the variance of previous outlier scores for an object is one example.

The next step within MOA w.r.t. stream clustering is the inclusion of any-

time clustering and corresponding evaluation mechanisms. Together with

the proposed cluster mapping measure MOA offers a platform for an exten-

sive evaluation study of stream clustering algorithms on evolving data. An-

other goal of the MOA project is to establish benchmark settings and collect

real world benchmark data with drift, novelty and noise.

263

Part IV

Summary and Outlook

265

Summary and Outlook 267

Part I. The introduction of this thesis provides a strong motivation for any-

time algorithms. Many applications are discussed in Chapter 1 and the bene-

fits of anytime algorithms are laid out. Chapters 2 and 3 provide background

and related work on the KDD process and stream data mining.

Part II. Chapter 4 introduces the Bayes tree as a new anytime classifier for

Bayesian classification on continuous attributes. The Bayes tree constitutes

a hierarchy of mixture densities that represent kernel estimators at succes-

sively coarser levels. The proposed probability density queries adapt the em-

ployed mixtures efficiently to the individual object to be classified. Together

with novel classification improvement strategies this allows for very effective

classification at any point of interruption.

The Bayes tree uses an incremental insertion procedure and builds sepa-

rate hierarchies for each class label. A different approach is followed by the

MC-tree described in Chapter 5. Starting from the initial idea of combining

several classes in a single tree a novel way of constructing the hierarchical

models is investigated through top-down clustering using the EM algorithm.

While it turns out that separating the classes remains advisable, the EM con-

struction shows very good results.

In Chapter 6 further alternative construction methods are investigated

for hierarchical mixture models in the Bayes tree. Experimental results show

that the EMTopDown bulk load constantly outperforms other approaches and

improves the accuracy by up to 13%. Surprisingly two proposed statistical

approaches were outperformed by existing R-tree bulk loadings based on

space filling curves. Further analysis attributed this shortcoming to a struc-

tural property of the resulting Bayes trees. The results of the analysis are in

line with the classification results found in the experiments confirming the

superior performance of the EMTopDown bulk loading in terms of anytime

classification accuracy.

Chapter 7 concludes the in depth investigation of the Bayes tree. For

construction, parameter optimization and decision design related concepts

are analyzed and transferred to the Bayes tree to improve the corresponding

process. A thorough experimental evaluation of the single improvements

268 Summary and Outlook

as well as the combined approaches shows great potential of the concept

transfer method. The improved version of the Bayes tree that results from

Chapter 7 shows near perfect results on all tested data sets and constitutes

the final version of the proposed Bayesian anytime classifier.

An application of anytime classification using the Bayes tree is presented

in Chapter 8. The HeathNet scenario is introduced and the integration of the

Bayes tree as well as its benefits are described. A proof of concept is provided

by a prototype that has been developed within a UMIC research project at

RWTH Aachen University.

Chapter 9 introduces two meta-approaches that harness the strengths of

anytime algorithms for streams with constant data rates. The goal was to im-

prove the quality of the result w.r.t. traditional budget approaches, which are

used in an abundance of stream mining applications. Using anytime classifi-

cation as an example application experimental results show for SVM, Bayes

and nearest neighbor classifiers that both approaches improve the classifica-

tion accuracy for slow and fast data streams. The results confirm the theo-

retic model that was introduced in that chapter and show the effectiveness of

the proposed approaches. The simple yet effective idea can be employed for

any anytime algorithm along with a quality measure and motivates further

research in classification confidence measures and anytime algorithms.

Part III. The first anytime stream clustering algorithm is presented in Chap-

ter 11. The proposed ClusTree algorithm self-adapts to varying stream speed

and provides a novel solution for interruption of the insertion process that

can be easily resumed at any later point in time. For very fast streams, aggre-

gates of similar objects allow insertion of groups instead of single objects for

even faster processing. In comparison to recent approaches it is shown that

the ClusTree can maintain the same amount of micro clusters at a stream

speed that is faster by orders of magnitude and that for an equal stream

speed the obtained granularity is exponential w.r.t. competing approaches.

In Chapter 12 alternative descent strategies for the ClusTree are proposed

that improve the resulting clustering on slower streams as long as time per-

mits. The iterative depth first descent turns out as an excellent alternative

Summary and Outlook 269

insertion strategy, since it starts with the same high performance as the orig-

inal strategy, has very low runtime (O(log2(n))) and yet improves the initial

solutions on all tested settings. Moreover, it finally reaches comparable high

quality results compared to all other approaches tested.

The LiarTree presented in Chapter 13 improves the ClusTree w.r.t. over-

lapping of inner entries and incorporates explicit noise handling for robust

anytime stream clustering. It allows for the transition from local noise buffers

to new entries (micro clusters) and grows novel subtrees top down using its

liar concept. Experimental evaluation shows for various data stream scenar-

ios that the LiarTree outperforms competing approaches in the presence of

noise and evolving data, proving its novel concepts to be effective.

Chapter 14 discusses an application of the ClusTree for anytime outlier

detection. The performance of the proposed AnyOut algorithm is analyzed

on both varying and constant data streams. The promising results of AnyOut

motivate further research in both anytime clustering and anytime outlier de-

tection.

Finally, results of ongoing stream clustering research are presented in

Chapter 15. The MOA open source framework for stream data mining is

introduced which contains evaluation methods for both stream classifica-

tion and stream clustering. An extensible set of stream generators, mining

algorithms and evaluation measures is contained in MOA and publicly avail-

able on the project homepage. In Section 15.2 the cluster mapping mea-

sure (CMM) is announced as a novel evaluation measure for clustering on

evolving data streams. The CMM is the first measure that takes the special

requirements of the streaming scenario into account.

Main contributions. The proposed methods enable for the first time anytime

Bayesian classification on continuous attributes and thoroughly study possi-

ble heuristics and improvements. The Proposed meta approaches largely

widen the application area for anytime algorithms and prove their effective-

ness in previously uncommon terrain: constant data streams. The anytime

principle is introduced for two additional mining tasks, namely clustering

and outlier detection, and the first anytime stream clustering method is pre-

270 Summary and Outlook

sented. Finally, many future research objectives are opened by the results of

this thesis. First steps such as the MOA framework and the cluster mapping

measure are documented, and further opportunities are discussed in Chap-

ters 10 and 16 and the remainder of this section.

Outlook. Future research objectives specific to stream classification and

stream clustering have been discussed in the last chapters of Parts II and

III, respectively. Combining the results from both parts, a first option is to

incorporate the decay from the ClusTree into the Bayes tree and evaluate

the classification performance on changing distributions. Extending the pro-

posed approaches to allow for semi-supervised learning or multi-label classi-

fication are interesting open topics.

The MOA framework constitutes work in progress. The framework can be

used for the analysis of stream clustering algorithms and experimental com-

parison for newly developed algorithms; MOA provides a basis for thorough

evaluation studies in the area of stream clustering. Many extensions of MOA

can be thought of; including algorithms and evaluation methods for anytime

classification and anytime mining in general are among the next steps. Fur-

ther ongoing and open topics w.r.t the MOA framework are the integration

of further mining tasks such as frequent pattern mining on evolving data

streams.

Anytime algorithms can be further investigated for the tasks discussed in

this thesis and beyond. Different approaches for clustering or outlier detec-

tion under the anytime paradigm can be developed, for example. Anytime

algorithms can also be devised for related areas such as search and retrieval

or relevance feedback systems.

Stream mining in general provides open research questions for perform-

ing more complex tasks on streams. Examples include subspace clustering

on evolving data or graph mining on streams.

Collecting and creating benchmark data sets for stream mining, similar

in spirit to the UCI repository, is an important step towards enabling more

repeatable and more fair evaluation and comparison of proposed methods.

Part V

Appendices

I

Bibliography

[ABKS99] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and

Jörg Sander. Optics: Ordering points to identify the clustering

structure. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 49–60, 1999.

[AF07] Fabrizio Angiulli and Fabio Fassetti. Detecting distance-based

outliers in streams of data. In Proceedings of the ACM Confer-
ence on Information and Knowledge Management, CIKM, pages

811–820, 2007.

[Agg05] Charu C. Aggarwal. On abnormality detection in spuriously

populated data streams. In SIAM Data Mining, 2005.

[Agg06] Charu C. Aggarwal. Data Streams: Models and Algorithms.
Springer Verlag, 2006.

[AGGR98] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and

Prabhakar Raghavan. Automatic subspace clustering of high

dimensional data for data mining applications. In Proceed-
ings ACM SIGMOD International Conference on Management of
Data, pages 94–105, 1998.

[AGI+92] Rakesh Agrawal, Sakti P. Ghosh, Tomasz Imielinski, Balakr-

ishna R. Iyer, and Arun N. Swami. An interval classifier for

database mining applications. In Proceedings of the Interna-
tional Conference on Very Large Data Bases, pages 560–573,

1992.

III

IV BIBLIOGRAPHY

[AHWY03] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S.

Yu. A framework for clustering evolving data streams. In

Proceedings of the International Conference on Very Large Data
Bases, pages 81–92, 2003.

[AHWY04] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S.

Yu. A framework for projected clustering of high dimensional

data streams. In Proceedings of the International Conference on
Very Large Data Bases, pages 852–863, 2004.

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Min-

ing association rules between sets of items in large databases.

In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 207–216, 1993.

[AKAS08] Ira Assent, Ralph Krieger, Farzad Afschari, and Thomas Seidl.

The ts-tree: Efficient time series search and retrieval. In Inter-
national Conference on Extending Data Base Technology, pages

252–263, 2008.

[AKBS10] Ira Assent, Philipp Kranen, Corinna Baldauf, and Thomas

Seidl. Detecting outliers on arbitrary data streams using any-

time approaches. In Proceedings of the International Workshop
on Novel Data Stream Pattern Mining Techniques (StreamKDD
2010) in conjunction with 16th ACM SIGKDD, pages 10–16,

2010.

[AKKS99] Mihael Ankerst, Gabi Kastenmüller, Hans-Peter Kriegel, and

Thomas Seidl. Nearest neighbor classification in 3d protein

databases. In Proceedings of the International Conference on
Intelligent Systems for Molecular Biology, pages 34–43, 1999.

[AKMS08] Ira Assent, Ralph Krieger, Emmanuel Müller, and Thomas

Seidl. Edsc: efficient density-based subspace clustering. In

Proceedings of the 17th ACM Conference on Information and
Knowledge Management, pages 1093–1102, 2008.

BIBLIOGRAPHY V

[AKS10] Ira Assent, Hardy Kremer, and Thomas Seidl. Speeding up

complex video copy detection queries. In International Con-
ference on Database Systems for Advanced Applications, pages

307–321. Springer, 2010.

[ALM+10] Marcel R. Ackermann, Christiane Lammersen, Marcus

Märtens, Christoph Raupach, Christian Sohler, and Kamil

Swierkot. Streamkm++: A clustering algorithm for data

streams. In Proceedings of the Workshop on Algorithm Engi-
neering and Experiments, pages 173–187, 2010.

[AN98] Jochen Alber and Rolf Niedermeier. On multi-dimensional

hilbert indexings. In Proceedings of the International Confer-
ence on Computing and Combinatorics, pages 329–338, 1998.

[APW+99] Charu C. Aggarwal, Cecilia Magdalena Procopiuc, Joel L.

Wolf, Philip S. Yu, and Jong Soo Park. Fast algorithms for pro-

jected clustering. In Proceedings ACM SIGMOD International
Conference on Management of Data, pages 61–72, 1999.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms

for mining association rules in large databases. In Proceedings
of the International Conference on Very Large Data Bases, pages

487–499, 1994.

[AS95] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequen-

tial patterns. In Proceedings of the International Conference on
Data Engineering, pages 3–14, 1995.

[AS96] Rakesh Agrawal and John C. Shafer. Parallel mining of asso-

ciation rules. IEEE Transactions Knowledge Data Engineering,

8(6):962–969, 1996.

[AS04] D. Andre and P. Stone. Physiologi-

cal data modeling contest (ICML-2004):

http://www.cs.utexas.edu/users/pstone/workshops/2004icml/,

2004.

VI BIBLIOGRAPHY

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: the advan-

tages of careful seeding. In Proceedings of the Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1027–1035,

2007.

[AY00] Charu C. Aggarwal and Philip S. Yu. Finding generalized pro-

jected clusters in high dimensional spaces. In Proceedings of
the ACM SIGMOD International Conference on Management of
Data, pages 70–81, 2000.

[BB01] Pierre Baldi and Søren Brunak. Bioinformatics - the machine
learning approach (2. ed.). MIT Press, 2001.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani,

and Jennifer Widom. Models and issues in data stream sys-

tems. In Proceedings of the Symposium on Principles of Data-
base Systems, pages 1–16. ACM, 2002.

[BC00] Daniel Barbará and Ping Chen. Using the fractal dimension

to cluster datasets. In Proceedings of the ACM SIGKDD inter-
national conference on Knowledge discovery and data mining,

pages 260–264, 2000.

[Ben75] Jon Louis Bentley. Multidimensional binary search trees

used for associative searching. Communications of the ACM,

18:509–517, 1975.

[BEX02] Florian Beil, Martin Ester, and Xiaowei Xu. Frequent term-

based text clustering. In Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,

pages 436–442, 2002.

[BEY98] Allan Borodin and Ran El-Yaniv. Online Computation and Com-
petitive Analysis. Cambridge University Press, 1998.

BIBLIOGRAPHY VII

[BFOS84] Leo Breiman, Jerome Friedman, R. Olshen, and Charles

Stone. Classification and Regression Trees. Wadsworth Inter-

national Group, 1984.

[BFSO84] Leo Breiman, Jerome Friedman, Charles J. Stone, and

Richard A. Olshen. Classification and Regression Trees. Chap-

man & Hall, New York, 1984.

[BG07] Albert Bifet and Ricard Gavaldà. Learning from time-

changing data with adaptive windowing. In Proceedings of
the SIAM International Conference on Data Mining, 2007.

[BGH+97] Newton L. Bowers, Hans U. Gerber, James C. Hickman, Don-

ald A. Jones, and Cecil J. Nesbitt. Actuarial Mathematics. So-

ciety of Actuaries, Itasca, IL, 1997.

[BH75] Frank B. Baker and Lawrence J. Hubert. Measuring the power

of hierarchical cluster analysis. Journal of the American Sta-
tistical Association (ASA), 70(349):31–38, 1975.

[BH90] Jack S. Breese and Eric Horvitz. Ideal reformulation of belief

networks. In Proceedings of the Annual Conference on Uncer-
tainty in Artificial Intelligence, pages 129–144, 1990.

[BH02] James C. Bezdek and Richard J. Hathaway. Vat: a tool for

visual assessment of (cluster) tendency. In Proceedings of the
International Joint Conference on Neutral Networks, volume 3,

pages 2225–2230, 2002.

[BHKP10] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bern-

hard Pfahringer. MOA: Massive Online Analysis

http://sourceforge.net/projects/moa-datastream/. Jour-
nal of Machine Learning Research (JMLR), 2010.

[BHP+09] Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Richard

Kirkby, and Ricard Gavaldà. New ensemble methods for

VIII BIBLIOGRAPHY

evolving data streams. In Proceedings of the ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Min-
ing, pages 139–148, 2009.

[BHP+10a] Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Philipp

Kranen, Hardy Kremer, Timm Jansen, and Thomas Seidl.

MOA: Massive online analysis, a framework for stream clas-

sification and clustering. In Journal of Machine Learning Re-
search (JMLR), volume 11, pages 44–50, 2010.

[BHP+10b] Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, Philipp

Kranen, Hardy Kremer, Timm Jansen, and Thomas Seidl.

MOA: Massive online analysis, a framework for stream clas-

sification and clustering. In Invited presentation at the Inter-
national Workshop on Handling Concept Drift in Adaptive In-
formation Systems, in conjunction with European Conference
on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), 2010.

[BHPG09] Albert Bifet, Geoffrey Holmes, Bernhard Pfahringer, and Ri-

card Gavaldà. Improving adaptive bagging methods for evolv-

ing data streams. In Asian Conference on Machine Learning,

pages 23–37, 2009.

[BHS08] Mirko Böttcher, Frank Höppner, and Myra Spiliopoulou. On

exploiting the power of time in data mining. SIGKDD Explo-
rations, 10(2):3–11, 2008.

[Bif10] Albert Bifet. Adaptive Stream Mining: Pattern Learning and
Mining from Evolving Data Streams. Frontiers in Artificial In-

telligence and Applications. Ios Pr Inc, 2010.

[BKK96] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The

x-tree : An index structure for high-dimensional data. In In-
ternational Conference on Very Large Data Bases, pages 28–39,

1996.

BIBLIOGRAPHY IX

[BKNS00] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and

Jörg Sander. Lof: Identifying density-based local outliers. In

Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, pages 93–104, 2000.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and

Bernhard Seeger. The R*-Tree: An Efficient and Robust Ac-

cess Method for Points and Rectangles. In Proceedings of the
1990 ACM SIGMOD International Conference on Management
of Data, pages 322–331, 1990.

[BL94] Vic Barnett and Toby Lewis. Outliers in Statistical Data. Wiley,

3rd ed., 1994.

[BMH+05] Sanghamitra Bandyopadhyay, Ujjwal Maulik, Lawrence B.

Holder, Diane J. Cook, Mohamed Gaber, Shonali Krish-

naswamy, and Arkady Zaslavsky. On-board mining of data

streams in sensor networks. In Lakhmi Jain and Xindong Wu,

editors, Advanced Methods for Knowledge Discovery from Com-
plex Data, Advanced Information and Knowledge Processing,

pages 307–335. Springer London, 2005.

[Bod91] Mark S. Boddy. Anytime problem solving using dynamic pro-

gramming. In AAAI, pages 738–743, 1991.

[BPS06] Christian Böhm, Alexey Pryakhin, and Matthias Schubert. The

gauss-tree: Efficient object identification in databases of prob-

abilistic feature vectors. In Proceedings of the International
Conference on Data Engineering, page 9, 2006.

[Bra97] Andrew P. Bradley. The use of the area under the ROC curve in

the evaluation of machine learning algorithms. Pattern Recog-
nition, 30(7):1145–1159, 1997.

[Bre96] Leo Breiman. Bagging predictors. Machine Learning, 24:123–

140, 1996.

X BIBLIOGRAPHY

[Bre01] Leo Breiman. Random forests. Machine Learning, 45(1):5–32,

2001.

[BSH+07] Marcel Brun, Chao Sima, Jianping Hua, James Lowey, Brent

Carroll, Edward Suh, and Edward R. Dougherty. Model-based

evaluation of clustering validation measures. Pattern Recogni-
tion, 40(3):807–824, 2007.

[Bur98] Christopher J. C. Burges. A tutorial on support vector ma-

chines for pattern recognition. Data Min. Knowl. Discov.,
2(2):121–167, 1998.

[CBB08] Leonardo Weiss Ferreira Chaves, Erik Buchmann, and Kle-

mens Böhm. Tagmark: reliable estimations of rfid tags for

business processes. In International Conference on Knowledge
Discovery and Data Mining, pages 999–1007, 2008.

[CCH91] Yandong Cai, Nick Cercone, and Jiawei Han. Attribute-

oriented induction in relational databases. In Knowledge Dis-
covery in Databases, pages 213–228. AAAI/MIT Press, 1991.

[CDH+02] Yixin Chen, Guozhu Dong, Jiawei Han, Benjamin W. Wah,

and Jianyong Wang. Multi-dimensional regression analysis of

time-series data streams. In International Conference on Very
Large Data Bases, pages 323–334, 2002.

[CEQZ06] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou.

Density-based clustering over an evolving data stream with

noise. In Proceedings of the SIAM International Conference on
Data Mining, 2006.

[CFZ99] Chun Hung Cheng, Ada Wai-Chee Fu, and Yi Zhang. Entropy-

based subspace clustering for mining numerical data. In

Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 84–93, 1999.

BIBLIOGRAPHY XI

[Che00] William Cheetham. Case-based reasoning with confidence.

In Advances in Case-Based Reasoning, (EWCBR), pages 15–25,

2000.

[CHOY08] Jia-Yu Chen, John R. Hershey, Peder A. Olsen, and Emmanuel

Yashchin. Accelerated monte carlo for kullback-leibler diver-

gence between gaussian mixture models. In Proceedings of the
IEEE International Conference on Acoustics, pages 4553–4556,

2008.

[CI98] Chee-Yong Chan and Yannis E. Ioannidis. Bitmap index design

and evaluation. In International Conference on Management of
Data, pages 355–366. ACM, 1998.

[CM96] Chris Clifton and Don Marks. Security and privacy implica-

tions of data mining. In Proceedings of the SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery,

pages 15–20, 1996.

[Com79] Douglas Comer. Ubiquitous b-tree. ACM Computing Surveys,
11:121–137, 1979.

[CPZ97] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An

efficient access method for similarity search in metric spaces.

In International Conference on Very Large Data Bases, pages

426–435, 1997.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of information
theory (2nd Edition). Wiley-Interscience, New York, NY, USA,

2006.

[CT07] Yixin Chen and Li Tu. Density-based clustering for real-time

stream data. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages

133–142, 2007.

XII BIBLIOGRAPHY

[CZ06] Xin Chen and Chengcui Zhang. An interactive semantic video

mining and retrieval platform–application in transportation

surveillance video for incident detection. In International Con-
ference on Data Mining, pages 129–138, 2006.

[CZSC10] Hui Cao, Yongluan Zhou, Lidan Shou, and Gang Chen. At-

tribute outlier detection over data streams. In Database Sys-
tems for Advanced Applications, pages 216–230, 2010.

[Das90] Belur V. Dasarathy. Nearest neighbor (NN) norms: NN pattern
classification techniques. IEEE Computer Society Press, 1990.

[DB88] Thomas Dean and Mark S. Boddy. An analysis of time-

dependent planning. In AAAI, pages 49–54, 1988.

[DCDZ05] Sarah Jane Delany, Padraig Cunningham, Dónal Doyle, and

Anton Zamolotskikh. Generating estimates of classification

confidence for a case-based spam filter. In International Con-
ference on Case-Based Reasoning, pages 177–190, 2005.

[DCP08] Mark Dredze, Koby Crammer, and Fernando Pereira.

Confidence-weighted linear classification. In Proceedings of
the International Conference on Machine Learning, pages 264–

271, 2008.

[DE84] William H. E. Day and Herbert Edelsbrunner. Effi-

cient algorithms for agglomerative hierarchical cluster-

ing methods. Journal of Classification, 1:7–24, 1984.

10.1007/BF01890115.

[DeC97] Dennis DeCoste. Mining multivariate time-series sensor data

to discover behavior envelopes. In International Conference on
Knowledge Discovery and Data Mining, pages 151–154, 1997.

[DeC02] Dennis DeCoste. Anytime interval-valued outputs for kernel

machines: Fast support vector machine classification via dis-

BIBLIOGRAPHY XIII

tance geometry. In Proceedings of the International Conference
on Machine Learning, pages 99–106, 2002.

[DeC03] Dennis DeCoste. Anytime query-tuned kernel machines via

cholesky factorization. In Proceedings of the SIAM Interna-
tional Conference on Data Mining, 2003.

[DH00] Pedro Domingos and Geoff Hulten. Mining high-speed data

streams. In Proceedings of the ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 71–80,

2000.

[DHN10] Thomas Deselaers, Georg Heigold, and Hermann Ney. Object

classification by fusing svms and gaussian mixtures. Pattern
Recognition, 43(7):2476–2484, 2010.

[DHS01] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern
Classification (2nd Edition). Wiley, 2001.

[DIIM04] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S.

Mirrokni. Locality-sensitive hashing scheme based on p-

stable distributions. In Symposium on Computational Geom-
etry, pages 253–262, 2004.

[dL77] Jan de Leeuw. Applications of convex analysis to multidimen-

sional scaling. In Recent Developments in Statistics, pages 133–

146. North Holland Publishing Company, 1977.

[DLR77] Arthur P. Dempster, N. M. Laird, and Donald B. Rubin. Max-

imum likelihood from incomplete data via the em algorithm.

Journal of the Royal Statistical Society, Series B, 39(1):1–38,

1977.

[DM03] Dennis DeCoste and Dominic Mazzoni. Fast query-optimized

kernel machine classification via incremental approximate

nearest support vectors. In Proceedings of the International
Conference on Machine Learning, pages 115–122, 2003.

XIV BIBLIOGRAPHY

[Dun74] J.C. Dunn. Well separated clusters and optimal fuzzy parti-

tions. Journal of Cybernetics, 4:95–104, 1974.

[dVCH10] Timothy de Vries, Sanjay Chawla, and Michael E. Houle.

Finding local anomalies in very high dimensional space. In

Proceedings of the International Conference on Management of
Data, pages 128–137, 2010.

[Edw00] David M. Edwards. Introduction to Graphical Modelling.

Springer Verlag, 2000.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei

Xu. A density-based algorithm for discovering clusters in

large spatial databases with noise. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 226–231, 1996.

[ELN+08] Manzoor Elahi, Kun Li, Wasif Nisar, Xinjie Lv, and Hongan

Wang. Efficient clustering-based outlier detection algorithm

for dynamic data stream. In International Conference on Fuzzy
Systems and Knowledge Discovery, pages 298–304, 2008.

[EM11] Saher Esmeir and Shaul Markovitch. Anytime learning of any-

cost classifiers. Machine Learning, 82(3):445–473, 2011.

[EW95] Michael D. Escobar and Mike West. Bayesian density estima-

tion and inference using mixtures. Journal of the American
Statistical Association, 90(430):577–588, 1995.

[FA10] A. Frank and A. Asuncion. UCI machine learning repository,

2010.

[FG08] Conny Franke and Michael Gertz. Detection and exploration

of outlier regions in sensor data streams. In Workshops Pro-
ceedings of the IEEE International Conference on Data Mining,

pages 375–384, 2008.

BIBLIOGRAPHY XV

[FGMP09] M. Julia Flores, José A. Gámez, Ana M. Mart́ınez, and

Jose Miguel Puerta. Gaode and haode: two proposals based

on aode to deal with continuous variables. In Proceedings of
the International Conference on Machine Learning, pages 40–

47, 2009.

[FI93] Usama M. Fayyad and Keki B. Irani. Multi-interval discretiza-

tion of continuous-valued attributes for classification learn-

ing. In Proceedings of the International Joint Conferences on
Artificial Intelligence, pages 1022–1029, 1993.

[Fis87] Douglas H. Fisher. Knowledge acquisition via incremen-

tal conceptual clustering. Machine Learning, 2(2):139–172,

1987.

[FM83] E. B. Fowlkes and Colin L. Mallows. A method for comparing

two hierarchical clusterings. Journal of the American Statisti-
cal Association, 78(383):553–569, 1983.

[FS96] Yoav Freund and Robert E. Schapire. Experiments with a new

boosting algorithm. In Proceedings of the Internation Confer-
ence on Machine Learning, pages 148–156, 1996.

[FS97] Yoav Freund and Robert E. Schapire. A decision-theoretic gen-

eralization of on-line learning and an application to boosting.

J. Comput. Syst. Sci., 55(1):119–139, 1997.

[FZZ09] Andrew Foss, Osmar R. Zäıane, and Sandra Zilles. Unsuper-

vised class separation of multivariate data through cumulative

variance-based ranking. In The IEEE International Conference
on Data Mining, pages 139–148, 2009.

[GD04] Daniel Grossman and Pedro Domingos. Learning bayesian

network classifiers by maximizing conditional likelihood. In

Proceedings of the International Conference on Machine Learn-
ing,, 2004.

XVI BIBLIOGRAPHY

[GG07] João Gama and Mohamed Gaber. Learning from Data Streams
– Processing Techniques in Sensor Networks. Springer Verlag,

2007.

[GH07] Nizar Grira and Michael E. Houle. Best of both: a hybridized

centroid-medoid clustering heuristic. In Proceedings of the In-
ternational Conference on Machine Learning, pages 313–320,

2007.

[GKNN91] P. S. Gopalakrishnan, Dimitri Kanevsky, Arthur Nádas, and

David Nahamoo. An inequality for rational functions with ap-

plications to some statistical estimation problems. IEEE Trans-
actions on Information Theory, 37(1):107–113, 1991.

[GKS01] Johannes Gehrke, Flip Korn, and Divesh Srivastava. On com-

puting correlated aggregates over continual data streams. In

Proceedings of the International Conference on Management of
Data, pages 13–24, 2001.

[GLF89] John H. Gennari, Pat Langley, and Douglas H. Fisher. Models

of incremental concept formation. Artificial Intelligence, 40(1-

3):11–61, 1989.

[GM03] Alexander G. Gray and Andrew W. Moore. Nonparametric

density estimation: Toward computational tractability. In Pro-
ceedings of the SIAM International Conference on Data Mining,

2003.

[GMR04] João Gama, Pedro Medas, and Ricardo Rocha. Forest trees for

on-line data. In ACM Symposium on Applied Computing, pages

632–636, 2004.

[GR04] Jacob Goldberger and Sam T. Roweis. Hierarchical cluster-

ing of a mixture model. In Advances in Neural Information
Processing Systems, 2004.

BIBLIOGRAPHY XVII

[GSR09] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues.

Issues in evaluation of stream learning algorithms. In Proceed-
ings of the ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 329–338, 2009.

[Guh09] Sudipto Guha. Tight results for clustering and summarizing

data streams. In International Conference on Database Theory,

pages 268–275, 2009.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for

spatial searching. In SIGMOD Conference, pages 47–57, 1984.

[GZ96] Joshua Grass and Shlomo Zilberstein. Anytime algorithm de-

velopment tools. SIGART Bulletin, 7(2):20–27, 1996.

[GZK05] Mohamed Medhat Gaber, Arkady B. Zaslavsky, and Shonali

Krishnaswamy. Mining data streams: a review. SIGMOD
Record, 34(2):18–26, 2005.

[HA85] Lawrence Hubert and Phipps Arabie. Comparing partitions.

Journal of Classification, 2(1):193–218, 1985.

[Har75] John Anthony Hartigan. Clustering Algorithms. John Wiley

and Sons, New York, 1975.

[Haw80] Douglas M. Hawkins. Identification of outliers. Chapman and

Hall New York, 1980.

[HB87] Stephen J. Hanson and David J. Burr. Minkowski back-

propagation: Learning in connectionist models with non-

euclidean error signals. In Neural Information Processing Sys-
tems. American Institute of Physics, 1987.

[HB99] Seth Hettich and Stephen D. Bay. The UCI KDD archive

http://kdd.ics.uci.edu, 1999.

XVIII BIBLIOGRAPHY

[HBH05] Jacalyn M. Huband, James C. Bezdek, and Richard J. Hath-

away. bigvat: Visual assessment of cluster tendency for large

data sets. Pattern Recognition, 38(11):1875–1886, 2005.

[HBH06] Richard J. Hathaway, James C. Bezdek, and Jacalyn M.

Huband. Scalable visual assessment of cluster tendency for

large data sets. Pattern Recognition, 39(7):1315–1324, 2006.

[HDY99] Jiawei Han, Guozhu Dong, and Yiwen Yin. Efficient mining of

partial periodic patterns in time series database. In Proceed-
ings of the International Conference on Data Engineering, pages

106–115, 1999.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,

Peter Reutemann, and Ian H. Witten. The WEKA data min-

ing software: an update. SIGKDD Explorations, 11(1):10–18,

2009.

[HK98] Alexander Hinneburg and Daniel A. Keim. An efficient ap-

proach to clustering in large multimedia databases with noise.

In Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 58–65, 1998.

[HK01] Jiawei Han and Michele Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2001.

[HK06] Jiawei Han and Micheline Kamber. Data Mining: Concepts and
Techniques, Second Edition. Morgan Kaufmann, 2006.

[HKK+10] Michael E. Houle, Hans-Peter Kriegel, Peer Kröger, Erich Schu-

bert, and Arthur Zimek. Can shared-neighbor distances de-

feat the curse of dimensionality? In International Conference
on Scientific and Statistical Database Management, pages 482–

500, 2010.

BIBLIOGRAPHY XIX

[HL76] Lawrence J. Hubert and Joel R. Levin. A general statistical

framework for assessing categorical clustering in free recall.

Psychological Bulletin, 83(6):1072–1080, 1976.

[HLZ02] Wynne Hsu, Mong-Li Lee, and Ji Zhang. Image mining:

Trends and developments. Journal of Intelligent Information
Systems, 19(1):7–23, 2002.

[Hoe63] Wassilij Hoeffding. Probability inequalities for sums of

bounded random variables. Journal of the American Statis-
tical Association, 58:13–30, 1963.

[Hou08] Michael E. Houle. The relevant-set correlation model for data

clustering. In Proceedings of the SIAM International Conference
on Data Mining, pages 775–786, 2008.

[HPY00] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns

without candidate generation. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pages

1–12, 2000.

[HS95] Ǵısli R. Hjaltason and Hanan Samet. Ranking in spatial data-

bases. In 4th International Symposium on Advances in Spatial
Databases (SSD), pages 83–95, 1995.

[HS05] Michael E. Houle and Jun Sakuma. Fast approximate simi-

larity search in extremely high-dimensional data sets. In Pro-
ceedings of the International Conference on Data Engineering,

pages 619–630, 2005.

[HSD01] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Min-

ing time-changing data streams. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 97–106, 2001.

[HTF02] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman.

The Elements of Statistical Learning. Springer, 2002.

XX BIBLIOGRAPHY

[HTF08] Trevor Hastie, Robert Tibshirani, and Jerome H. Fried-

man. Datasets for ”The Elements of Statistical Learning”:

http://www-stat.stanford.edu/˜tibs/elemstatlearn/, 2008.

[HXD03] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering

cluster-based local outliers. Pattern Recognition Letters, 24(9-

10):1641–1650, 2003.

[JA03] Ruoming Jin and Gagan Agrawal. Efficient decision tree con-

struction on streaming data. In Proceedings of the Interna-
tional Conference on Knowledge Discovery and Data Mining,

pages 571–576, 2003.

[Jac88] Robert A. Jacobs. Increased rates of convergence through

learning rate adaptation. Neural Networks, 1(4):295 – 307,

1988.

[Jen96] Finn V. Jensen. An Introduction to Bayesian Networks.
Springer Verlag, 1996.

[JL95] George H. John and Pat Langley. Estimating continuous distri-

butions in bayesian classifiers. In Proceedings of the Conference
on Uncertainty in Artificial Intelligence, pages 338–345, 1995.

[JTH01] Wen Jin, Anthony K. H. Tung, and Jiawei Han. Mining top-n

local outliers in large databases. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 293–298, 2001.

[JZC06] Ankur Jain, Zhihua Zhang, and Edward Y. Chang. Adaptive

non-linear clustering in data streams. In CIKM, pages 122–

131, 2006.

[KABS09] Philipp Kranen, Ira Assent, Corinna Baldauf, and Thomas

Seidl. Self-adaptive anytime stream clustering. In Proceed-
ings of the IEEE International Conference on Data Mining, pages

249–258, 2009.

BIBLIOGRAPHY XXI

[KABS11] Philipp Kranen, Ira Assent, Corinna Baldauf, and Thomas

Seidl. The ClusTree: Indexing micro-clusters for anytime

stream mining. Knowledge and Information Systems Journal
(KAIS), 29(2):249–272, 2011.

[KBP+09] Saim Kim, L. Beckmann, M. Pistor, L. Cousin, Marian Walter,

and Steffen Leonhardt. A versatile body sensor network for

health care applications. In Proceedings of the International
Conference on Intelligent Sensors, Sensor Networks and Infor-
mation Processing, pages 175–180, 2009.

[KCB+09] Saim Kim, L. Cousin, L. Beckmann, Marian Walter, and Stef-

fen Leonhardt. A body sensor network base support system

for automated bioimpedance spectroscopy measurements. In

World Congress on Medical Physics and Biomedical Engineering,

2009.

[Ken38] Maurice G. Kendall. A new measure of rank correlation.

Biometrika, 30(1-2):81–93, 1938.

[KGFS10] Philipp Kranen, Stephan Günnemann, Sergej Fries, and

Thomas Seidl. MC-Tree: Improving bayesian anytime classi-

fication. In Proceedings of the International Conference on Sci-
entific and Statistical Database Management, pages 252–269,

2010.

[KGI+11] Hardy Kremer, Stephan Günnemann, Anca Maria Ivanescu,

Ira Assent, and Thomas Seidl. Efficient processing of mul-

tiple dtw queries in time series databases. In International
Conference on Scientific and Statistical Database Management.
Springer, 2011.

[KHDM98] Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and Jiri

Matas. On combining classifiers. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 20:226–239, 1998.

XXII BIBLIOGRAPHY

[KHK99] George Karypis, Eui-Hong Han, and Vipin Kumar. Chameleon:

Hierarchical clustering using dynamic modeling. IEEE Com-
puter, 32(8):68–75, 1999.

[KHY+09] Hillol Kargupta, Jiawei Han, Philip S. Yu, Rajeew Motwani,

and Vipin Kumar. Next Generation of Data Mining. CRC Press,

2009.

[KJ00] Ralf Klinkenberg and Thorsten Joachims. Detecting concept

drift with support vector machines. In Proceedings of the In-
ternational Conference on Machine Learning, pages 487–494,

2000.

[KKDS10] Philipp Kranen, Ralph Krieger, Stefan Denker, and Thomas

Seidl. Bulk loading hierarchical mixture models for efficient

stream classification. In Proceedings of the Pacific-Asia Con-
ference on Advances in Knowledge Discovery and Data Mining,
Part II, pages 325–334, 2010.

[KKJ+10a] Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl,

Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. Bench-

marking stream clustering algorithms within the MOA frame-

work. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2010.

[KKJ+10b] Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl,

Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. Clus-

tering performance on evolving data streams: Assessing algo-

rithms and evaluation measures within MOA. In Proceedings
of the IEEE International Conference on Data Mining, Work-
shops, pages 1400–1403, 2010.

[KKJ+11] Hardy Kremer, Philipp Kranen, Timm Jansen, Thomas Seidl,

Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. An ef-

fective evaluation measure for clustering on evolving data

BIBLIOGRAPHY XXIII

streams. In Proceedings of the ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 868–

876. ACM, 2011.

[KKK+08] Philipp Kranen, David Kensche, Saim Kim, Nadine Zimmer-

mann, Emmanuel Müller, Christoph Quix, Xiang Li, Thomas

Gries, Thomas Seidl, Matthias Jarke, and Steffen Leonhardt.

Mobile mining and information management in healthnet sce-

narios. In Proceedings of the International Conference on Mobile
Data Management, pages 215–216, 2008.

[KKSZ09] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur

Zimek. Loop: local outlier probabilities. In Proceedings of the
ACM Conference on Information and Knowledge Management,
pages 1649–1652, 2009.

[KMA+10] Philipp Kranen, Emmanuel Müller, Ira Assent, Ralph Krieger,

and Thomas Seidl. Incremental learning of medical data for

multi-step patient health classification. In Plant C., Böhm
C. (eds.): Database Technology for Life Sciences and Medicine,
World Scientific Publishing, pages 321–344, 2010.

[KNT00] Edwin M. Knorr, Raymond T. Ng, and Vladimir Tucakov.

Distance-based outliers: Algorithms and applications. VLDB
Journal, 8(3-4):237–253, 2000.

[Koh96] Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers:

A decision-tree hybrid. In Proceedings of the International Con-
ference on Knowledge Discovery and Data Mining, pages 202–

207, 1996.

[KP02] Eamonn J. Keogh and Michael J. Pazzani. Learning the struc-

ture of augmented bayesian classifiers. International Journal
on Artificial Intelligence Tools, 11(4):587–601, 2002.

[KPM06] Maria Kontaki, Apostolos N. Papadopoulos, and Yannis

Manolopoulos. Efficient incremental subspace clustering in

XXIV BIBLIOGRAPHY

data streams. In International Database Engineering and Ap-
plications Symposium, pages 53–60, 2006.

[KPS00] Hans-Peter Kriegel, Marco Ptke, and Thomas Seidl. Managing

intervals efficiently in object-relational databases. In Interna-
tional Conference on Very Large Data Bases, pages 407–418,

2000.

[KR90] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in
Data An Introduction to Cluster Analysis. Wiley Interscience,

New York, 1990.

[KRSS11] Philipp Kranen, Felix Reidl, Fernando Sanchez Villaamil, and

Thomas Seidl. Hierarchical clustering for real-time stream

data with noise. In Proceedings of the International Conference
on Scientific and Statistical Database Management, pages 405–

413. Springer, 2011.

[KS09a] Philipp Kranen and Thomas Seidl. Harnessing the strengths

of anytime algorithms for constant data streams. Data Mining
and Knowledge Discovery Journal, 19(2):245–260, 2009.

[KS09b] Philipp Kranen and Thomas Seidl. Harnessing the strengths of

anytime algorithms for constant data streams. In Proceedings
of the European Conference on Machine Learning and Knowl-
edge Discovery in Databases, page 31, 2009.

[KSK02] Aleksander Kolcz, Xiaomei Sun, and Jugal Kalita. Efficient

handling of high-dimensional feature spaces by randomized

classifier ensembles. In Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,

pages 307–313, 2002.

[KSZ08] Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek.

Angle-based outlier detection in high-dimensional data. In

Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 444–452, 2008.

BIBLIOGRAPHY XXV

[Lau95] Steffen L. Lauritzen. The EM algorithm for graphical associ-

ation models with missing data. Computational Statistics and
Data Analysis, 19:191–201, 1995.

[Law00] Jonathan K. Lawder. Calculation of mappings between

one and n-dimensional values using the hilbert space-filling

curves. In Technical Report JL1/00, Birkbeck College, Univer-
sity of London, 2000.

[LBB02] William B. Langdon, Steven J. Barrett, and Bernard F. Bux-

ton. Combining decision trees and neural networks for drug

discovery. In Proceedings of the European Conference on Genetic
Programming, pages 60–70, 2002.

[LC08] Guopin Lin and Leisong Chen. A grid and fractal dimension-

based data stream clustering algorithm. In Proceedings of the
International Symposium on Information Science and Engieer-
ing, volume 1, pages 66–70. IEEE Computer Society, 2008.

[LEL97] Scott T. Leutenegger, Jeffrey M. Edgington, and Mario A.

Lopez. Str: A simple and efficient algorithm for R-tree pack-

ing. In Proceedings of the International Conference on Data
Engineering, pages 497–506, 1997.

[LFG+08] Maxim Likhachev, Dave Ferguson, Geoffrey J. Gordon, An-

thony Stentz, and Sebastian Thrun. Anytime search in dy-

namic graphs. Artif. Intell., 172(14):1613–1643, 2008.

[LGT03] Maxim Likhachev, Geoffrey J. Gordon, and Sebastian Thrun.

Ara*: Anytime a* with provable bounds on sub-optimality. In

NIPS, 2003.

[Lia05] T. Warren Liao. Clustering of time series data - a survey. Pat-
tern Recognition, 38(11):1857–1874, 2005.

XXVI BIBLIOGRAPHY

[LJF94] King-Ip Lin, Hosagrahar V. Jagadish, and Christos Faloutsos.

The tv-tree: An index structure for high-dimensional data.

VLDB Journal, 3(4):517–542, 1994.

[LK05] Aleksandar Lazarevic and Vipin Kumar. Feature bagging for

outlier detection. In Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,

pages 157–166, 2005.

[LL08] Jae Woo Lee and Won Suk Lee. A coarse-grain grid-based

subspace clustering method for online multi-dimensional data

streams. In Proceedings of the ACM Conference on Information
and Knowledge Management, pages 1521–1522, 2008.

[LL09] Sebastian Lühr and Mihai Lazarescu. Incremental clustering

of dynamic data streams using connectivity based representa-

tive points. Data Knowl. Eng., 68(1):1–27, 2009.

[Llo57] Stuart P. Lloyd. Least squares quantization in PCM. IEEE

Transactions on Information Theory 28(2):128-137, 1982.

Original version: Technical Report, Bell Labs, 1957.

[LP03] Kelvin T. Leung and Douglas Stott Parker. Empirical compar-

isons of various voting methods in bagging. In Proceedings of
the ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 595–600, 2003.

[LW96] Chao-Lin Liu and Michael P. Wellman. On state-space abstrac-

tion for anytime evaluation of bayesian networks. SIGART
Bulletin, 7(2):50–57, 1996.

[Mac67] J. B. MacQueen. Some methods for classification and analy-

sis of multivariate observations. In Proceedings of the Berke-
ley Symposium on Mathematical Statistics and Probability, vol-

ume 1, pages 281–297. University of California Press, 1967.

BIBLIOGRAPHY XXVII

[MAG+09a] Emmanuel Müller, Ira Assent, Stephan Gnnemann, Ralph

Krieger, and Thomas Seidl. Relevant subspace clustering:

Mining the most interesting non-redundant concepts in high

dimensional data. In International Conference on Data Mining,

pages 377–386, 2009.

[MAG+09b] Emmanuel Müller, Ira Assent, Stephan Günnemann, Timm

Jansen, and Thomas Seidl. OpenSubspace: An open source

framework for evaluation and exploration of subspace clus-

tering algorithms in weka. In Proceedings of the Open Source
in Data Mining Workshop in conjunction with the Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pages 2–

13, 2009.

[MAK+08] Emmanuel Müller, Ira Assent, Ralph Krieger, Timm Jansen,

and Thomas Seidl. Morpheus: interactive exploration of sub-

space clustering. In Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,

pages 1089–1092, 2008.

[MBZ+07] Guillermo Medrano, L. Beckmann, Nadine Zimmermann,

T. Grundmann, Thomas Gries, and Steffen Leonhardt.

Bioimpedance spectroscopy with textile electrodes for a con-

tinous monitoring application. In International Workshop on
Wearable and Implantable Body Sensor Networks, volume 13,

pages 23–28. Springer Berlin Heidelberg, 2007.

[Mei05] Marina Meila. Comparing clusterings: an axiomatic view. In

Proceedings of the International Conference on Machine Learn-
ing, pages 577–584, 2005.

[Mil80] Glenn W. Milligan. An examination of the effect of six types of

error perturbation on fifteen clustering algorithms. Psychome-
trika, 45(3):325–342, 1980.

XXVIII BIBLIOGRAPHY

[MM93] Oded Maron and Andrew W. Moore. Hoeffding races: Accel-

erating model selection search for classification and function

approximation. In Proceedings of the Advances in Neural Infor-
mation Processing Systems, pages 59–66, 1993.

[MSE06] Gabriela Moise, Jörg Sander, and Martin Ester. P3c: A robust

projected clustering algorithm. In Proceedings of the IEEE In-
ternational Conference on Data Mining, pages 414–425, 2006.

[MSS11] Emmanuel Müller, Matthias Schiffer, and Thomas Seidl. Sta-

tistical selection of relevant subspace projections for outlier

ranking. In Proceedings of the 27th International Conference
on Data Engineering, pages 434–445, 2011.

[MSV04] Sambavi Muthukrishnan, Rahul Shah, and Jeffrey Scott Vitter.

Mining deviants in time series data streams. In Proceedings of
the International Conference on Scientific and Statistical Data-
base Management, pages 41–50, 2004.

[New03] Mark E. J. Newman. The Structure and Function of Complex

Networks. SIAM Review, 45(2):167–256, 2003.

[NH94] Raymond T. Ng and Jiawei Han. Efficient and effective clus-

tering methods for spatial data mining. In Proceedings of the
International Conference on Very Large Data Bases, pages 144–

155, 1994.

[NR06] Olfa Nasraoui and Carlos Rojas. Robust clustering for track-

ing noisy evolving data streams. In Proceedings of the SIAM
International Conference on Data Mining, 2006.

[NUCG03] Olfa Nasraoui, Cesar Cardona Uribe, Carlos Rojas Coronel,

and Fabio A. González. Tecno-streams: Tracking evolving

clusters in noisy data streams with a scalable immune sys-

tem learning model. In Proceedings of the IEEE International
Conference on Data Mining, pages 235–242, 2003.

BIBLIOGRAPHY XXIX

[OMM+02] Liadan O’Callaghan, Adam Meyerson, Rajeev Motwani, Nina

Mishra, and Sudipto Guha. Streaming-data algorithms for

high-quality clustering. In Proceedings of the International
Conference on Data Engineering, pages 685–694, 2002.

[PCY95] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. Efficient

parallel and data mining for association rules. In Proceedings
of the International Conference on Information and Knowledge
Management, pages 31–36, 1995.

[PHBB09] Biswanath Panda, Joshua Herbach, Sugato Basu, and

Roberto J. Bayardo. Planet: Massively parallel learning of

tree ensembles with mapreduce. Proceedings of the VLDB En-
dowment, 2(2):1426–1437, 2009.

[PHK07] Bernhard Pfahringer, Geoffrey Holmes, and Richard Kirkby.

New options for hoeffding trees. In Australian Conference on
Artificial Intelligence, pages 90–99, 2007.

[PL04] Nam Hun Park and Won Suk Lee. Statistical grid-based

clustering over data streams. SIGMOD Record, 33(1):32–37,

2004.

[PL07] Nam Hun Park and Won Suk Lee. Grid-based subspace clus-

tering over data streams. In Proceedings of the ACM Conference
on Information and Knowledge Management, pages 801–810,

2007.

[PL08] Nam Hun Park and Won Suk Lee. Memory efficient subspace

clustering for online data streams. In International Data-
base Engineering and Applications Symposium, pages 199–208,

2008.

[Pla98] John Platt. Fast training of support vector machines using

sequential minimal optimization. In Schoelkopf, Burges, and

Smola, editors, Advances in Kernel Methods. MIT Press, 1998.

XXX BIBLIOGRAPHY

[PW10] Franz Pernkopf and Michael Wohlmayr. Large margin learn-

ing of bayesian classifiers based on gaussian mixture models.

In European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 50–66, 2010.

[PZZ+07] Rong Pan, Junhui Zhao, Vincent Wenchen Zheng, Jeffrey Jun-

feng Pan, Dou Shen, Sinno Jialin Pan, and Qiang Yang.

Domain-constrained semi-supervised mining of tracking mod-

els in sensor networks. In International Conference on Knowl-
edge Discovery and Data Mining, pages 1023–1027, 2007.

[Qui86] John Ross Quinlan. Induction of decision trees. Machine
Learning, 1(1):81–106, 1986.

[Qui93] John Ross Quinlan. C4.5: Programs for Machine Learning.

Morgan Kaufmann, 1993.

[Ran71] William M. Rand. Objective criteria for the evaluation of clus-

tering methods. Journal of the American Statistical Association,

66(336):846–850, 1971.

[RC05] Fabio Tozeto Ramos and Fabio Gagliardi Cozman. Anytime

anyspace probabilistic inference. International Journal of Ap-
proximate Reasoning, 38(1):53–80, 2005.

[RGI05] Jimena Rodŕıguez, Alfredo Goñi, and Arantza Illarramendi.

Real-time classification of ecgs on a pda. Transactions on In-
formation Technology in Biomedicine, 9(1):23–34, 2005.

[RH97] Y. Dan Rubinstein and Trevor Hastie. Discriminative vs in-

formative learning. In Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,

pages 49–53, 1997.

[RH07] Andrew Rosenberg and Julia Hirschberg. V-measure: A con-

ditional entropy-based external cluster evaluation measure.

In Proceedings of the Joint Conference on Empirical Methods in

BIBLIOGRAPHY XXXI

Natural Language Processing and Computational Natural Lan-
guage Learning, pages 410–420, 2007.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Robert J.

Williams. Learning internal representations by error propa-

gation. In Parallel distributed processing: explorations in the
microstructure of cognition, vol. 1, pages 318–362. MIT Press,

1986.

[RN95] Stuart Russell and Peter Norvig. Artificial Intelligence: A Mod-
ern Approach. Prentice Hall, 1995.

[Roh74] F. James Rohlf. Methods of comparing classifications. Annual
Review of Ecology and Systematics, 5:101–113, 1974.

[RTG00] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth

mover’s distance as a metric for image retrieval. International
Journal of Computer Vision, 40:99–121, 2000.

[RWZH09] Jiadong Ren, Qunhui Wu, Jia Zhang, and Changzhen Hu.

Efficient outlier detection algorithm for heterogeneous data

streams. In International Conference on Fuzzy Systems and
Knowledge Discovery, pages 259–264, 2009.

[Sag94] Hans Sagan. Space-Filling Curves. Springer, 1994.

[SAK+09] Thomas Seidl, Ira Assent, Philipp Kranen, Ralph Krieger, and

Jennifer Herrmann. Indexing density models for incremental

learning and anytime classification on data streams. In Pro-
ceedings of the International Conference on Extending Database
Technology, pages 311–322, 2009.

[SCZ98] Gholamhosein Sheikholeslami, Surojit Chatterjee, and Aidong

Zhang. Wavecluster: A multi-resolution clustering approach

for very large spatial databases. In Proceedings of International
Conference on Very Large Data Bases, pages 428–439, 1998.

XXXII BIBLIOGRAPHY

[SdLFdCG07] Eduardo J. Spinosa, André Carlos Ponce de Leon Ferreira de

Carvalho, and João Gama. Olindda: a cluster-based approach

for detecting novelty and concept drift in data streams. In Pro-
ceedings of the ACM Symposium on Applied Computing, pages

448–452, 2007.

[Sei09] Thomas Seidl. Nearest neighbor classification. In Liu L., Özsu
M. T. (eds.): Encyclopedia of Database Systems., pages 1885–

1890. Springer, 2009.

[SG86] Jeffrey C. Schlimmer and Richard H. Granger. Incremental

learning from noisy data. Machine Learning, 1(3):317–354,

1986.

[SG10] Md. Shiblee Sadik and Le Gruenwald. Dbod-ds: Distance

based outlier detection for data streams. In International Con-
ference on Database and Expert Systems Applications, pages

122–136, 2010.

[Sil86] Bernard W. Silverman. Density Estimation for Statistics and
Data Analysis. Chapman and Hall, London, 1986.

[SK97] Thomas Seidl and Hans-Peter Kriegel. Efficient user-adaptable

similarity search in large multimedia databases. In Interna-
tional Conference on Very Large Data Bases, pages 506–515,

1997.

[SK98] Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-

nearest neighbor search. In Proceedings ACM SIGMOD Inter-
national Conference on Management of Data, pages 154–165,

1998.

[SK01] W. Nick Street and YongSeog Kim. A streaming ensemble al-

gorithm (sea) for large-scale classification. In Proceedings of
the ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 377–382, 2001.

BIBLIOGRAPHY XXXIII

[SM84] Gerard Salton and Michael McGill. Introduction to Modern
Information Retrieval. McGraw-Hill Book Company, 1984.

[SNTS06] Myra Spiliopoulou, Irene Ntoutsi, Yannis Theodoridis, and

Rene Schult. Monic: modeling and monitoring cluster transi-

tions. In Proceedings of the International Conference on Knowl-
edge Discovery and Data Mining, pages 706–711, 2006.

[Spe04] Charles Spearman. The Proof and Measurement of Associa-

tion between Two Things. The American Journal of Psychology,

15(1):72–101, 1904.

[SPP+06] Sharmila Subramaniam, Themis Palpanas, Dimitris Pa-

padopoulos, Vana Kalogeraki, and Dimitrios Gunopulos. On-

line outlier detection in sensor data using non-parametric

models. In Proceedings of the International Conference on Very
Large Data Bases, pages 187–198, 2006.

[SS05] Juliane Schäfer and Korbinian Strimmer. An empirical bayes

approach to inferring large-scale gene association networks.

Bioinformatics, 21(6):754–764, 2005.

[Sub98] V. S. Subrahmanian. Principles of Multimedia Database Sys-
tems. Morgan Kaufmann, 1998.

[SVvL06] Arno Siebes, Jilles Vreeken, and Matthijs van Leeuwen. Item

sets that compress. In Proceedings of the SIAM International
Conference on Data Mining, 2006.

[SZ08] Mingzhou (Joe) Song and Lin Zhang. Comparison of clus-

ter representations from partial second- to full fourth-order

cross moments for data stream clustering. In Proceedings of
the IEEE International Conference on Data Mining, pages 560–

569, 2008.

[THH01] Anthony K. H. Tung, Jean Hou, and Jiawei Han. Spatial clus-

tering in the presence of obstacles. In Proceedings of the In-

XXXIV BIBLIOGRAPHY

ternational Conference on Data Engineering, pages 359–367,

2001.

[TLB04] Young Truong, Xiaodong Lin, and Chris Beecher. Learning a

complex metabolomic dataset using random forests and sup-

port vector machines. In Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,

pages 835–840, 2004.

[TNLH01] Anthony K. H. Tung, Raymond T. Ng, Laks V. S. Lakshmanan,

and Jiawei Han. Constraint-based clustering in large data-

bases. In International Conference on Database Theory, pages

405–419, 2001.

[TRA07] Dimitris K. Tasoulis, Gordon J. Ross, and Niall M. Adams. Vi-

sualising the cluster structure of data streams. In International
Symposium on Intelligent Data Analysis, pages 81–92, 2007.

[TTD+08] Liang Tang, Chang-jie Tang, Lei Duan, Chuan Li, Yexi Jiang,

Chunqiu Zeng, and Jun Zhu. Movstream: An efficient algo-

rithm for monitoring clusters evolving in data streams. In The
IEEE International Conference on Granular Computing, pages

582–587, 2008.

[URW07] Komkrit Udommanetanakit, Thanawin Rakthanmanon, and

Kitsana Waiyamai. E-stream: Evolution-based technique for

stream clustering. In International Conference on Advanced
Data Mining and Applications, pages 605–615, 2007.

[UXKL06] Ken Ueno, Xiaopeng Xi, Eamonn J. Keogh, and Dah-Jye Lee.

Anytime classification using the nearest neighbor algorithm

with applications to stream mining. In Proceedings of the
IEEE International Conference on Data Mining, pages 623–632,

2006.

[Vap95] Vladimir N. Vapnik. The Nature of Statistical Learning Theory.

Springer Verlag, 1995.

BIBLIOGRAPHY XXXV

[Vap98] Vladimir N. Vapnik. Statistical Learning Theory. John Wiley &

Sons, 1998.

[VBF+04] Vassilios S. Verykios, Elisa Bertino, Igor Nai Fovino,

Loredana Parasiliti Provenza, Yücel Saygin, and Yannis

Theodoridis. State-of-the-art in privacy preserving data min-

ing. SIGMOD Record, 33(1):50–57, 2004.

[VD00] Stijn Van Dongen. Performance criteria for graph clustering

and Markov cluster experiments. Report-Information systems,
1(12):1–36, 2000.

[VGN08] Nguyen Hoang Vu, Vivekanand Gopalkrishnan, and Praneeth

Namburi. Online outlier detection based on relative neigh-

bourhood dissimilarity. In Web Information Systems Engineer-
ing, pages 50–61, 2008.

[VL98] Nuno Vasconcelos and Andrew Lippman. Learning mixture

hierarchies. In International Conference on Advances in Neural
Information Processing Systems, pages 606–612, 1998.

[vLS08] Matthijs van Leeuwen and Arno Siebes. Streamkrimp: Detect-

ing change in data streams. In European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, pages

672–687, 2008.

[vR79] Cornelis J. van Rijsbergen. Information Retrieval. Butter-

worth, 1979.

[VS09] Rosa M. Valdovinos and José S. Sánchez. Combining multi-

ple classifiers with dynamic weighted voting. In Proceedings
of the International Conference on Hybrid Artificial Intelligence
Systems, pages 510–516, 2009.

[Wah00] Wolfgang Wahlster. Verbmobil: Foundations of Speech-To-
Speech Translation. Springer, Berlin - Heidelberg - New York,

2000.

XXXVI BIBLIOGRAPHY

[Wan90] Eric A. Wan. Neural network classification: A bayesian inter-

pretation. IEEE Transactions on Neural Networks, 1(4), 1990.

[WBW05] Geoffrey I. Webb, Janice R. Boughton, and Zhihai Wang. Not

so naive bayes: Aggregating one-dependence estimators. Ma-
chine Learning, 58(1):5–24, 2005.

[WF94] Stanley Wasserman and Katherine Faust. Social network anal-
ysis: Methods and applications. Cambridge University Press,

1994.

[WF05] Ian H. Witten and Eibe Frank. Data Mining: Practical machine
learning tools and techniques, 2nd Edition. Morgan Kaufmann,

2005.

[WFYH03] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining

concept-drifting data streams using ensemble classifiers. In

Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 226–235, 2003.

[WIZD04] Sholom Weiss, Nitin Indurkhya, Tong Zhang, and Fred Dam-

erau. Text Mining: Predictive Methods for Analyzing Unstruc-
tured Information. Springer, 2004.

[WKB97] Kevin Woods, W. Philip Kegelmeyer Jr., and Kevin Bowyer.

Combination of multiple classifiers using local accuracy es-

timates. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19:405–410, 1997.

[WM03] Takashi Washio and Hiroshi Motoda. State of the art of graph-

based data mining. SIGKDD Explorations, 5(1):59–68, 2003.

[WNB+10] Liang Wang, Uyen T. V. Nguyen, James C. Bezdek, Christo-

pher Leckie, and Kotagiri Ramamohanarao. iVAT and aVAT:

Enhanced visual analysis for cluster tendency assessment. In

Pacific-Asia Conference on Advances in Knowledge Discovery
and Data Mining, pages 16–27, 2010.

BIBLIOGRAPHY XXXVII

[WSB98] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quan-

titative analysis and performance study for similarity-search

methods in high-dimensional spaces. In International Confer-
ence on Very Large Data Bases, pages 194–205, 1998.

[WXC09] Junjie Wu, Hui Xiong, and Jian Chen. Adapting the right

measures for k-means clustering. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 877–886, 2009.

[YiTWM04] Kenji Yamanishi, Jun ichi Takeuchi, Graham J. Williams, and

Peter Milne. On-line unsupervised outlier detection using fi-

nite mixtures with discounting learning algorithms. Data Min.
Knowl. Discov., 8(3):275–300, 2004.

[YM97] Wei Wang 0010, Jiong Yang, and Richard R. Muntz. Sting: A

statistical information grid approach to spatial data mining.

In Proceedings of the International Conference on Very Large
Data Bases, pages 186–195, 1997.

[YRW09] Di Yang, Elke A. Rundensteiner, and Matthew O. Ward.

Neighbor-based pattern detection for windows over stream-

ing data. In International Conference on Extending Database
Technology, pages 529–540, 2009.

[YWC+07] Ying Yang, Geoffrey I. Webb, Jesús Cerquides, Kevin B. Korb,

Janice R. Boughton, and Kai Ming Ting. To select or to

weigh: A comparative study of linear combination schemes

for superparent-one-dependence estimators. IEEE Transac-
tions on Knowledge and Data Engineering, 19(12):1652–1665,

2007.

[YWKMN09] Lexiang Ye, Xiaoyue Wang, Eamonn J. Keogh, and Agenor

Mafra-Neto. Autocannibalistic and anyspace indexing algo-

rithms with application to sensor data mining. In Proceedings

XXXVIII BIBLIOGRAPHY

of the SIAM International Conference on Data Mining, pages

85–96, 2009.

[YWKT07] Ying Yang, Geoffrey I. Webb, Kevin B. Korb, and Kai Ming

Ting. Classifying under computational resource constraints:

anytime classification using probabilistic estimators. Machine
Learning, 69(1):35–53, 2007.

[ZGW08] Ji Zhang, Qigang Gao, and Hai H. Wang. Spot: A system

for detecting projected outliers from high-dimensional data

streams. In Proceedings of the International Conference on Data
Engineering, pages 1628–1631, 2008.

[ZGWW10] Ji Zhang, Qigang Gao, Hai Wang, and Hua Wang. Detect-

ing anomalies from high-dimensional wireless network data

streams: a case study. Soft Computing - A Fusion of Founda-
tions, Methodologies and Applications, pages 1–21, 2010.

[Zil96] Shlomo Zilberstein. Using anytime algorithms in intelligent

systems. The AI magazine, 17(3):73–83, 1996.

[ZK04] Ying Zhao and George Karypis. Empirical and theoretical

comparisons of selected criterion functions for document clus-

tering. Machine Learning, 55(3):311–331, 2004.

[ZKF05] Cui Zhu, Hiroyuki Kitagawa, and Christos Faloutsos.

Example-based robust outlier detection in high dimensional

datasets. In Proceedings of the IEEE International Conference
on Data Mining, pages 829–832, 2005.

[ZRL96] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH:

an efficient data clustering method for very large databases.

In SIGMOD, 1996.

[ZRL99] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Fast den-

sity estimation using cf-kernel for very large databases. In

BIBLIOGRAPHY XXXIX

Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 312–316, 1999.

[ZS03] Yunyue Zhu and Dennis Shasha. Efficient elastic burst detec-

tion in data streams. In Proceedings of the International Confer-
ence on Knowledge Discovery and Data Mining, pages 336–345,

2003.

[ZW06] Fei Zheng and Geoffrey I. Webb. Efficient lazy elimination for

averaged one-dependence estimators. In Proceedings of the
International Conference on Machine Learning, pages 1113–

1120, 2006.

[ZW07] Fei Zheng and Geoffrey I. Webb. Finding the right family:

Parent and child selection for averaged one-dependence esti-

mators. In Proceedings of the European Conference on Machine
Learning, pages 490–501, 2007.

[ZWLL09] Lei Zheng, Shaojun Wang, Yan Liu, and Chi-Hoon Lee. Infor-

mation theoretic regularization for semi-supervised boosting.

In Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1017–1026,

2009.

Statement of Originality

This thesis would not have been possible without the close collaboration in

the group of Professor Seidl. Many of the presented ideas and techniques

evolved from numerous fruitful discussions in the group. While the high

level of collaboration both within the group and with the students consti-

tutes a key factor of the productive environment I found at Professor Seidl’s

group, it makes it hard to pinpoint individual contributions. The order of

authors on the publications gives certainly a good impression on the contri-

butions in terms of novel ideas. The following provides some more detail on

collaborations and support for the individual chapters. Parts I, IV and V as

well as the future work chapters 10 and 16 constitute new material that I

added in order to put the contents of the two main parts into context.

The Bayes tree was initiated by Professor Seidl. The first diploma thesis

on the Bayes tree was done by Jennifer Herrmann, advised by Ira Assent and

Ralph Krieger. The refinement strategies were evaluated in a later diploma

thesis by Stefan Denker, whom I advised together with Ralph Krieger. These

contents of Chapter 4 were published in [SAK+09]. The MC-Tree was de-

veloped in the diploma thesis of Sergej Fries, whom I advised together with

Stephan Günnemann; the corresponding Chapter 5 was published in

[KGFS10]. The bulk loading approaches presented in Chapter 6 were pub-

lished in [KKDS10] and were investigated in the diploma thesis of Stefan

Denker. Finally, the concept transfer approaches in Chapter 7 resulted from

numerous discussion over the past years. The implementation and evalu-

ation was greatly supported by the students from the lab course of winter

semester 2010, which I advised together with Marwan Hassani.

The HealthNet project was conducted within the UMIC research cluster at

RWTH Aachen University and constitutes joint work of four institutes: MedIt,

XLI

XLII Statement of Originality

ITA, i5 and i9. The contents of Chapter 8 were published in [KKK+08] and

[KMA+10].

The Meta approaches presented in Chapter 9 were published in [KS09a]

and [KS09b]. Their implementation and evaluation was greatly supported

by the students of the lab course of winter semester 2008, which I advised

together with Emmanuel Müller. Subsection 9.3.3 and Figures 9.14 and 9.15

were not part of the publication in [KS09a]. The idea to evaluate the result-

ing confidence distributions in comparison to the theoretical model resulted

from discussions with Michael Houle, Michael Wolf helped in experimental

evaluation and the creation of the above mentioned Figures.

Anytime stream clustering was investigated in the diploma thesis of

Corinna Baldauf, which I advised together with Ira Assent. The ClusTree

presented in Chapter 11 was published in [KABS09]. Evaluating the alterna-

tive descend strategies for the ClusTree was greatly supported by Fernando

Sanchez Villaamil and Felix Reidl; the corresponding contents of Chapter 12

were published in [KABS11]. Felix and Fernando also worked with me on

the LiarTree, which is presented in Chapter 13 and published in [KRSS11].

Primary experiments for using the ClusTree for anytime outlier detec-

tion were done in the diploma thesis of Corinna Baldauf. Extensive exper-

iments were greatly supported by Stephan Wels, the results of Chapter 14

were partly published in [AKBS10].

The extensions of MOA to stream clustering presented in Chapter 15 were

initiated by me and build upon the MOA framework by Albert Bifet, Richard

Kirkby, Geoff Holmes and Bernhard Pfahringer of the Waikato University in

New Zealand. Large parts of it were implemented during the diploma thesis

of Timm Jansen, whom I advised together with Hardy Kremer. An article

on MOA was published in [BHP+10a], further appearances of MOA include

[BHP+10b, KKJ+10a, KKJ+10b]. The cluster mapping measure was inves-

tigated in the thesis of Timm Jansen. It is introduced in Chapter 15 and

published in [KKJ+11].

As stated above, the order of authors on the publications gives generally

a good impression on the contributions in terms of novel ideas. The publica-

tions of the author are listed separately in the following for convenience.

List of Publications

Journal publications and book chapters

[KS09a] P. Kranen and T. Seidl. Harnessing the strengths of anytime al-

gorithms for constant data streams. In Data Mining and Knowl-
edge Discovery Journal, Special Issue on Best Papers from ECML
PKDD, (DMKD) Vol. 19, No. 2, 2009.

[BHP+10a] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer,

T. Jansen, and T. Seidl. MOA: Massive online analysis, a frame-

work for stream classification and clustering. In Journal of Ma-
chine Learning Research (JMLR) Vol. 11, 2010.

[KABS11] P. Kranen, I. Assent, C. Baldauf, and T. Seidl. The ClusTree:

Indexing micro-clusters for anytime stream mining. In Knowl-
edge and Information Systems Journal (KAIS) Vol. 29, No. 2,

2011.

[WKAS10] M. Wichterich, P. Kranen, I. Assent, and T. Seidl. Efficient EMD-

based similarity search in medical image databases. In Plant
C., Böhm C. (eds.): Database Technology for Life Sciences and
Medicine, World Scientific Publishing, pages 175–201, 2010.

[KMA+10] P. Kranen, E. Müller, I. Assent, R. Krieger, and T. Seidl.

Incremental learning of medical data for multi-step patient

health classification. In Plant C., Böhm C. (eds.): Database Tech-
nology for Life Sciences and Medicine, World Scientific Publishing,

pages 321–344, 2010.

XLIII

XLIV List of Publications

Peer reviewed full paper publications

[WAKS08] M. Wichterich, I. Assent, P. Kranen, and T. Seidl. Efficient

EMD-Based Similarity Search in Multimedia Databases via

Flexible Dimensionality Reduction. ACM International Confer-
ence on Management of Data (SIGMOD), 2008.

[SAK+09] T. Seidl, I. Assent, P. Kranen, R. Krieger, and J. Herrmann.

Indexing density models for incremental learning and anytime

classification on data streams. International Conference on
Extending Database Technology (EDBT/ICDT), 2009.

[KS09b] P. Kranen and T. Seidl. Harnessing the strengths of anytime

algorithms for constant data streams. European Conference
on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), Springer LNCS, 2009.

[KABS09] P. Kranen, I. Assent, C. Baldauf, and T. Seidl. Self-adaptive

anytime stream clustering. IEEE International Conference on
Data Mining (ICDM), 2009.

[MKN+10] E. Müller, P. Kranen, M. Nett, F. Reidl, and T. Seidl. Air-

indexing on error prone communication channels. Interna-
tional Conference on Database Systems for Advanced Applications
(DASFAA), Springer LNCS, 2010.

[KGFS10] P. Kranen, S. Günnemann, S. Fries, and T. Seidl. MC-

tree: Improving Bayesian anytime classification. International
Conference on Scientific and Statistical Database Management
(SSDBM), Springer LNCS, 2010.

[KKJ+11] H. Kremer, P. Kranen, T. Jansen, T. Seidl, A. Bifet, G. Holmes

and B. Pfahringer. An Effective Evaluation Measure for Cluster-

ing on Evolving Data Streams. ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD), 2011.

List of Publications XLV

Other peer reviewed publications

[KKK+08] P. Kranen, D. Kensche, S. Kim, N. Zimmermann, E. Müller,

C. Quix, X. Li, T. Gries, T. Seidl, M. Jarke, and S. Leonhardt.

Mobile mining and information management in HealthNet sce-

narios. IEEE International Conference on Mobile Data Manage-
ment (MDM), 2008.

[MKN+08] E. Müller, P. Kranen, M. Nett, F. Reidl, and T. Seidl. A general

framework for data dissemination simulation for real world

scenarios. ACM SIGMOBILE International Conference on Mobile
Computing and Networking (MobiCom), 2008.

[Kra09] P. Kranen. Using index structures for anytime stream min-

ing. PhD Workshop of the International Conference on Very Large
Data Bases (VLDB), 2009.

[KKDS10] P. Kranen, R. Krieger, S. Denker, and T. Seidl. Bulk loading

hierarchical mixture models for efficient stream classification.

Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD), Springer LNAI, 2010.

[KKJ+10a] P. Kranen, H. Kremer, T. Jansen, T. Seidl, A Bifet, G. Holmes,

and B. Pfahringer. Benchmarking stream clustering algorithms

within the MOA framework. ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD), 2010.

[AKBS10] I. Assent, P. Kranen, C. Baldauf, and T. Seidl. Detecting out-

liers on arbitrary data streams using anytime approaches. Inter-
national Workshop on Novel Data Stream Pattern Mining Tech-
niques (StreamKDD) in conjunction ACM SIGKDD, 2010.

[BHP+10b] A Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer,

T. Jansen, and T. Seidl. MOA: Massive online analysis, a frame-

work for stream classification and clustering. International
Workshop on Handling Concept Drift in Adaptive Information
Systems (HaCDAIS) in conjunction with ECML PKDD, 2010.

XLVI List of Publications

[KKJ+10b] P. Kranen, H. Kremer, T. Jansen, T. Seidl, A. Bifet, G. Holmes,

and B. Pfahringer. Clustering performance on evolving data

streams: Assessing algorithms and evaluation measures within

MOA. IEEE International Conference on Data Mining (ICDM),

2010.

[KRSS11] P. Kranen, F. Reidl, F. Sanchez Villaamil, and T. Seidl. Hierar-

chical clustering for real-time stream data with noise. Interna-
tional Conference on Scientific and Statistical Database Manage-
ment (SSDBM), Springer LNCS, 2011.

Curriculum Vitae
Name Philipp Kranen

Academic Degree Diplom-Informatiker

Born on December 3rd, 1979

Born in Willich, Germany

Nationality German

Education

from 08/2007 RWTH Aachen University, Germany

Computer science: Doctoral studies

10/2001 – 12/2006 RWTH Aachen University, Germany

Computer science: Diplom Informatik

09/2004 – 02/2005 UNITECH scholarship at TU Delft, Netherlands

02/2003 – 09/2003 ERASMUS scholarship at UIB, Spain

10/2000 – 09/2001 RWTH Aachen University, Germany

Mathematics studies

08/1990 – 06/1999 Lise-Meitner-Gymnasium Geldern, Germany

Abitur

Professional Experience

from 08/2007 Computer Science 9, RWTH Aachen, Germany

Research assistant

01/2007 – 06/2007 Siemens Corporate Research, Princeton, NJ, USA

Intelligent Vision and Reasoning Department

03/2005 – 10/2005 Gründerkolleg Aachen, Germany

Development and implementation of web applications

10/1999 – 08/2000 Gelderland Klinik, Germany

Mandatory civilian service in lieu of military service

	Abstract / Zusammenfassung
	I Introduction
	The Need for Anytime Algorithms
	Thesis structure

	Knowledge Discovery from Data
	The KDD process and data mining tasks
	Classification
	Clustering

	Stream Data Mining
	General Tools and Techniques
	Stream Classification
	Stream Clustering

	II Anytime Stream Classification
	The Bayes Tree
	Introduction and Preliminaries
	Indexing density models
	Experiments
	Conclusion

	The MC-Tree
	Combining Multiple Classes
	Experiments
	Conclusion

	Bulk Loading the Bayes Tree
	Bulk loading mixture densities
	Experiments
	Conclusion

	The Classifier Family: Learn from your Relatives
	Introduction
	Learning from Relatives
	Experiments
	Conclusion

	Application: Anytime Classification in HealthNet Scenarios
	Scenario and Prototype
	Summary

	Anytime Algorithms on Constant Streams
	Introduction
	Novel Approaches for Constant Data Streams
	Experiments
	Conclusion

	Future Work

	III Anytime Stream Clustering
	Self-adaptive Anytime Stream Clustering
	The ClusTree Algorithm
	Analysis and experiments
	Conclusion

	Exploiting additional time in the ClusTree
	Alternative descent strategies
	Evaluation of descent strategies
	Conclusion

	Robust Anytime Stream Clustering
	The LiarTree
	Experiments
	Conclusion

	Application: Using Modeling for Anytime Outlier Detection
	Introduction
	Related work
	Detecting outliers in streaming data
	Experiments
	Conclusion

	MOA and CMM
	The MOA Framework
	Evaluation Measures for Stream Clustering

	Future Work

	IV Summary and Outlook
	V Appendices
	Bibliography
	Statement of Originality
	List of Publications
	Curriculum Vitae

