2203.05167v1 [cs.LG] 10 Mar 2022

arxXiv

Reward Once, Penalize Once: Rectifying Time
Series Anomaly Detection

Keval Doshi

Shatha Abudalou

Yasin Yilmaz

Department of Electrical Engineering) Department of Electrical Engineering) Department of Electrical Engineering)

University of South Florida)
Tampa, USA
kevaldoshi @usf.edu

Abstract—While anomaly detection in time series has been an
active area of research for several years, most recent approaches
employ an inadequate evaluation criterion leading to an inflated
F1 score. We show that a rudimentary Random Guess method
can outperform state-of-the-art detectors in terms of this popular
but faulty evaluation criterion. In this work, we propose a proper
evaluation metric that measures the timeliness and precision
of detecting sequential anomalies. Moreover, most existing ap-
proaches are unable to capture temporal features from long
sequences. Self-attention based approaches, such as transformers,
have been demonstrated to be particularly efficient in capturing
long-range dependencies while being computationally efficient
during training and inference. We also propose an efficient
transformer approach for anomaly detection in time series and
extensively evaluate our proposed approach on several popular
benchmark datasets.

Index Terms—Time series, anomaly detection, sequential
anomalies, self-attention, transformer

I. INTRODUCTION

Time series analysis is used to perform important tasks
such as predicting the future values of a variable (e.g., stock
market price) and detecting anomalies in sequential data. Time
series anomaly detection methods aim to identify abnormal
data patterns in temporal data. For instance, in health care,
ECG signals are analyzed to determine if the patient suffers
from a heart disease [1f]. Similarly, in cybersecurity, the data
traffic over time in a computer network is monitored to detect
cyber-attacks [2]]. Time series anomaly detection methods
are used in various domains by companies, e.g., Extensible
Generic Anomaly Detection System (EGADS) by Yahoo [3]]
and SR/CNN developed by Microsoft [4].

Time series anomalies are typically classified into two main
categories, point anomalies and sequential anomalies. A point
anomaly, also known as outlier, is a single data instance with
unexpected value with respect to the nominal baseline. In
many applications, anomalies continue for a duration with
successive anomalous data instances, which is called a sequen-
tial anomaly. [S]] presents a detailed survey about time series
anomaly detection by evaluating twenty different methods
based on statistical and deep learning approaches on univariate
time series datasets.

Predictive models provide an intuitive way to detect anoma-
lies [[17]. The motivation is that a predictive model trained on
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Fig. 1. The commonly used adjusted instance-based evaluation method.
A threshold of 0.5 is applied to an example sequence of anomaly scores
produced by a detection algorithm. The traditional instance-based evaluation
compares the anomaly/no-anomaly decision for each instance with the ground
truth to determine true/false positive/negative decisions. In the recently pro-
posed and widely used adjusted instance-based evaluation, while errors are
penalized once as in the traditional evaluation approach, true detections are
greatly amplified by considering all instances in an anomalous sequence as
multiple true positives if an alarm is raised during the anomalous sequence.
This amplification of true positives causes an artificially inflated F1 score (see
Table [I).

Adjusted
based Evaluation

nominal data should give statistically similar prediction error
for nominal test data, whereas the prediction error is expected
to be larger when encountered with anomalous data. Recurrent
Neural Networks (RNN) replaced the classical statistical meth-
ods such as Autoregressive (AR) and Autoregressive Moving
Average (ARMA) models in many applications. While the
early RNN structures could not utilize long-term dependencies
in time series data due to the diminishing gradient problem,
Long Short-Term Memory (LSTM) network overcome this
problem by introducing a more complex memory unit [[18].
Recently, the attention mechanism was proposed to improve
the predictive performance of LSTM [19]. However, more
recently, a completely new deep neural network structure
called self-attention, also known as transformer, significantly
outperformed the LSTM-+attention model to become the state-
of-the-art predictive model in many applications. While both
the attention and self-attention mechanisms are originally
proposed for Natural Language Processing (NLP), they were
shown to be effective in various other time series data domains
[20], [21]].

Evaluating performance for detecting sequential anomalies
has been traditionally done in the same way as point anomalies
using instance-based detection metrics such as AUC and F1



Dataset | SMD MSL SMAP SWaT PSM

Metric /P R FI|P R FI|P R FI|P R FI|P R Fl
OCSVM |6] 44.34 76.72 56.19(59.78 86.87 70.82|53.85 59.07 56.34|45.39 49.22 47.23]62.75 80.89 70.67
IsolationForest [7] 42.31 73.29 53.64(53.94 86.54 66.45(52.39 59.07 55.53[{49.29 44.95 47.02]76.09 92.45 83.48
LOF [8]] 56.34 39.86 46.68|47.72 85.25 61.18|58.93 56.33 57.60|72.15 65.43 68.62[57.89 90.49 70.61
Deep-SVDD [9] 78.54 79.67 79.10(91.92 76.63 83.58(89.93 56.02 69.04[80.42 84.45 82.39|/95.41 86.49 90.73
DAGMM [10] 67.30 49.89 57.30/89.60 63.93 74.62|86.45 56.73 68.51|89.92 57.84 70.40(93.49 70.03 80.08
LSTM-VAE [11]] 75.76 90.08 82.30(85.49 79.94 82.62(92.20 67.75 78.10|76.00 89.50 82.20(73.62 89.92 80.96
BeatGAN [12] 72.90 84.09 78.10(89.75 85.42 87.53(92.38 55.85 69.61[64.01 87.46 73.92(90.30 93.84 92.04
OmniAnomaly [|13]] 83.68 86.82 85.22|89.02 86.37 87.67|92.49 81.99 86.92|81.42 84.30 82.83(88.39 74.46 80.83
InterFusion [[14] 87.02 85.43 86.22(81.28 92.70 86.62|89.77 88.52 89.14[80.59 85.58 83.01|83.61 83.45 83.52
THOC [15] 79.76 90.95 84.99(88.45 90.97 89.69(92.06 89.34 90.68|83.94 86.36 85.13|88.14 90.99 89.54
Anomaly Transformer [[16][89.40 95.45 92.33|92.09 95.15 93.59|94.13 99.40 96.69(91.55 96.73 94.07|96.91 98.90 97.89

Random Guess

|90.54 96.43 93.39]94.95 98.13 96.51|95.43 97.74 96.48|93.21

99.47 96.24|98.83 98.14 98.48

TABLE I
PERFORMANCE OF Random Guess WITH PROBABILITY OF ALARM p = 0.01 DOMINATES THE STATE-OF-THE-ART METHODS IN TERMS OF THE
COMMONLY USED ADJUSTED INSTANCE-BASED EVALUATION, DEMONSTRATING ITS INHERENT FLAW.

score. However, consecutive anomalous instances are typically
caused by the same event, and in real-world applications
raising an alarm for such anomalous event is what matters.
For instance, after successfully raising alarm for an anomalous
event, it is not important in practice to label every anomalous
instance. Hence, recent state-of-the-art methods in time series
anomaly detection [13[|-[16], [22]-[24] used a different per-
formance evaluation system instead of the traditional instance-
based evaluation, which is suitable for point anomalies. In
this new evaluation system, all instances in an anomalous
segment are considered as true positives if a single alarm
is raised in the entire segment, as shown in Fig. [I While
this evaluation system rightfully focuses on the detection of
anomalous events/sequences, it fails to provide a meaningful
metric for sequential anomalies since it still uses the instance-
based F1 score for performance evaluation. In this adjusted
instance-based evaluation, since errors are penalized once, but
detection is rewarded generously, it leads to an inflated F1
metric.

To illustrate the serious flaw of the adjusted instance-based
F1 metric, let us consider using a Random Guess method
which randomly (e.g., from a uniform distribution) raises an
alarm for each instance with probability p. Note that this
Random Guess method makes arbitrary decisions independent
of the dataset. The probability of raising a true alarm increases
with the duration of anomalous sequence. The exact probabili-
ties are given in Section Since its each random detection is
amplified by the anomalous sequence duration while its errors
are penalized once, such a rudimentary approach is able to
achieve very high adjusted instance-based F1 score on the
popular benchmark datasets and even outperform the state-
of-the-art models, as shown in Table

Motivated by this limitation, we propose a proper perfor-
mance metric for sequential anomalies, which also evaluates
the timeliness of alarm. Leveraging the high potential of trans-
former architectures in capturing the long-term dependencies
in time series data, we also propose a novel transformer-based

time series anomaly detector. Our contributions in this paper
can be summarized as follows:

o A thorough analysis of the inherent flaw in the existing
evaluation metric and a proper metric that measures the
timeliness and precision of raised alarms.

o A novel end-to-end trained transformer algorithm for time
series anomaly detection with asymptotic false alarm
rate analysis and closed-form expression for detection
threshold.

After discussing related works in Section |lI] and limitations
of the existing evaluation system in Section we present
the proposed performance metric and the detector in Section
and the experimental results in Section The paper is
concluded in Section [Vl

II. RELATED WORK

The detection of anomalies in time series has been ex-
tensively investigated for a long time and remains an active
subject due to the great need for more robust methods in
complex real-world scenarios [25], [26]]. Popular approaches
for detecting anomalies in time series data include CNN mod-
els [27]-[29], RNN models [30]-[33], and spectral residuals
[4], [34]. The most recent approaches use the attention-based
mechanisms for time series forecasting [35]-[37].

Self-attention, which is also known as transformer, is an
attention-based neural network architecture without the se-
quential structure. Current state-of-the results in the NLP
domain are obtained by transformer models, e.g., GPT-3 [38]].
The transformer encoder in [39] is used for unsupervised
representation learning of multivariate time series data. It
outperforms the state-of-the-art time series classification and
regression methods.

The Temporal Fusion Transformer (TFT) presented in [40]
is an attention-based model used for multi-horizon forecast-
ing. TFT employs recurrent layers for local processing and
interpretable self-attention layers for long-term dependency to
learn temporal correlations at various scales. In addition, TFT



curbs any pointless components by using specialized elements
that pick the critical characteristics and a succession of gating
layers to get significant performance in various applications.

Based on Generative Adversarial Network (GAN), in [41],
the authors develop the Adversarial Sparse Transformer, which
acts as a generator for learning sparse attention mappings
for specific time steps to enhance time series forecasting.
Using graph learning with the transformer-based network [42]]
proposes learning the graph structure for IoT systems to
learn sensor dependencies in multivariate time series datasets
automatically. Informer is another time series forecasting
model based on self-attention, which can be used in anomaly
detection [43]], [44].

III. PROBLEM FORMULATION

Sequential Anomaly Detection: Consider a time series
{X1,...,Xs,...}, which may include anomalous sequences
starting and ending at unknown times. Denote the unknown
starting time of the ith anomalous sequence with 7;. Since
in real-world applications, such as cybersecurity, surveillance,
etc. such anomalous sequences are caused by potentially
hazardous anomalous events, it is critical to detect such
sequences in a timely manner. Controlling the number of false
alarms is also crucial to ensure the reliability of the detection
system. Instead of the traditional instance-based evaluation of
performance, which is commonly used for point anomalies
and other standard machine learning tasks (e.g., classification,
regression), the performance of sequential anomaly detection
methods should be evaluated in terms of true/false detection
of anomalous sequences.

Flaw of Adjusted Instance-based Evaluation: The ad-
justed instance-based evaluation method has been extensively
used in the recent literature (e.g., [13]-[16], [22]-[24]) to
compare the state-of-the-art deep learning methods. However,
this evaluation method is severely flawed, as illustrated by the
high performance of the Random Guess algorithm (Table [I).
Assuming Random Guess raises an alarm with probability p,
the expected number of false alarms is equal to Np, where N
is the number of nominal instances. The probability of raising
a true alarm within the sth anomaly sequence of length M;
is given by 1 — Binom(M;, 0, p), where Binom(M;,0,p) =
(1 — p)M: is the binomial probability mass function for zero
success with M, trials and p success probability. With the
adjusted labeling of the entire sequence as true positive in
case of a true alarm, the expected number of true positives is
equal to Y,_; M;[1— (1 —p)M:]. Consequently, the expected

number of false negatives is given by >.,_, M;(1 — p)M:.
Hence, the expected precision and recall are
oy Doy Mifl — (1 = p)™]
P = =
T€CIS10NRandomGuess Zi=1 J\4-2 [1 7 (1 — p)M’“} I Np (1)
= Mz]-_ l—pjui
RecallrandomGuess = Z L [ ( ) } .

Zi:l M;

As the duration M, of anomalous sequences increase, the ex-
pected number of true positives increases significantly, making
both precision and recall approach to 1. Note the insignificant

effect of false positives (/Np) since they are penalized once.
In the popular benchmark datasets, there are long anomalous
sequences lasting thousands of instances, and thus we observe
the high precision, recall, and F1 scores in Table [I| with
p = 0.01.

IV. PROPOSED APPROACH

In this section, we first present a proper performance metric
for sequential anomalies and then our transformer based
anomaly detection approach.

A. Performance Evaluation

Sequence Detection Delay: Given 7; as the starting time
of an anomalous event 7 and T; > 7; as the alarm time, we
can empirically formulate the average detection delay as

s
ADD = %Z(Ti - i), )
i=1

where S denotes the number of anomalous events. Since most
anomalies indicate critical incidents, it might be essential
to detect an anomalous event within a certain time period.
Hence, if no alarm is raised within the duration [7;, 7; + Omax]
after anomalous activity ¢ happens, we set the delay to the
maximum tolerable delay dp,x. Here, it is important to note
that minimizing the detection delay is analogous to the the
more commonly used objective of maximizing the true positive
rate, except it assigns a more specific cost of detection delay
Sequence Alarm Precision: Our second objective empha-
sizes on maximizing the number of anomalous events being
detected with respect to the total number of alarms, similar
to the well-known precision metric. However, in contrast to
the instance-based precision metric, our metric focuses on the
detection of true anomalous sequences, and hence only focuses
on detecting the anomalous event onset accurately. If an alarm
is raised before an alarm even begins, i.e., TJ < 7;, then it is

considered as a false alarm.

Empirically, the alarm precision is computed as

S
1
P= E Z ]]-{:}Tj S U[Tisz’ + 5max]7 (3)
J=1

where 1.y denotes the indicator function, S = |{T;}| is the
number of all alarms, and | - | denotes the cardinality of a set.
Sequence Precision Delay: Finally, we present a new
metric called Sequence Precision Delay that combines the
sequence based average detection delay with sequence alarm
precision in order to achieve a single metric for easily com-
paring time series algorithms. The SPD statistic quantifies the
area under the Precision vs. normalised ADD (NADD) curve,
much like the common AUC metric does for TPR and FPR. To
map ADD into [0, 1], we normalize it by the maximum delay,
i.e., NADD = ADD/{ax. Mathematically, SPD is given by

1
SPD:/ P(a) da, 4)
0
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Fig. 2. Proposed TiSAT architecture

where o denotes NADD, and P denotes the precision. A
highly successful algorithm with an SPD value close to 1 must
have high precision and low delay in its alarms.

Most existing approaches leverage an RNN based model for
time series forecasting, and compute the residuals, i.e. the pre-
diction or reconstruction error to determine if an observation is
anomalous or not. However, it is shown in [43]] that RNN based
approaches suffer in long sequence time series forecasting.
To this end, we propose a novel transformer based approach
called Time Series Anomaly Transformer (TiSAT), which is
superior in capturing long range temporal dependencies. We
next discuss our proposed approach in detail.

B. Time Series Anomaly Transformer (TiSAT)

The overall structure of TiSAT is shown in Fig. 2] The
proposed approach utilizes the the ProbSparse mechanism
discussed in the Informer architecture [43]] as compared to the
self-attention mechanism proposed in the Vanilla Transformer
[45] for reducing computational complexity. Traditionally, the
self attention mechanism for a d-dimensional input is defined
as

A(Q,K,V) = Softmax (QKT> v (5)

Vd
where (), K and V represent the query, key and value
respectively. However, it was recently observed that only a
few key and value pairs contribute to the attention score, ren-
dering a majority of the computed dot products as worthless.
Hence, we propose using a probabilistic attention mechanism,
since it reduces the computational complexity from O(L?) to
O(LlogL). Particularly, since only a subset of the query/value
tensors require costly operations, ProbSparse attention allows

each key to focus on the most important queries rather than
all of them. The ProbSparse attention is given by

A(Q,K,V) = Softmax (QKT) v (6)

Vd
where @ is a sparse matrix consisting of the top queries. As
shown in [43]], the measurement of sparsity between a query
q; and all keys K is given by

M(q;, K) = log e Vi | —— J @)
j=1 Lr 3 vd

Encoder: The input to the proposed architecture at a time
instance ¢ is a matrix representation of the d-dimensional time
series over a sequence of L instances given by Z*. Following
the dilated convolution approach proposed in [46], [47], we
employ a distilling procedure to extract a focused self-attention
feature map. The distilling function from the j** layer towards
the (j + 1)t" layer is given by

Z},, = MaxPool ELU(Convld([Z;]))

®)
where [-] represents the attention block, which is followed by
a 1-D convolution filter with a kernel width of 3. The number
of self-attention blocks are progressively decreased and then
finally concatenated to form the final representation of the
encoder.

Decoder: We leverage the canonical decoder structure
proposed by [45] and consists of two similar self-attention
modules. The input to the decoder architecture is given by
concatenating the start token (Z;oker) and a placeholder for
the target sequence (Ziqrget) as follows

©))

Zfle = Concat(ztoken; Ztarget)



This is then passed to a dense fully connected layer. The
network is trained using the mean squared error loss by
propagating it through the decoder and encoder.

C. Anomaly Detection Framework

We propose an online and non-parametric detection ap-
proach for detecting persistent and abrupt anomalies using the
transformer output. Due to the sequential (persistent) nature of
time series anomalies, we need an approach which accumu-
lates the evidence over time and then makes a decision instead
of a hard threshold on the anomaly score for each instant.
To this end, we propose using a nonparametric sequential
algorithm based on k nearest neighbors (kKNN). First, the
algorithm trains on a set of nominal historic observations in
an offline fashion and then tests the incoming observations
until it detects a change in the observations with respect
to the nominal baseline. In the training phase, assuming a
training set Xy consisting of N nominal data instances, it
randomly partitions Xy into two sets Xy, and X,, where
N; + Ny = N. Then, for each point in X, it finds the
Euclidean distance to each point in Xy, as {dy,ds,...,dn, }-
The (1-a)th percentile d,, is used as a baseline statistic during
the testing phase, where « is the statistical significance level
(e.g., 0.05). During testing, we compute the anomaly evidence
for each instance as

Dy = di" —dg’, (10)

where d; is the kNN distance between the test point at
time instance ¢ and X, and m is the dimensionality of the
transformer output.

The anomaly evidences are accumulated over time

sy = max{s; + D¢, 0}, 50 = 0. 1D

and an alarm is raised when the anomaly statistic s; exceeds
a threshold A, i.e., at time

T = min{t : sf <h}. (12)

Here, T' is the minimum time required for the accumulated
evidence s¥ to be sufficiently high to raise an alarm based
on a detection threshold h. The detection threshold A mani-
fests a trade-off between minimizing the detection delay and
minimizing the false alarm.

For an anomaly detection algorithm to be implemented in a
practical setting, a clear procedure is necessary for selecting
the decision threshold such that it satisfies a desired false alarm
rate. The reliability of an algorithm in terms of false alarm rate
is crucial for minimizing human involvement. To provide such
a performance guarantee for the false alarm rate, we derive an
asymptotic upper bound on the average false alarm rate of the
proposed algorithm.

Theorem 1: The false alarm rate of the proposed algorithm
is asymptotically (as No — co) upper bounded by

FAR < e=woh, (13)

where h is the decision threshold, and wy > 0 is given by

Wy = Uy, — 0 — éW (—¢96_¢9) ,

Um

m *
evm dm

(14)

m/2

In (T4), W(-) is the Lambert-W function, v, = m is
the constant for the m-dimensional Lebesgue measure (i.e.,
U d' is the m-dimensional volume of the hyperball with
radius d,), and ¢ is the upper bound for D;.

Proof. In [48]][page 177], for CUSUM-like algorithms with
independent increments, such as TiSAT with independent Dy,
a lower bound on the average false alarm period is given as
follows

Eoo[T] > e¥ol,

where h is the detection threshold, and wg > 0 is the solution
to E[ewoPr] = 1.

To analyze the false alarm period, we need to consider the
nominal case. The anomaly evidence in the nominal case does
not necessarily depend on the previous selections due to lack
of an anomaly which could correlate the evidences. Hence, in
the nominal case, it is safe to assume that D; is independent
over time.

We firstly derive the asymptotic distribution of the instance-
level anomaly evidence D, in the absence of anomalies. Its
cumulative distribution function is given by

P(Dy <y) = P(di" < dif +y).

It is sufficient to find the probability distribution of d}*, the
mth power of the kNN distance at time ¢. As discussed above,
we have independent m-dimensional vectors {X;} over time,
which form a Poisson point process. The nearest neighbor
(k = 1) distribution for a Poisson point process is given by

P(d:} <r)=1—exp(—A(b(Xs,1)))

where A(b(X¢,r)) is the arrival intensity (i.e., Poisson rate
measure) in the m-dimensional hypersphere b(X;, ) centered
at X with radius r [49]. Asymptotically, for a large number
of training instances as N — oo, under the null (nom-
inal) hypothesis, d; of X; takes small values, defining an
infinitesimal hyperball with homogeneous intensity A = 1
around X;. Since for a homogeneous Poisson process the
intensity is written as A(b(Xy,r)) = A|b(Xy, )| [49], where
|b(X¢, )| = #ﬁl)r’" = vypr™ is the Lebesgue measure
(i.e., m-dimensional volume) of the hyperball b(Xy,r), we
rewrite the nearest neighbor distribution as

P(d; <r)=1—exp(—v,r™),

m/2 . . .
where v,,, = m is the constant for the m-dimensional
Lebesgue measure. Now, applying a change of variables we



can write the probability density of di* and D; as

0
far ) = 211 esp () as)
= vy exp(—vmY), (16)
ID. (y) = Um exp(—vmdy)) exp(—vmy) (17

Using the probability density derived in (T7), E[evoPt] =1
can be written as

@
1= / oYy, e vmda e TUmY gy (18)
_dgl
evmdgL ¢
— / e(w()—vm)ydy’ (19)
Um _dgl
(UJD_UTN.)y
== (20)
wWo — Um —dm
(wo—vm ) _ (WO_”m)(_dZL)
= ¢ = : 1)

wWo — Um
where —d' and ¢ are the lower and upper bounds for D, =
di* — d7'. The upper bound ¢ is obtained from the training
set.
As Ny — 00, since the mth power of (1 — «)th percentile
of nearest neighbor distances in training set goes to zero, i.e.,
dyr — 0, we have

Vmdy
elwo—vm)é _ er -

(wo — vm) + 1. (22)

U

We next rearrange the terms to obtain the form of e =
ao(z +0) where x = wo — Uy, ag = “——, and 0 = evqjﬁ?'
The solution for z is given by the Lambert-W function [50]
as & = —0 — 2W(—pe~?" /ag), hence

evmd

Wy = Uy — 0 — lV\/ (—¢96_¢9) . (23)

¢
Finally, since the false alarm rate (i.e., frequency) is the
inverse of false alarm period F,[T], we have

FAR < e~ woh,

where h is the detection threshold, and wq is given above.
Specifically, vy, is directly computed using the dimension-
ality m, d, comes from the training phase, ¢ is also found in
training, and finally there is a built-in Lambert-W function in
popular programming languages such as Python and Matlab.
Hence, given the training data, wy can be easily computed,
and based on Theorem the threshold h can be chosen
to asymptotically achieve the desired false alarm period as

follows
_ —log(FAR)

wWo

h (24)

We finally present the comparison between the bound for
false alarm rate derived in Theorem [I] and the empirical false
alarm period in Fig. 3] The figure depicts the logarithm of
false alarm period, which is the inverse of false alarm rate,
for clarity. Hence, the upper bound on the false alarm rate

becomes the lower bound on the false alarm period in this
scenario.

V. EXPERIMENTS

Datasets: Most of the existing works evaluate their perfor-
mance on the following datasets:

e SMD (Server Machine Dataset): The SMD dataset is
collected from a large internet company and consists of
data collected over 5 weeks with 38 dimensions.

e PSM (Pooled Server Metrics): The PSM dataset is
proposed by eBay and consists of 26 dimensional data
captured internally from application server nodes.

o« MSL (Mars Science Laboratory rover) and SMAP (Soil
Moisture Active Passive satellite): The MSL and SMAP
datasets are provided by NASA and consists of telemetry
data and anomalies featuring 55 and 25 dimensions re-
spectively. Since most of the dimensions are categorical,
we only focus on the telemetry values.

e SWaT: The SWaT dataset is collected in an industrial
setting and features data collected from a sewage water
treatment facility. The dataset is collected over an entire
week and consists of 51 dimensions, where the anomalies
are caused due to cyberattacks.

Each dataset includes training, validation and testing subsets.
Anomalies are only labeled in the testing subset.

Implementation Details: Following the sliding window
approach used in existing works, the input to the proposed
TiSAT model is a sub-series with a window size of 100. The
TiSAT model encoder consists of a 3-layer stack followed by
a l-layer stack and the decoder consists of a 2-layer stack. We
train the model using Adam optimizer, and the learning rate
is set as le~4. We train the model for 4 epochs with a batch
size of 64. We normalize all the datasets between [0,1] using
minmax normalization.

Results: We extensively evaluate the performance of the
proposed approach on the five publicly available benchmark
datasets using the proposed SPD metric. We compare our
approaches with classical algorithms such as OC-SVM, Isola-
tionForest and LOF, as well as time series forecasting based
approaches such as ARIMA and LSTM. As shown in Table[I]
the proposed TiSAT model significantly outperforms all other
approaches. While there have been several neural network
based approaches [13]-[16], [22]-[24] proposed recently, all
of them present their results using the faulty adjusted instance-
based metric shown in Fig.[I] (See Table [l for the inherent flaw
of this metric). Since most of them do not have their codes
available, it is not feasible for us to compare with them.

VI. CONCLUSION

In this work we identified a crucial shortcoming in the
existing evaluation criterion used by most recent approaches
for time series anomaly detection. To rectify the evaluation
method, we presented a novel performance metric which
measures the timeliness and precision of detection methods.
Moreover, we proposed a novel transformer based approach
called TiSAT for unsupervised time series anomaly detection
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Fig. 3. Actual false alarm periods vs. derived lower bounds for the PSM, SMAP and SWAT datasets respectively.

Dataset SMD MSL SMAP SWaT PSM
Metric (SPD)
OCSVM |6] 21.08 | 20.15 | 12.82 17.21 | 19.44
IsolationForest 7] | 19.38 | 16.50 9.26 12.83 | 18.98
LOF [8] 17.25 | 1429 | 18.21 13.68 | 20.14
ARIMA 27.64 | 24.13 | 22.87 | 29.35 | 26.47
LSTM [33] 28.31 | 23.85 | 27.54 | 3297 | 2841
Ours \ 52.70 \ 33.40 \ 29.35 \ 46.23 \ 38.58
TABLE II

COMPARISON WITH EXISTING APPROACHES USING THE PROPOSED SPD

METRIC.

and provided an asymptotic false alarm rate analysis for
TiSAT. This analysis leads to a closed-form expression for

the
on

detection threshold, which was emppirically corroborated
benchmark datasets. We comprehensively evaluated the

proposed approach and showed that TiSAT is able to achieve
state-of-the-art performance on benchmark datasets.
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