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Abstract—Network intrusions can be modeled as anomalies in
network traffic in which the expected order of packets and their
attributes deviate from regular traffic. Algorithms that predict
the next sequence of events based on previous sequences are a
promising avenue for detecting such anomalies. In this paper, we
present a novel multi-attribute model for predicting a network
packet sequence based on previous packets using a sequence-to-
sequence (Seq2Seq) encoder-decoder model. This model is trained
on an attack-free dataset to learn the normal sequence of packets
in TCP connections and then it is used to detect anomalous
packets in TCP traffic. We show that in DARPA 1999 dataset, the
proposed multi-attribute Seq2Seq model detects anomalous raw
TCP packets which are part of intrusions with 97% accuracy.
Also, it can detect selected intrusions in real-time with 100%
accuracy and outperforms existing algorithms based on recurrent
neural network models such as LSTM.

I. INTRODUCTION

Intrusion detection is a typical example of anomaly detec-
tion problem as most network intrusions occur as anomalous
patterns in network traffic [1]. Several classification techniques
have been proposed using available preprocessed datasets
to identify intrusions. However, due to limitations of these
datasets they failed to capture sequential relationships between
raw packets [1], [2].

Anomaly detection in sequential data has been investigated
separately using Long Short-Term Memory (LSTM) Recurrent
Neural Networks (RNN) [3], [4]. Only recently have LSTM
RNN being used to train on network packets in sequential
order and to detect anomalies in upcoming packets based on
prediction error [5].

Predicting upcoming packets based on previous packets is a
Sequence-to-Sequence (Seq2Seq) problem. Seq2Seq encoder-
decoder models are already being used in Neural Machine
Translation (NMT) and object recognition in videos to get
state of the art results [6]–[9]. Even though Seq2Seq prediction
model has been used for anomaly detection in sensor data,
it was trained using sequences with single attribute elements
[10], which is similar to predicting words in NMT.

None of these applications use Seq2Seq model with se-
quences of multi-attribute elements like packet prediction.
In packet prediction, each attribute of a packet can have
different contribution weight on predicting upcoming packets.
However, none of these attributes can disappear in output
elements. In NMT and object recognition in videos, attention

layers and convolutional encoders have been proposed to focus
on relatively important parts of input sequence [11]–[13].
However, they do not address the problem of multi-attribute
elements. Therefore a common attention layer that treats all
input elements equally is not suitable for packet prediction.

In this research, we detect anomalies in raw TCP packets
using a Seq2Seq model specially designed for multi-attribute
sequences. To train the model, we use packets from regular
network traffic split into connections. In testing, actual pack-
ets highly deviating from predicted packets are classified as
anomalies. Training the model on normal traffic instead of
intrusion traffic gives access to large training data and lets the
model detect even new unknown attacks those are deviating
from a regular pattern. Network attacks like Port Sweep and
Neptune DOS use a mass amount of TCP packets but do
not follow a regular TCP connection pattern. Therefore, we
defined packets with certain prediction error as anomalies. We
were able to detect packets from Port Sweep and Neptune
DOS attacks with 97.02% detection ratio. The actual attacks
containing such anomalous packets were detected in real-time
with 100% detection ratio.

II. BACKGROUND

Encoder-Decoder based Seq2Seq model with additional
enhancements is mainly used in NMT [6], [7], [11]–[14]. It is
also used in object recognition in video [8], [9] and anomaly
detection in series of events [10]. However, LSTM RNNs
have been widely used for sequence prediction and anomaly
detection in sequences [3], [4].

Malhotra et.al trained stacked LSTM RNN and Seq2Seq
model on non-anomalous sensor data [3], [10]. Prediction
error of their model was fitted into multivariate Gaussian
distribution. Observations with a likelihood of observing an
error greater than a threshold are marked as the anomaly.
[3]. Seq2Seq model gave better results for unpredictable
datasets, whereas stacked LSTM RNN gave better results
for predictable datasets [10]. In all these anomaly detectors,
anomalies were defined based on the Gaussian distribution of
prediction errors.

The sequence in NMT is a sentence formulated by words
in a given order and the sequence in video analysis is a grid
of pixels aligned sequentially. In a video frame, some pixels
may be more important than others. Such important pixels



are extracted using convolutional encoders [8], [9]. Similarly
in NMT, more relevant words to the translation are focused
using attention layer [11]–[13].

In both NMT and video analysis, elements of a sequence are
from same class: word and pixel respectively. Datasets used
by Malhotra et.al also contains sequences of single attribute
sensor readings. However, in packet prediction, both input and
output are sequences of packets with multiple attributes. Those
attributes may or may not have interdependencies. In such
a multi-attribute Seq2Seq problem, the model must focus on
all attributes and learn their interdependencies and how they
change in upcoming elements.

Our work is closely related to that of Bontemps et al. where
a simple LSTM RNN was used to detect Neptune DOS attacks
using collective anomalies in a network [5]. In their research,
the model was trained using an attack-free dataset to predict
a packet using last three packets and the average prediction
error was used to define anomalies. Bontemps et al. defined all
the packets arrived within a fixed time window as a sequence.
However, within a time window, there can be packets from
multiple connections which are independent of each other.
Further, the number of packets and types of packets arrived
within a time window is depending on external factors like
peak business hours. Therefore, their definition of sequence
does not have a constant pattern and the model may not give
the claimed accuracy with real datasets.

III. METHODODLOGY

A. Sequence to Sequence Model

Seq2Seq model has two RNNs named encoder and decoder.
The goal of the encoder is converting an input sequence X =
(x1, . . . , xn), into a vector c and the goal of the decoder is
converting c into an output sequence Y = (y1, . . . , yn).

At each time step t, hidden state of an RNN ht is computed
by (1) where f is a non-linear activation function and xt is
the input at time t.

ht = f(xt, ht−1) (1)

In our model the non-linear activation function f is an
LSTM and c is the final hidden state hn of that LSTM.
Decoder is another LSTM which generates Y = (yt, ..., yi)
using Y = (y1, ..., yt−1) as the input and c as the initial
internal state. Hidden state of the decoder is computed by:

ht = f(ht−1, Yt−1, c) (2)

Figure 1 depicts the proposed multi-attribute Seq2Seq
model. Every attribute of input sequence element is received
by a dedicated Artificial Neural Network (ANN) branch.
Output of those branches are merged into one and fed to the
first encoder. This way, the model has the ability to learn
the importance of each attribute independently. The output
of the last decoder is shared across different ANN branches
to predict individual output attributes of each element in the
output sequence.

Fig. 1. Multi-attribute sequence to sequence model. We use four layers of
encoders and decoders but only two are displayed here.

B. Training

The DARPA 1999 [15] dataset was used to train and test
the model. The TCP packets from attack-free outside sniffing
data were split into connections based on their sessions using
PcapSplitter1. Connections with less than 4 packets were not
used for training and connections with more than 60 packets
were pruned to 60 because a connection must have at least 4
packets to train the model and 96.96% TCP connections in the
training dataset have less than 60 packets. Connections having
packets between 3 and 60, were padded by empty packets to
maintain desired batch input format. The first three packets of
a connection were used as input sequence to predict the rest.

The decoder was trained to predict {y4, y5, . . . , yn, EOC}
using {EOC, y4, y5, . . . , yn} as input and hidden state of
the encoder as the initial state. Here, EOC is a vector
representation of End-of-Connection and n is the number of
packets in that connection. We use Teacher Forcing [16] to
train the model because it reduces error propagation in testing.
Even if we predict more than one upcoming packets, we
need to wait for actual packets to compare with.. Therefore,
predicting i+1th packet after the arrival of ith packet is enough
and gives better results.

C. Evaluation

We tested our model using two datasets: (1) attack-free
tcpdumps split into connections as we did for training; (2)
tcpdumps containing both attack and normal traffic within
a day; and (3) tcpdumps containing both attack and normal
traffic over a week.

1) Test 1: The first dataset was used to check the accuracy
of our model on predicting packets of normal TCP connections
and end of connections with a goal of validating the model. For
this test, the first three packets of valid TCP connections were
fed to the encoder and the rest were fed to the decoder one by

1PcapPlusPlus available at https://github.com/seladb/PcapPlusPlus



Fig. 2. Weighted packet distance algorithm
Input: actual packet, predicted packet, weights
Output: distance

Initialize:
1: distance ← 0
2: for all name ∈ actual packet.attributes do
3: if (actual packet[name] �= actual packet[name])

then
4: distance ← distance+ weights[name]
5: end if
6: end for
7: distance ← distance/

�
weights

8: return distance

one to predict next packet. Two packets were considered equal
only if all their attributes match to each other. The accuracy
of a predicted connection is calculated by (3).

accuracy =
No of correct predictions

No of packets in connection
∗ 100 (3)

2) Test 2: TCP packets collected on Thursday of the second
week outside sniffing data were split into streams having
requests and responses between same source and destination.
The first three packets from each stream were fed to the
encoder and the rest were fed to the decoder one by one to
predict the next packet until the decoder generates an EOC.
Suppose an EOC is generated after ith packet in a stream, the
first i packets will be considered as a connection and compared
with predicted packets. The remaining packets in the stream
will be used to predict next connection. If an EOC is not
generated within τ packets, the decoder will emit predicted τ
number of packets as a connection and a new prediction cycle
will start from τ + 1th packet. Even though most connections
have less than 60 packets, we defined τ as 100 to be on safe
side.

In preliminary Test 2, the accuracy defined using exact
match of packets resulted in more false positives. Therefore, in
Test 2 we compared the predicted packets with actual packets
using a distance algorithm which compares each individual
categorical attributes and produces a weighted distance. The
weight of each attribute is determined based on preliminary
observations. The computed distance of each connection was
used to define the accuracy of prediction. Suppose a predicted
connection has n packets, prediction accuracy of that connec-
tion is given by (4).

accuracy =

n�
i=1

1− distancei

n
∗ 100 (4)

D. Test 3

The goal of Test 3 is validating the application of our model
in real-time anomaly detection. We preprocessed the packets
collected in the second week of DARPA 1999 dataset as we
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Fig. 3. Test 1 results

TABLE I
CLUSTER MEANS OF ACCURACY AND PREDICTED PACKETS IN TEST 2

Cluster Accuracy No of packets

1 95.19 97.08
2 61.80 9.52
3 76.52 7.68
4 89.16 13.06
5 76.66 96.49
6 12.25 94.47

did in Test 2 and fed to the model. The system will raise an
alarm in real-time, if the average weighted prediction error of
60 packets is less than 12.5% which is the mean accuracy of
anomalous packets in Test 2. The percentage of true positive
alarms and number of false positive alarms were compared
with the results obtained by Bontemps et al. using LSTM on
the same dataset.

IV. RESULTS

In Test 1, the model was able to predict connections
with 84.97% accuracy and end of connections with 89.57%
accuracy as shown in Figure 3. At the end of Test 2, we pre-
pared a dataset with the number of packets in each predicted
connection and the accuracy of connection. This dataset was
further analyzed to define thresholds for anomaly detection.

A. Hypothesis

If the decoder is unable to find a connection in a stream
of events, it will iterate τ times. Therefore, if the number
of packets in a predicted connection is equal to τ (set to
100 in this experiment), either those packets are anomalies or
the actual connection has greater than or equal to τ number
of packets. However, if those packets are from an actual
connection, the model may be able to predict them with a
higher accuracy even though it cannot reach the end of the
connection.
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B. Analysis

Results from Test 2 were clustered using K-means clustering
algorithm into six clusters as shown in Figure 4. The number
of clusters was determined by cross-validation. As shown in
Table I, Cluster 6 has the lowest accuracy (12.25%) and a
high number of predicted packets (94.47), which supports our
hypothesis.

Even though the model classifies all attacks as anomalies
without further distinctions, we manually analyzed the true
positive packets from Cluster 6 and figured out that anomalous
packets are from either Port-Sweep or Neptune DOS attacks.
The proposed model is able to identify such anomalous packets
with 97.02% Detection Ratio and 0.07% False Alarm Ratio.

In Test 3, the model was able to raise alarms on all Port-
Sweep and Neptune DOS attacks with 100% true positive
rate. Only a single False Alarm was raised in five days of
network traffic. Bontemps et al. claimed 100% true positive
alarms and 63 false alarms using LSTM on the same dataset
[5]. Further, their model was able to detect only the Neptune
DOS attack. Therefore, we claim that our Seq2Seq model
outperforms LSTM in detecting anomalies in TCP traffic.

V. CONCLUSION

In this research, we have used Seq2Seq model for network
anomaly detection in TCP requests. We have analyzed the
results using offline unsupervised machine learning to learn
threshold values and shown that the model can be used in
online anomaly detection using those thresholds. If τ is large
enough, it can capture more actual packet terminations but
it will fail to identify anomalies at their early stage. If τ is
too small, the number of false positives will increase because
there is a higher chance of splitting connections into chunks.
Therefore, τ must be selected carefully, considering the aver-
age number of packets received in a connection depending on
the network.

Even though the testing dataset contains several other types
of attacks, our model identifies only Port-Sweep and Neptune

DOS because those are the only two found in testing data that
are using TCP protocol and having more anomalous packets.
However, the proposed model can be trained on different
protocols and used to detect other attacks which are using
those specific protocols.
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