
Machine Learning for Time Series Anomaly
Detection

by

Ihssan Tinawi

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2019

c○ Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 10, 2019

Certified by. .
Kalyan Veeramachaneni

Principal Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chairman, Department Committee on Graduate Theses

2

Machine Learning for Time Series Anomaly Detection

by

Ihssan Tinawi

Submitted to the Department of Electrical Engineering and Computer Science
on May 10, 2019, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

In this thesis, I explored machine learning and other statistical techniques for anomaly
detection on time series data obtained from Internet-of-Things sensors. The data,
obtained from satellite telemetry signals, were used to train models to forecast a
signal based on its historic patterns. When the prediction passed a dynamic error
threshold, then that point was flagged as anomalous. I used multiple models such
as Long Short-Term Memory (LSTM), autoregression, Multi-Layer Perceptron, and
Encoder-Decoder LSTM.

I used the "Detecting Spacecraft Anomalies Using LSTMs and Nonparametric
Dynamic Thresholding" paper as a basis for my analysis, and was able to beat their
performance on anomaly detection by obtaining an 𝐹0.5 score of 76%, an improvement
over their 69% score.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist

3

4

Acknowledgments

Bismillah. In the name of God, the Most Gracious, the Most Merciful.

I would like to thank SES for their support in our project.

I would also like to thank my supervisor Kalyan for all I have learned from him.

Thanks to my friends and especially my roommate Rami for making this year a

memorable one.

Finally, special thanks to my parents without whom none of this would be possible.

5

6

Contents

1 Introduction 13

1.1 Machine Learning for Anomaly Detection 13

1.2 Motivations for Anomaly Detection 15

1.3 Contributions & Key Findings . 16

2 Relevant Work 19

2.1 Anomaly Detection for Spacecraft . 20

2.2 Using Neural Networks for Anomaly Detection 22

3 Data 23

4 System Architecture 29

4.1 Overview . 29

4.2 Data Pre-processing . 30

4.2.1 Time series Aggregation . 30

4.2.2 Rolling Window Sequences . 31

4.3 Models . 32

4.3.1 Multilayer Perceptron (MLP) 33

4.3.2 Long Short-Term Memory (LSTM) 36

4.3.3 LSTM Autoencoder . 37

4.3.4 Linear Autoregression . 38

4.4 Post-Processing: Anomaly Detection 41

4.5 Sample Pipeline . 43

7

5 Analysis 47

5.1 Mean Squared Error . 47

5.2 F-0.5 Score . 49

5.3 Further Work . 52

5.4 Conclusion . 53

8

List of Figures

1-1 Divergence of growths between data and human resources within or-

ganizations. 16

3-1 NASA Signal A-6 plotted to show its continuos nature. 24

3-2 NASA Data Format. 25

4-1 Mechanism of time series aggregation. 31

4-2 Mechanism of rolling window sequences. The sliding window corre-

sponds to different overlapping sequences. 32

4-3 Tanh Activation Function. 34

4-4 ReLU Activtion Function. 34

4-5 Multilayer Perceptron Architecture. 36

4-6 LSTM Architecture. 37

4-7 Signal P-11. 43

4-8 Signal P-11 and the forecast from NASA LSTM Model. 45

4-9 Close-up on signal P-11 and the forecast from NASA LSTM Model. . 46

4-10 Signal P-11 and Forecast from NASA LSTM Model. Flagged Anomaly

in Shaded Region. 46

9

10

List of Tables

3.1 Data Summary . 26

5.1 MSE Summary across 82 signals. Autoregression doesn’t have a train-

ing MSE as the neural network models do, since the model is fitted

differently. 49

5.2 𝐹0.5 Scores of the Models. 50

5.3 Precision & Recall Scores for the Models. 51

11

12

Chapter 1

Introduction

1.1 Machine Learning for Anomaly Detection

Machine learning is a field within statistics in which programs use historic data to

make predictions about future data points or unknown labels. A model is said to learn

when it is able to produce estimates of a data point based on whatever structure it

has inferred from previous data. Machine learning can be used in the context of time

series forecasting to predict the value at the next time step; in classification problems

where given an input, the model’s goal is to predict the label; and in clustering to

determine which points resemble each other in high-dimensional space. These are

just three examples of common uses of machine learning.

The goal of machine learning is to map high-dimensional data and to try to sep-

arate data points based on their labels. Models are trying to minimize distances

between similar points and correctly classify them. At the core of machine learning

is data and loss functions. Models are trying to learn features from the data with the

help of loss functions that generalize our models to previously unseen data.

Time series anomaly detection is a field that has historically utilized several sta-

tistical methods in order to try to guess anomalies in sequential data. time series is

used to refer to data that has values associated with timesteps. Examples of time

series data are stock prices or temperature readings from a thermometer. In both

cases data is sampled at a certain frequency, and the values at those instances are

13

recorded. Often, time series data exhibits patterns like periodicity, cyclic growth, ex-

ponential decay, to name a few characteristics. The data can also sometimes undergo

shocks or changes that go against its predictable nature. For example, a company’s

stock price can tank if news leaks that it has sustained a big loss. Similarly, a sudden

increase in the temperature of a room in a factory can signal that there is a fire. In

any of these situations, it would be beneficial to have a system that can detect and

flag anomalies, giving administrators the ability to minimize losses. We will utilize a

publicly available spacecraft data set to analyze the validity of using machine learning

systems for anomaly detection tasks in spacecraft.

There are several ways to carry out anomaly detection, using statistical methods

such as clustering, wavelet transforms, autoregressive models, and other machine

learning and digital signal processing techniques. Within machine learning, the time

series anomaly detection problem can be classified into two categories: supervised

and unsupervised. The first category occurs when historic anomalies are known and

models are fitted to identify similar anomalies, and this is known as “supervised

learning” because data points are labeled with their true nature. In other settings,

the labels are not known and the model tries to predict whether a point is anomalous

based on how close it is to previously seen data, and these instances are referred to

as “unsupervised learning” tasks.

Unsupervised learning settings are much more common, because machines don’t

know a priori whether they are experiencing glitches, so the data doesn’t contain

explicit information about when and where an anomaly is taking place. In these

settings, it is expensive to hire experts to label whether data points are anomalous,

and it is even possible for the experts to misidentify or entirely miss abnormalities. A

good model is tuned so that is not strict leading to too few anomalies being noticed

and not over-sensitive such that a lot of normal points are flagged as anomalies. This

enables companies to adjust their services to situations of high demand or to replace

failing components of vehicles before they endanger passengers. In spacecraft, where

the machine is already launched and cannot be maintained, knowing ahead of time

about failure of components enables the operators to migrate their services to other

14

crafts or to rely on other components of the same machine.

1.2 Motivations for Anomaly Detection

If we were to plot the amount of data being generated within organizations, it would

be an exponential curve as in Figure 1-1 below. To make sense of all this data,

companies need to hire analysts to match the large rate of growth of the data. How-

ever, organizations can at best only afford to hire in a linear manner due to financial

constraints. Therefore, there is a growing gap between the amount of data being

generated and the number of personnel available to go through it. This causes an

intelligence gap, and it represents a large problem that companies in the digital age

are facing. Namely, it is too expensive to hire humans to review data at the rate

it is being generated. This is where computers can contribute. Machine intelligence

programs can be built in order to monitor information from critical systems and flag

anomalies as they occur. Human experts can then view these warnings, and decide

to deal with them on a case-by-case basis. This would decrease the amount of work

that the human experts have to do, thereby decreasing the burden on companies to

hire more and more experts.

Building machine learning systems that can process information and identify

anomalies is more cost effective than creating human-based teams. It can also detect

changes in the signal that are too subtle for humans to identify. Statistical methods

can be used to determine context anomalies, which are changes that shift across sea-

sonal trends. For instance, the average temperature is much lower in the winter than

in the summer. So, if you encounter a temperature of 80 degrees Fahrenheit in the

winter, it’s an anomaly, whereas in the summer it would be a normal temperature.

In our work, we focus on creating an anomaly detection system for satellites and

spacecraft. The input to the system is telemetry data coming from the satellite, and

the output is anomalies. The system flags anomalies and alerts technicians, reducing

the overall amount of data they need to review. The best system has a small number

of false positives and negatives. That is, the system is not sensitively flagging any

15

Figure 1-1: Divergence of growths between data and human resources within organi-
zations.

and all variations in the data (increasing the amount of work technicians have to do)

and at the same time the system’s threshold is not too strict that it cannot identify

anomalies.

1.3 Contributions & Key Findings

In this work, we explore several time series forecasting methods and apply them in

the context of spacecraft data to build an anomaly detection system. We study the

performance of multilayer perceptrons (MLP), Long Short-Term Memory (LSTM),

LSTM Encoder-Decoder, and linear autoregression models to contrast which archi-

tectures perform the best for time series data forecasting.

We work with a public dataset provided by researchers at NASA. The data comes

from two of their spacecrafts, and is available in a format that is standard to time

series data. As such, our system can be adapted to work with any dataset that shares

the format of the NASA data. More information about the data and its format can

be found in chapter 3.

16

Anomaly detection is a technique used in the field of statistics to determine out-

liers from signals. In our work, we apply state of the art machine learning and

traditional statistical techniques to spacecraft telemetry data to infer anomalies from

data in an unsupervised manner. We adapt the dynamic error thresholding technique

found in NASA’s LSTM and Nonparametric Thresholding Paper [2] in order to detect

anomalies. Below, we summarize our main contributions and findings.

∙ Built an end-to-end machine learning pipeline that can detect anomalies and is

modular for trying out different models.

∙ Tested out the pipeline with 4 different architectures (MLP, LSTM, LSTM

AutoEncoder, and Linear Autoregression).

∙ We found that increasing the length of the input sequence to the models yielded

improved results.

∙ By decreasing the number of hidden units, we were able to outperform NASA’s

model even without using their pruning technique, obtaining an 𝐹0.5 score of

0.76 over the reference paper’s 0.69 score.

∙ The LSTM Autoencoder got a high accuracy prediction score of 0.83, close to

the NASA model’s precision score of 0.88.

Chapter two discusses related work in the literature, and describes the difference

between our approach and other papers in the field.

Chapter three details the data that we are using.

Chapter four provides an overview of the system that was implemented. It de-

scribes the architecture of the anomaly detection system, and breaks it down into

pre-processing, modeling, and post-processing.

Chapter five is a comprehensive summary of our results and contains an analysis

of the different models we tested out. Possible future expansions to the project are

also discussed.

17

18

Chapter 2

Relevant Work

In recent years, a lot of deep learning models are being employed by researchers

for time series forecasting. State-of-the-art models now apply methods such as Long

Short Term Memory (LSTM), stacked LSTMs, and autoencoders, among other archi-

tectures, to forecast time series data and then detect anomalies from those predictions,

once the real measurements are observed. For example in a paper titled “Detecting

Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding” [2],

researchers from NASA apply a stacked LSTM model to telemetry data obtained

from two of their satellites. The signal is passed through the model and it generates

a forecast for the next timestamp. The predicted value is then compared to the re-

alized value to compute an error. After applying smoothing techniques, the error is

passed through a dynamic threshold that determines whether the observed value is

an anomaly, based on the previous errors of the model. We will be using several such

papers and drawing upon the literature to implement different techniques to generate

several pipelines that we can train our data on and use to generate anomalies.

The NASA paper introduced a novel technique called dynamic error threshold-

ing. This method is different from previously used error cutoffs such as fixed error

thresholds like x-sigma or distance based approaches such as clustering [4]. Non-

stationary data is characterized by having a mean and variance that shifts with time.

For instance, the data can have growth trends or exhibit cyclic behavior. This non-

stationarity makes it difficult for fixed error thresholding techniques to work in prac-

19

tice. Thus, dynamic error techniques, which are not constrained by non-stationary

data, have the potential of performing better. The error thresholding technique pro-

posed by the NASA team is nonparametric, dynamic, and unsupervised. We use this

error thresholding technique and compare its performance to x-sigma thresholding

to see which provides a prediction rate for anomalies. More information about the

theory underpinning dynamic error thresholding can be found in chapter 4 (System

Architecture).

2.1 Anomaly Detection for Spacecraft

In the field of aerospace engineering, there has been extensive use of anomaly detec-

tion. As previously mentioned, these systems are difficult to create, because on the

one hand you do not want to have a threshold that is too sensitive, resulting in too

many false flags. Such a sensitive threshold would be expensive to maintain, because

technicians and observers will have to verify a large number of anomalies. And on

the other hand, you do not want a threshold that is too strict, meaning that a lot of

anomalies will go by undetected.

Regardless, a lot of anomaly detection techniques exist for spacecraft. For ex-

ample, on the International Space System, there is the Inductive Monitoring System

(IMS), built by NASA to deal with anomalous behavior. The IMS uses a clustering-

based approach to determine the health of signals, as compared to nominal perfor-

mance. Clustering techniques are distance-based, meaning that clusters are formed

based on how far a data point is from others. Clustering methods do not require

the data to be labeled, making it a good fit for our unsupervised task. However, the

problem with clustering algorithms is that you need to know a priori the number of

clusters, and they are very sensitive to outlier data points. For instance, one outlier

data point will warp the shape of a cluster so that it spans incorrect regions.

To outline how a clustering algorithm would carry out anomaly detection, we

describe a setup that utilizes 𝑘-means clustering. 𝐾-means clustering is not to be

confused with 𝑘-nearest neighbors, which is used in classification and regression. 𝐾-

20

means clustering serves to partition 𝑛 observations into 𝑘 clusters based, where each

new data point is assigned to the cluster with the closest mean. Clustering can be

solved with an approximation algorithm that has two steps: assignment and update.

To conduct time series anomaly detection, the signal is passed in as individual data

points, and the number of clusters can be set to 2 (one anomalous and one normal).

Alternatively, we can experiment with 3 clusters (anomalous, normal, and outliers)

to see how that improves the performance of the system.

The problem with a clustering approach is that typically algorithms assume that

the data is equally distributed across the clusters, which is not a valid assumption to

make in the case of anomalies. For instance, a signal might have little to no anomalies

in a given sample. Another limitation of clustering-based approaches is that the data

might go through multiple phases. For instance, if we are looking at a thermometer’s

signal, and the thermometer is on Earth, then data in the summer will be higher on

average than data in the winter. This will lead the clustering algorithm to assign

the temperature readings into one cluster in the summer and another in the winter.

Thus, contextual anomalies are lost, where an unexpectedly high temperature in the

winter is just assigned to the summer cluster.

Beyond clustering-based approaches for anomaly detection, regression error tech-

niques are the most common in time series forecasting and anomaly detection, and

this is the approach that was taken by several papers on which we base our work.

The NASA paper, mentioned above, uses LSTMs as the regressor in the model. In

another paper, researchers from TCS Research in India, use LSTM-based encoder-

decoder model for multi-sensor anomaly detection in spacecraft [3]. The system we

build carries out modeling of the signal using different neural networks, adapted from

such papers, and then applies NASA’s dynamic error thresholding technique to de-

termine whether the residual error is too large, indicating that the input wasn’t in

line with what was expected. The process behind this approach is outlined further in

chapter 4 (System Architecture).

21

2.2 Using Neural Networks for Anomaly Detection

Recently, there has been large interest from research groups to apply neural archi-

tectures in the field of time series forecasting. With the advent of faster computing

chips and the abundance of data, a new Golden Era of machine learning has started,

making researchers interested in applying deep learning techniques to any decades-old

statistical field. Among these contributions are several papers that we use as basis

for the time series forecasting in our system. These methods are in contrast to the

“traditional” machine learning tools such as nearest neighbor or 𝑘-means clustering

that we explored earlier. They are also different from the statistical techniques such

as low-pass filters and other digital signal processing methods.

In deep learning, architectures such as Recurrent Neural Networks (RNNs) and

Long Short-Term Memory (LSTM) networks were found to perform better compared

to feed forward neural network architectures. Due to their ability to encode tem-

poral properties, RNNs and LSTMs perform well in time series forecasting, speech

recognition, and natural language processing tasks, since they both rely on modeling

sequences. LSTMs have the ability to learn the relationship between past data and

current values. The capacity of LSTM to model this dependency has led to a large

academic interest in using these units in machine learning for time series forecasting.

The NASA and TCS Research papers that we implement are some examples, and we

compare and contrast these with different architectures in our work.

22

Chapter 3

Data

The data we are using is in time series format. This means that every value is a

reading from the sensors of the spacecraft that occurred at a specific moment in

time. The data was obtained from a public dataset used in a study published by

research scientists at NASA. The telemetry data comes from two spacecrafts: the Soil

Moisture Active Passive satellite (SMAP) and the Curiosity Rover on Mars (MSL).

The data was anonymized with respect to time, but it retained its sequential nature.

The anonymization does not affect any time series forecasting of the data, as the

timestamp itself doesn’t matter, and we only care about the values in the sequences.

Furthermore, the telemetry signals are divided into several channels, where the

channel category and the signal number describe the signals and give hints as to which

of them are related. For example, signals “P-1” and “P-2” are related, as they come

from components representing “Power” signals of the craft. There are 82 signals avail-

able in the NASA dataset, with 55 coming from the SMAP satellite and 27 from the

MSL Mars Rover. The signals were individually plotted and evaluated for qualitative

features, such as being discrete or continuous and exhibiting any periodic trends. 54

of the 82 signals were found to be continuous by inspection, and the remaining sig-

nals were discrete. In order to determine characteristics for each signal, the Python

Plotly toolkit was used to plot each signal. After that, we visually inspected each

graph, zooming in on parts of the signal to determine whether the data was indeed

continuous or discrete at the lowest level.

23

Figure 3-1: NASA Signal A-6 plotted to show its continuos nature.

In Figure 3-1, we see the example of Signal A-6 from the NASA data. As can be

seen in the figure, the graph shows the data from timesteps 5000 to 7500. As men-

tioned above, the data has been anonymized with respect to the actual timestamp, so

we deal with timestamps as the timestep sequence number. Signal A-6 is continuous,

and oscillates between values of (−0.356, 0.356). Additionally, it seems there is an

an outlier value at around timestep 5500. This qualitative analysis is useful as we

try to justify later why some signals might have been better modeled using certain

architectures. It also provides an additional layer of insight when we are trying to see

why a certain signal was difficult to predict the errors for. The qualitative inspection

was carried out for all signals.

For a given signal, let’s say “M-1”, the data has 𝑚 rows and 𝑛 columns. The 𝑚

rows represent the commands sent to different modules, in binary format, and the

last row is the telemetry value itself. The layout of the data can be found in Figure

3-1, adapted from the NASA paper. There are 𝑛 rows corresponding to the number of

timestamps or readings taken for that signal. Therefore, the signal at each timestep

is an 𝑚× 1 matrix. For our purposes, we do not use the commands as input features

for our models, so we only create sequences from the telemetry value itself. So, if we

24

Figure 3-2: NASA Data Format.

decide to use a sequence of length 250, then the input to the model would be a of size

250× 1, instead of 250×𝑚. The structure of input and output data to and from the

models is explained in more detail in chapter 4 (System Architecture).

Upon looking at the data, one notices that all the telemetry values are between

-1 and 1. This doesn’t represent the real values that were captured from the devices.

The researchers pre-processed the data to make its values scale to that range. This

technique is an important step for time series forecasting analysis, as it confines the

range of predictions the model has to learn. Therefore, our system assumes that data

has already been scaled to be in the aforementioned range, and an algorithm to apply

this to new and real-time data can be found in section 5.2 entitled “Further work.”

The original researchers of the paper scaled the public data, but we also did two

changes to the data before carrying out the analysis.

First, we combined the “train” and “test” signals into one data file for each signal.

This enables us to try out different train/test splits. The paper had limited train/test

splits of the data, and in some cases there were more testing points compared to

training data points. In time series anomaly detection, you are implicitly assuming

that all training data does not have any anomalies. Therefore, the train/test split will

have a large effect on the outcome of the experiment. We found that to be true in our

experiments, where we encountered poorer performance when we used a train/test

split different from the one used in the NASA paper. We discuss this further in our

analysis (chapter 5). The second important change that was done in the data is that

25

Table 3.1: Data Summary

Number of Continuous Signals 53
Number of Discrete Signals 29
Total Number of Anomalies 106
Average Anomalies Per Signal 1.3

we are using only the telemetry value and not the series of commands that was input

to the different modules. While these input commands can act as features (such

as the mode of the satellite), the NASA paper ignores this part of the signal, and

instead the focus is on re-creating telemetry values from previous ones and not by

contextualizing it with other features of the craft. That is, at each point we want to

predict the value of the telemetry signal, and we do not necessarily want to guess the

type of command that was sent to different modules. As mentioned in the previous

paragraph, this means that the input is now of the shape 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ×1 rather

than 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ × 𝑚, where 𝑚 is the number of rows in the input matrix.

In both our work and the NASA paper, we limit the dimension of the input vector

𝑚 = 1.

Despite the data being unsupervised, NASA researchers hired experts to sift

through the collected spacecraft logs and determine which of the signals were anoma-

lous. This is part of a normal analysis that typically occurs after mission data has

been collected. In a separate file called 𝑙𝑎𝑏𝑒𝑙𝑒𝑑_𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 NASA provided a sum-

mary of the anomalous regions of each of the 82 signals, as identified by its engineers.

The file is publicly available on the GitHub repository of the paper.1 It’s important to

note, however, that there may have been anomalies that were overlooked during the

annotation process due to human misjudgment. Nevertheless, the 𝑙𝑎𝑏𝑒𝑙𝑒𝑑_𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠

file is taken as the ground truth in our analysis. The labeled anomalies file has 82 rows

and 5 columns for the anomaly sequences, the name of spacecraft, the Channel ID,

the type of anomaly (contextual or point), and the number of telemetry values in the

stream. In the field of anomaly detection, a point anomaly is defined as data that is

1https://github.com/khundman/telemanom

26

far too large or too small compared to the entire dataset. A contextual anomaly, how-

ever, is anomalous only in the context of the data around it. For example, on vacation

spending $100+ on food might be normal whereas on normal days it is considered

anomalous. In this work, we apply NASA’s dynamic error thresholding, which takes

into account the context of a data point, mitigating the incorrect classifications that

may occur if errors are compared to a static threshold. A more thorough description

of the technique can be found in the following chapter 4 (System Architecture).

27

28

Chapter 4

System Architecture

4.1 Overview

We are building an anomaly detection system, which is capable of swapping similar

primitives to rapidly prototype different architectures and converge on the model that

performs best for a given task. With that design consideration, we split our anomaly

detection task into three modular components. In the first one, we carry out all pre-

processing tasks, readying the data for a time series forecasting model. In the second

module, we can use any linear, non-linear, or machine-learning regressor to generate a

prediction for the next time step. In the last module, we compute the error residuals

between the predicted values and the realized values. Based on the error thresholding

technique used, anomalies are flagged and stored into a database.

In each of these sections, we talk about the algorithms that were implemented,

detailing the inputs and outputs, as well as which parameters could be changed and

tuned to achieve different results. In the results section, we delve deeper into the

performance results on the anomaly detection, and highlight which models and error

thresholding techniques achieved better performance in practice.

Chapter 4 is organized as follows. In section 4.2, we talk about the pre-processing

phase and the two algorithms we use to shape the input to the models. In section

4.3, we talk about different architectures that we have used in our work. This section

discusses the theory behind the models. Section 4.4 talks about the post-processing

29

and dynamic error thresholding technique that we use to detect anomalies. And

finally, section 4.5 walks us through a sample of the pipeline using one of the NASA

signals.

4.2 Data Pre-processing

The raw telemetry data could not be directly ingested into our pipeline, and it needs

to first undergo some processing. We implement two methods that changes the data

into a format that enables us to carry out time series forecasting. The first method is

called 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛, and it combines data across time intervals, thereby

changing the frequency of the data. The other is called 𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠, and

it creates overlapping sequences that are used to predict in the time series forecasting

models. We will now go over each of these methods, and describe their functionalities.

4.2.1 Time series Aggregation

Inputs

∙ 𝑋: time series data, with values and time stamps

∙ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙_𝑙𝑒𝑛𝑔𝑡ℎ: length of the interval, in seconds, that we want to aggregate

based on

Outputs

∙ 𝑣𝑎𝑙𝑢𝑒𝑠: data aggregated by taking the average across intervals

∙ 𝑖𝑛𝑑𝑒𝑥: the corresponding time stamp for each new aggregated data point

The time series aggregation method takes in time series data and clusters data

spanning a certain interval, using mathematical aggregation methods such as mean

and median, to name a few. The method is useful because it reduces the size of data

sets, by changing the frequency at which the data is sampled. Often times, in IoT

sensor data, information is collected at a very high rate, but a lot of the information is

30

Value

Timestamp

Aggregated
Value

Aggregated
Timestamp

0.78 0.98 0.51 0.21 -0.31 -0.66 0.15 0.57 -0.65 0.99

0.434 0.08

average

1 2 3 4 5 6 7 8 9 10

1 6

Figure 4-1: Mechanism of time series aggregation.

redundant, and can be summarized by taking averages across an interval of one hour

for example. This also cleans up the data that is being used, so outlier readings are

smoothed out across the interval. Though this is a limitation if we were looking for

individual anomalous events, it does help to focus on long term trends. If users of the

system believe that their data is sampled at the right frequency, then the interval can

be set to the current sampling rate. In the case of the NASA data, each timestamp

was equivalent to one anonymized time step, and thus the interval was set to 1.

4.2.2 Rolling Window Sequences

Inputs

∙ 𝑋: time series data, with values and time stamps

∙ 𝑖𝑛𝑑𝑒𝑥: the corresponding time stamps for values

∙ 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒: the size of the sequence window that you want to generate

∙ 𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑖𝑧𝑒: the number of steps ahead to predict

Outputs

∙ 𝑜𝑢𝑡_𝑋: the sequence of 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 starting at each time stamp

∙ 𝑜𝑢𝑡_𝑦: the corresponding next step(s) ahead to predict, based on 𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑖𝑧𝑒

∙ 𝑋_𝑖𝑛𝑑𝑒𝑥: time stamps associated with 𝑜𝑢𝑡_𝑋 values

31

Value

Timestamp

0.78 0.98 0.51 0.21 -0.31 -0.66 0.15 0.57 -0.65 0.99

1 2 3 4 5 6 7 8 9 10

Figure 4-2: Mechanism of rolling window sequences. The sliding window corresponds
to different overlapping sequences.

∙ 𝑌 _𝑖𝑛𝑑𝑒𝑥: time stamps associated with 𝑜𝑢𝑡_𝑦 values

Rolling window sequences is a method that is commonly used to prepare time

series data for building models for forecasting. 𝑂𝑢𝑡_𝑋 acts as the input to the

forecasting problem, giving the model context for the previous values. The model

then uses the values in the sequence to predict the next 𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑖𝑧𝑒 values. In this

project, we use the sequence 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 to be 250 steps, as used in the NASA

LSTM paper. In the results section, we discuss the effects of varying the length of

this sequence on the performance of the models.

4.3 Models

We use a host of machine learning and statistical models in order to carry out the

time series forecasting. The models use the data that was pre-processed using the

methods described in section 4.2 above. The input to forecasting models is sequences

of aggregated data that is scaled to be in the range [-1, 1]. There’s a wide literature

of work that discusses different methods of normalization. In many machine learning

setups, the models perform better when they use normalization techniques [1].

As our problem is an unsupervised learning setup, then the training data used to

fit the models is assumed to be correct, ie. without anomalies. This is because the

model is primed so that all the data that it has seen in the training phase is regarded

as normal. The intuition is that the model is accustomed to seeing the data in the

training set. But then when the model goes live or is being subjected to testing data,

then any data that exhibits characteristics different from the training data will not

be successfully predicted by the model. As such, there will be a larger than usual

prediction error for this any anomalous points. That’s why we would like to train

32

models that are capable of first capturing periodic trends in the data and second

performing poorly when bad data is ingested into the pipeline.

In our setup, we implemented around 10 models, and we have selected 4 models to

carry out our analysis. The models are: multilayer perceptron, stacked LSTM model,

LSTM encoder-decoder, and linear autoregressive model. They all rely on the same

principle of using past sequential data to try and predict future data, with the excep-

tion of the LSTM enc-dec, which seeks to recreate the input itself after compressing

the data with the encoder and then unzipping it with the decoder. Before going into

the results of the models, we discuss the theory and fundamentals underpinning each

of these models, and any implementation details that we added for necessity along

the way.

4.3.1 Multilayer Perceptron (MLP)

Multilayer perceptron (MLP) is a type of feedforward artificial neural network ar-

chitecture that comprises of three layers at the minimum: an input layer, hidden

layer(s), and an output layer. The hidden layer units have a non-linear activation

function, and the output layer in the context of a time series forecasting problem is a

single unit that predicts the value at the next time step. MLP is considered to be the

“vanilla” neural network, because it does not include any recurrent, convolutional, or

gated layers that more recent architectures adopted. It acts as a linear perceptron,

with the only difference being the nonlinearity introduced by adding activation

functions such as tanh, rectified linear (RELU), and others.

The hyperbolic tangent, 𝑡𝑎𝑛ℎ, function maps all the real numbers to an output

range of [-1, 1]. For the output node, this works well for our prediction task, because

we normalize the range of our input values to [-1, 1]. This technique, called feature

scaling, is important to be done in machine learning algorithms, because objective

functions don’t work properly without normalization. As classifiers compute the Eu-

clidean distance between two data points, the distance is often skewed by features that

have broad range of values. This normalization also helps with the faster convergence

of training in stochastic gradient descent.

33

Figure 4-3: Tanh Activation Func-
tion.

Figure 4-4: ReLU Activtion Func-
tion.

The RELU is another type of activation function that we utilize in the training of

our deep neural networks, where the function definition is

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

RELUs apply a non-linear transformation to inputs, taking only the positive part

of the input. RELUs are preferred over other activation functions like 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 and

𝑡𝑎𝑛ℎ, because they offer two benefits: sparsity and better learning. Better learning

is achieved because there are lower chances of the vanishing gradient problem. This

is because, when 𝑥 > 0, the gradient has a constant value, as opposed to the gradient

of tanh which becomes increasingly smaller the larger 𝑥 gets. The constant gradient

results in faster learning. The second advantage, sparsity, can be observed when 𝑥 ≤ 0

and the values default to 0. This transformation leads to more dense representation

of matrices, speeding up the learning process for the network and decreasing its

size. Tanh, on the other hand, will generate non-zero values, resulting in dense

representations.

Time series forecasting problems are in essence a supervised learning task. While

the data initially is not “labeled”, a few easy transformations, described in Data Pre-

processing (section 4.2 of System Architecture), can allow us to treat the data as

if it’s supervised. Primarily, the main trick is to add a lag factor to the data, and

then you have the realized values of the 𝑦 that you are trying to predict. Addition-

ally, 𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 creates the sequences that are used as input to the

34

model. In supervised learning settings, artificial neural networks are trained with

a technique called gradient descent (GD). The aim of GD is to minimize an objec-

tive function, usually a heuristic cost function of how far the predictions were from

the training value. In our models, we used the mean squared error as our accuracy

measure.

𝐽(𝜃) =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2

where n is the size of the training data.

In gradient descent, in order to find the best value of a parameter we subtract the

gradient of the cost function with respect to that parameter [5].

𝜃𝑗 = 𝜃𝑗 − 𝛼× 𝜕

𝜕𝜃𝑗
𝐽(𝜃)

where 𝛼 is the learning rate.

However, gradient descent turns out to be slow in training, so we use a variant

called Stochastic Gradient Descent (SGD), where instead of using the cost gradient

of all examples, we calculate it only for one example at each iteration. In practice,

SGD performs just as well but trains faster than regular gradient descent. The SGD

algorithm proceeds as follows. First, we choose an initial vector of parameters 𝑤 and

a learning rate 𝜂. Next, we repeat the following until convergence (a minimum error

is reached):

∙ Randomly shuffle examples in the training set.

∙ For 𝑖 = 1, 2, ..., 𝑛 do 𝑤 := 𝑤 − 𝜂∇𝑄𝑖(𝑤)

The architecture that we used for the multilayer perceptron is comprised of an

input layer, 3 hidden layers each followed by dropout layers, and then one output layer.

A dropout layer is added as a regularization technique. It reduces the overfitting of

the model by preventing the coadaptation of the units based on the training data [6].

All of the hidden layers have RELU activation functions, and the output layer has

a 𝑡𝑎𝑛ℎ activation. The models were trained for 35 epochs, which is the number of

35

Input
Layer

Output
Layer

Dropout
LayerDense #1 Dense #2 Dropout

Layer
Dropout

LayerDense #3

Figure 4-5: Multilayer Perceptron Architecture.

times the entire training dataset is passed through the neural network. The number of

epochs was determined in practice, such that our model neither overfits nor underfits

the data.

4.3.2 Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) is a type of deep neural network architecture that

is recurrent, meaning that the output at one step is fed back into the system creating

a loop. LSTM is capable of doing classification and prediction problems, because

its architecture is conducive to learning long-term dependencies between data points.

An LSTM unit does not automatically apply previous signals to the current step, but

uses a set of cells to learn which previous time steps are useful to predict the current

one. The unit is comprised of a cell, an input gate, an output gate, and a forget gate

that work together to be able to forecast the next step. These gate units learn to

open and close, controlling the constant error flow.

As it’s a recurrent layer, an LSTM can be adapted to time series data. In this

model, we replicate the architecture of the NASA LSTM paper, described in Figure

4-6. The architecture is comprised of an input layer, two LSTM layers with 80 hidden

units, two dropout layers after each LSTM, and one output layer. The output layer

is the value at the next time step that we are trying to forecast. If we wanted to

predict multiple steps ahead, then we would need to adjust the number of units at the

output layer. Similarly, if we wanted to change the length of the sequence, which is the

pattern that the model uses to generate a prediction, then we would have to adjust the

input layer to reflect that. The dropout layers are there to introduce regularization to

36

Input
Layer

...

Output
Layer

Dropout
LayerLSTM #1

LSTM

LSTM #2 Dropout
Layer

... ...LSTM
Preprocess

data

Figure 4-6: LSTM Architecture.

the network. In neural networks, models tend to overfit to the training data, leading

to poor performance on the test data. That’s why the introduction of regularization

techniques such as dropout utilize better performance on the testing set.

During testing, we varied multiple parameters in the architecture of the stacked

LSTM system. We varied the number of hidden units in each LSTM layer, the number

of stacked LSTM layers, and the train/test split of the data. Each of these led to

different results, which we go over in the next section.

4.3.3 LSTM Autoencoder

In machine learning, an autoencoder is a kind of artificial neural network that is used

to learn efficient codings of patterns in an attempt to recreate them. Autoencoders are

unsupervised, as you do not need to provide labels for the input sequences. The model

aims to replicate the input sequence based on the data representation it has learned

from previous sequences. Thus, the autoencoder compresses data in the input layer

to an intermediate representation and then decompresses the encoding to an output

that resembles the original data. As such, autoencoders are tools of dimensionality

reduction. The performance of any autoencoder model is measured by the ability of

the model to recreate the input sequence.

There are multiple types of autoencoders such as regular, denoising, spare, and

variational autoencoders. The variational autoencoder type contain a generative

model. Their latent layers are continous, allowing random sampling and interpo-

lation. A regular autoencoder is comprised of an input layer, an output layer, and

37

one or more hidden layers connecting them. The input layer has to have the same

number of nodes as the output layer, because we are trying to predict the input 𝑋

rather than an output 𝑌 .

Regular autoencoders have a problem dealing with variable length sequences, be-

cause they are designed to work with fixed length inputs. One way to handle this

problem is to use LSTM-based autoencoders that organize their architecture using

what is known as the Encoder-Decoder LSTM model. This type of autoencoder

is capable of supporting variable length input sequences. It also capitalizes on the

recurrent LSTM layer to learn the temporal ordering of input sequences and other

long-term dependencies.

Using Keras, an open-source machine learning library, the LSTM autoencoder can

be implemented as follows:

1. LSTM Layer.

2. RepeatVector, which repeats the input 𝑛 times, ie. if the input was of shape

(𝑛𝑢𝑚_𝑡𝑟𝑎𝑖𝑛, 𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ) it changes it to (𝑛𝑢𝑚_𝑡𝑟𝑎𝑖𝑛, 𝑛, 𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ).

3. LSTM Layer (with 𝑟𝑒𝑡𝑢𝑟𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒).

4. TimeDistributed, which is used to condense the input to a dense layer with

𝑚 = 1 elements corresponding to the sequence points.

The LSTM Encoder-Decoder takes in an input which is the time series sequence.

The output is the recreated sequence, as deconstructed by the LSTM decoder layer.

In order to measure how accurately the model has reconstructed the input sequence,

we use the mean squared error, which is outlined in chapter 5.

4.3.4 Linear Autoregression

Linear regression is a statistical technique that has been used for a long time across

all sciences and humanities fields. Data scientists, physicists, economists, and so

many others benefit from the power of the method. Linear regression studies the

relationship between a dependent variable and several independent ones, trying to

38

estimate the coefficients of the latter variables. Fundamentally, we have data for

both the dependent and independent variables. Often, linear regressors use a method

called ordinary least squares to determine the coefficients of the variables and the

intercept, if any. Linear regression written in matrix notation is

𝑦 = 𝑋𝛽 + 𝜖

where 𝑦 =

⎡⎢⎢⎢⎢⎢⎢⎣
y1

y2

...

y𝑛

⎤⎥⎥⎥⎥⎥⎥⎦, 𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 x11 ... x1𝑝

1 x21 ... x2𝑝

1
...

1 x𝑛1 ... x𝑛𝑝

⎤⎥⎥⎥⎥⎥⎥⎦, 𝛽 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝛽0

𝛽1

...

𝛽𝑝

⎤⎥⎥⎥⎥⎥⎥⎦, 𝜖 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜖0

𝜖1
...

𝜖𝑛

⎤⎥⎥⎥⎥⎥⎥⎦.

The aim of linear regression is to estimate values for the 𝛽 coefficients, using data

points of the dependent variable, 𝑦, and the independent variables, 𝑥. There are

multiple methods of estimation for these coefficients, such as maximum likelihood

estimation, ridge regression, and generalized least squares. However, the most com-

monly used estimation method is ordinary least squares (OLS). In OLS, the objective

function we are trying to minimize is the sum of the squares of the differences between

the predicted values of 𝑦 obtained from the regressor and the observed dependent val-

ues.

𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽(||𝑦 −𝑋𝛽||2)

In other words,

𝑋𝛽 = 𝑦

𝑋𝑇𝑋𝛽 = 𝑋𝑇𝑦

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦

The matrix 𝑋𝑇𝑋 is invertible if and only if all its columns are independent.

That occurs when the independent variables are not perfectly multicollinear with the

39

dependent variable. This means that the output variable cannot be linearly predicted

from the independent variables with a substantial degree of accuracy. In situations

where there is perfect multicollinearity, the matrix 𝑋 has less than full rank, and

therefore the matrix 𝑋𝑇𝑋 cannot be inverted, meaning that for a general linear

model, with 𝑦 = 𝑋𝛽 + 𝜖, there doesn’t exist an OLS estimator.

Autoregressive (AR) models are a type of linear regressions, where the indepen-

dent variables are a time lag of the previous values of the dependent or output vari-

able. However, AR models do not satisfy the standard assumptions for least squares

regression. With some assumptions, like stationarity, independently and identically

distributed (iid) errors with zero mean and constant variance, AR models can be

accurately estimated by least squares. In the spacecraft time series context, we make

the assumption that the aforementioned conditions hold, even though in practice we

know that they may not, to test the effectiveness of linear regressors in detecting

anomalies. For example, we know for sure that the stationarity assumption does

not hold, due to unforeseen shocks that the spacecraft can experience or different

seasons/periods of time in which the environmental factors of the vehicle changes.

Nevertheless, we make the assumption that these factors will not affect our data, and

rely on our dynamic error thresholding techniques to capture this non-stationarity.

As linear regression is such a widely-used tool, there were multiple toolkits that

could have been used in our implementation. We relied on the sklearn.linear_model

𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 module when running experiments for data using a linear regres-

sor. Sklearn’s linear regression can be adapted to an autoregression setup, when the

input is pre-processed to be made up of time series sequences. This was already done

in the 𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 method that was outlined above. The architec-

ture of the system remained very similar to LSTM. In fact, the project aimed to use

modular components and functions that could be easily re-deployed to test different

models, so all the pre-processing and post-processing functions remained the same

for this model, and we only changed the statistical learning method in the middle.

Currently, the pipeline is set up to handle univariate time series data, but it can be

adapted to multivariate signals by using vector autoregressions (VARs).

40

In a lot of settings, linear regression performs just as well as advanced machine

learning techniques. The ability of linear regression to do well makes it hard for

data scientists and researchers to use advanced machine learning and deep learning

techniques. In industry, where decisions are driven more by strategy and costs, a lot

of experts cannot provide justification for the application of state-of-the-art models.

This results in the adoption of linear regression in the technology stacks of companies.

As such, we use linear regression in our analysis to answer the question of whether

using more sophisticated models provides a tangible difference in the performance of

the system.

4.4 Post-Processing: Anomaly Detection

In our work, we implement the anomaly detection method that was used in the

NASA paper. In this section, we outline the theory behind the anomaly detection

method. The input to the post-processing model is a list of forecast values and their

corresponding realized values. The first step is to compute the the prediction error

as given by:

𝑒 = |𝑦𝑡 − 𝑦𝑡|

As such, a vector of errors is generated for each of the data points in the test set:

e = [𝑒𝑡−ℎ, 𝑒𝑡−1, ..., 𝑒𝑡]

where h is the length of the window sequences (the number of sequences is the

length of data points minus the window size). After computing the errors, they are

passed through a smoothing algorithm such as the exponentially-weighted moving

average (EWMA). Thus, we now have the smoothed errors vector es.

To determine whether the computed errors constitute anomalies, we use an adap-

tation of dynamic error thresholding technique mentioned in the NASA paper. The

main difference, as we outline below, is that we do not implement the pruning method.

41

The unsupervised method aims to compute a threshold, 𝜖, that is found by taking

the point that maximizes the following:

𝜖 = 𝜇(es) + z𝜎(es)

where 𝜖 is the maximum error from the set of smoothed errors such that

𝜖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝜖) =

Δ𝜇(es)
𝜇(es)

+ Δ𝜎(es)
𝜎(es)

|𝑒𝑎| + |𝐸𝑠𝑒𝑞|2
(4.1)

where

∆𝜇(es) = 𝜇(es) − 𝜇({𝑒𝑠 ∈ es|𝑒𝑠 < 𝜖})

∆𝜎(es) = 𝜎(es) − 𝜎({𝑒𝑠 ∈ es|𝑒𝑠 < 𝜖})

𝑒𝑎 = {𝑒𝑠 ∈ es|𝑒𝑠 > 𝜖}

Eseq = 𝑐𝑜𝑛𝑡𝑖𝑔𝑢𝑜𝑢𝑠 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 𝑖𝑛 ea

The value of z lies in a range between 0 and 10, and the error thresholding mech-

anism tries out different values to see which one minimizes the cost, as shown in

equation 4.1 above. The intuition behind the dynamic error thresholding technique is

that we wish to identify anomalies that, if removed, would result in the largest percent

decrease in the mean and standard deviation of the vector of smoothed errors. The

thresholding technique also computes a score for each anomaly, in order to be able to

compare the severeness of the outliers. The formula for the severity of the anomaly

is given by:

𝑠(𝑖) =
𝑚𝑎𝑥(𝑒

(𝑖)
𝑠𝑒𝑞) − 𝑎𝑟𝑔𝑚𝑎𝑥(𝜖)

𝜇(es) + 𝜎(es)

To mitigate false positives, the NASA paper introduces a pruning measure that

is aimed at reducing the sensitivity towards outliers that aren’t far enough to be

anomalies. To do this, a list is created that contains the maximum errors in all

anomaly sequences, sorted in descending order. At the end of the list, the largest

error value that hasn’t been flagged as anomalous is also added to the list. The list

is then stepped through and the percent decrease at each iteration is calculated. If

42

Figure 4-7: Signal P-11.

the percent decrease exceeds a certain threshold 𝑝, which they found to be good in

practice at 𝑝 = 0.13, then the error sequence is flagged as an anomaly. In our work,

we do not use this pruning procedure, but still maintain good performance across

different models. Using this pruning method would definitely improve the precision

and therefore 𝐹0.5 score, but we leave this as an additional step for further work.

4.5 Sample Pipeline

As shown in the previous sections of this chapter, our pipeline consists of three main

components: data pre-processing, model, and post-processing. To better outline the

way the different components work together, we will step through each module and

show how an input signal changes in each section. We choose a sample signal, called

P-11, to exhibit the way a pipeline would run on one signal.

As can be seen in Figure 4-7 signal P-11 is continuous, and follows a somewhat

periodic trend. The spike in the middle of the signal is actually an anomaly, as it has

43

been indicated anomalous in the 𝑙𝑎𝑏𝑒𝑙𝑒𝑑_𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 file. In this section, we try to

see if our model can correctly predict that this point is an anomaly.

The first thing that the pipeline does is aggregate the data according to a specific

interval. This is done using the 𝑡𝑖𝑚𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 method, outlined in section

4.2.1. Since the NASA paper did not aggregate their data, we set the interval equal

to 1, meaning that we average each data point with itself, resulting in no change for

the input signal. This method is nevertheless very important to have if the data is

sampled at a high frequency, which is very common in time series applications.

The next step in the pre-processing section is the creation of sequences from the

input signal. To this end, we used the 𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 method described

in section 4.2.2 which takes in the time series data and the window size and target

size, corresponding to the length of the sequence and number of values ahead to

predict respectively. In our experiments, we varied the window size, using lengths of

100 and 250; however, we kept the target size to one, meaning that we are only trying

to predict the next time step given the input sequence.

Now that the signal has been formatted, the next step is to pass it through the

model. We have outlined four different models in section 4.3 above, which are LSTM,

MLP, LSTM Autoencoder, and AR. These models all have different parameters that

can be tuned, but they operate on the same inputs/outputs, with the exception of

the autoencoder, which uses the input as its output when it’s encoding and then

decoding the sequence. For more details about the mechanism of these models, we

refer the reader to the corresponding subsections in 4.3 that discuss in more detail

the theory behind each model. The model uses the training part of the data to learn

the weights of the time series regressor that will be used to predict the testing data.

When we pass in the testing data, a vector of forecast values is generated as the

output. This output is carried forward to the next step of the pipeline, which is the

post-processing. As we can see in Figure 4-8, the model predicts the signal in orange,

but there is a discrepancy between the actual signal in blue and the forecast. Figure

4-9 contains a zoomed-in version of the forecast. We can see that the model doesn’t

exactly replicate the signal, but it follows it closely. These qualitative descriptions

44

Figure 4-8: Signal P-11 and the forecast from NASA LSTM Model.

are difficult to measure, so we resort to metrics such as mean squared error that we

discuss in section 5.1.

In the post-processing phase, the generated forecast, 𝑦, is cross-referenced with

the realized signal 𝑦𝑡𝑟𝑢𝑒 to see whether the true signal was in line with the model’s

expectations or not. If it happened that the difference between the two was very large,

then it means that the signal has diverged from the assumptions that the model has

learned and was therefore operating under. Thus, we flag the error as an anomaly,

according to the dynamic error thresholding explained in section 4.4. Figure 4-10

shows the region that is flagged by our algorithm as anomalous. The region is the

one that is just preceding the huge spike that we referenced earlier. As such, the

model was able to accurately predict the anomaly by flagging the region right before

it happened. What likely happened in this case is that the large anomaly was preceded

by some minor abnormalities, which the model detected and flagged.

45

Figure 4-9: Close-up on signal P-11 and the forecast from NASA LSTM Model.

Figure 4-10: Signal P-11 and Forecast from NASA LSTM Model. Flagged Anomaly
in Shaded Region.

46

Chapter 5

Analysis

5.1 Mean Squared Error

The NASA spacecraft telemetry dataset has 82 signals, and for each architecture a

model was trained for each of the signals. We primarily dealt with univariate signals,

but the models can easily be adapted to work with multivariate signals, by changing

the size of the input vector and making it a matrix. Working with multivariate

data can reveal additional insights and improve the accuracy of predictions, because

oftentimes signals are correlated, especially when telemetry signals are coming from

the same vehicle. However, using multivariate signals limits the interpretability of

anomalies. For instance, if our models worked with 10s of signals at a time and an

anomaly is detected, then it is hard to determine which signals are the ones that

caused the anomaly to arise. This is why in our analysis we focused on evaluating

univariate time signal models. A sample training script for one of the architectures

can be found in Appendix B. The code shows the procedure to train 82 different

models given a certain architecture.

During training of the models, the mean squared error was used as a metric for

the training for each of the signals. Mean squared error (MSE) is an average of

the squares of the errors between the predicted values and the real ones. The best

possible is 0, and it is achieved when the predicted value is identical to the real one.

The larger the MSE, the worse the predictions are, and there is no theoretical bound

47

on how large MSE can get. The formula for MSE is given by

𝑀𝑆𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑌𝑖)
2

The MSE was used to assess the models in two ways. First, while training the

MSE was used as a measure of how well a certain architecture was able to learn

the data and start making accurate predictions on the training sample. When the

validation error exceeded the training error, then we knew that the model didn’t

generalize well, and that we have overfit the data. Alternatively, when the validation

error was smaller than the training error, then the model was able to generalize, since

it performed better on previously unseen data. We also used the training MSEs,

averaged across all 82 signals, to determine which architectures performed better. A

summary of the MSEs can be found in Table 5.1.

We ran our experiments on all 82 signals, training the model once on each signal.

The reason that we don’t train one model for all the signals is that they exhibit

different features that the model seeks to learn. Therefore, a model that is trained on

the entire dataset won’t generalize well in our case, because the fitting signal A-1, for

instance, would have no added benefit when trying to predict signal D-5. Thus, when

we compute the MSE and anomalies in this chapter, we do so by generating a script

that goes through each signal independently, trains a model, forecasts the testing data,

and then computes anomalies as predicted by the anomaly detection method. The

MSE of a model is computed by averaging the MSE across all the signals, and that’s

why we have a associated standard deviation in table 5.1. Moreover, the anomalies

were aggregated across the signals and for each model the 𝐹0.5 score was computed.

The 𝐹0.5 results are discussed in section 5.2.

Additionally, the MSE was evaluated by comparing it to a randomly shuffled

MSE. The intuition behind this baseline is that we want to capture how well our

model forecasted the signals, as opposed to a random shuffle of the input signal. We

set up a script that shuffled each signal and computed the MSE between the shuffled

signal and the original one. The MSE of the 82 signals were averaged to give an

48

Table 5.1: MSE Summary across 82 signals. Autoregression doesn’t have a training
MSE as the neural network models do, since the model is fitted differently.

Model Name MSE Value (std deviation)
Shuffled MSE (baseline) 5.4 × 105 (1 × 105)
Shifted MSE (baseline) 2.1 × 106 (2 × 106)
NASA LSTM 0.03 (0.05)
NASA LSTM hidden_units=100 0.03 (0.05)
NASA LSTM 3-stacked 0.03 (0.05)
MLP x_len=250 0.095 (0.2)
MLP 6-dense layers 0.085 (0.2)
MLP x_len=100 0.053 (0.1)
LSTM EncDec x_len=100 1.6 × 105 (1 × 106)
LSTM EncDec x_len=250 0.015 (0.05)

average MSE of 5.4× 105 which is a far larger number than the MSE that we achieve

with our models, but it is nevertheless a baseline. Another baseline that we have

computed, across all signals, is the MSE of the signal shifted to the right by one.

That is, the MSE computes the difference between 𝑥𝑡 , 𝑥𝑡+1 at each point. This MSE

is a good measure, if the signals exhibit low variance across time steps. However,

we found that this MSE measure was larger than the shuffled MSE, with a value of

2.1 × 106 (also larger than the MSE of our models).

5.2 F-0.5 Score

As we can see from the mean squared error tables above, MSE is not good at separat-

ing which models perform better on learning the data, because the numbers are only

marginally different. Moreover, the most important metric we are looking at is the

ability to detect anomalies, which is not determined by the MSE. As such, we work

with another metric that is often used to assess the quality of classifications. For

the system we are building, we would like to predict as many anomalies as possible,

while decreasing the amount of false alarms that we get. In statistics terms, a type I

error occurs when a normal point is incorrectly labeled as anomalous, and this is also

known as a false positive. A metric that corresponds to type I error is precision, which

49

Table 5.2: 𝐹0.5 Scores of the Models.

Model Name 𝐹0.5 𝑆𝑐𝑜𝑟𝑒
NASA LSTM (paper) 0.69
NASA LSTM (our implementation) 0.61
NASA LSTM hidden_units=100 0.34
NASA LSTM hidden_units=40 0.76
NASA LSTM 3-stacked 0.69
MLP x_len=250 0.42
MLP 6-dense layers 0.59
MLP x_len=100 0.23
AR x_len=100 0.25
AR x_len=250 0.57
LSTM EncDec x_len=100 0.34
LSTM EncDec x_len=250 0.66

is the percentage of selected anomalies that are true positives versus false positives.

A type II error, on the other hand, occurs when a point that is anomalous in nature

is not detected. Such an error is also called a false negative, and the recall metric

aims to capture how many true positives were flagged as a total of all the anomalies

(true positives + false negatives).

We created a script that looks at the anomalies generated by the model and checks

whether they are present in the 𝑙𝑎𝑏𝑒𝑙𝑒𝑑_𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 file. If there is an intersection

between an anomaly sequence in our prediction and the 𝑙𝑎𝑏𝑒𝑙𝑒𝑑_𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 file, then

the anomaly is considered to be a true positive. If an anomaly was predicted by our

model but doesn’t exist in the anomalies file, then it is counted as a false positive.

Finally, if an anomaly exists in the 𝑙𝑎𝑏𝑒𝑙𝑒𝑑_𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 database but is not predicted

by our model, then we count it as a false negative. With these metrics, we can now

compute the 𝐹0.5 score, which is a representation of the anomaly predictive power of

our system.

In the NASA paper, the model without parametric pruning (𝑝 = 0 as in our

system), the performance was 0.88 (precision), 0.67 (recall), and 0.69 (𝐹0.5). We can

see from Table 5.2 that only our LSTM model with 40 hidden units outperformed the

NASA baseline, while the 3-stacked LSTM and LSTM autoencoder with 𝑥_𝑙𝑒𝑛 = 250

50

Table 5.3: Precision & Recall Scores for the Models.

Model Name Precision Recall
NASA LSTM (paper) 0.88 0.67
NASA LSTM 0.61 0.62
NASA LSTM hidden_units=100 0.35 0.32
NASA LSTM hidden_units=40 0.78 0.67
NASA LSTM 3-stacked 0.69 0.70
MLP x_len=250 0.42 0.43
MLP 6-dense layers 0.59 0.61
MLP x_len=100 0.23 0.22
AR x_len=100 0.25 0.28
AR x_len=250 0.58 0.53
LSTM EncDec x_len=100 0.38 0.24
LSTM EncDec x_len=250 0.83 0.35

performed close to the reference paper. We will now explore each model individually

to discuss what changes worked well for each architecture.

For the NASA LSTM model, we obtained similar performance to the paper when

we implemented the model, as described in their paper. Varying the number of

hidden units worked very well when we decreased the number from 80 to 40, but

performed poorly when we increased the number to 100. In fact, decreasing the

number of hidden units to 40 was the most successful model we tried, out of all the

different architectures, yielding an 𝐹0.5 score of 0.76. Another good improvement

over the NASA architecture was adding a third LSTM layer to the two-stacked model

that they implemented, which yielded an 𝐹0.5 score of 0.69, our second-best model

in practice. The LSTM model, however, took the most time to train out of all the

architectures that we tried. We also kept the length of the sequences constant, where

𝑥_𝑙𝑒𝑛 = 250 for all the LSTM experiments that we ran.

The MLP model trained much faster than the LSTM model, and was second

fastest after the linear autoregression model. Using an MLP as described in Section

4.3.1 and with 𝑥_𝑙𝑒𝑛 = 100 yielded the lowest score of 0.23. This score was improved

to 0.42 when we set 𝑥_𝑙𝑒𝑛 = 250. Finally, when we increased the number of dense

layers from 3 to 6, the 𝐹0.5 score went up to 0.59. MLP doesn’t give us the best results,

51

but given that it trains faster than LSTM, it provides a more efficient alternative.

In a lot of machine learning experiments, linear AR models are used to reference

the performance of deep neural networks, since linear autoregressions are among the

most efficient and commonly used tools in data science. In our experiments, the AR

model performed decently well when 𝑥_𝑙𝑒𝑛 = 250, giving an 𝐹0.5 score of 0.57. The

model didn’t do that well when 𝑥_𝑙𝑒𝑛 = 100, but that seemed to be the trend across

the other models such as MLP and LSTM EncDec. Given the fact that AR trains

way faster than all the other models, it is good for use cases where computing power

is limited, but overall it is not a good architecture if we are looking for top-of-the-line

results.

Finally, the LSTM Encoder-Decoder model performed generally well, achieving

an 𝐹0.5 score of 0.66 when 𝑥_𝑙𝑒𝑛 = 250. The most notable thing about this model

can be found in Table 5.3 that outlines the precision and recall scores of the models.

We can see in the last row that the precision score of the LSTM EncDec model was

the highest among all the models, with a score of 0.83. This means that the LSTM

EncDec was very accurate when it came to predicting the anomalies, but interestingly

the model’s recall score was on the lower end of the spectrum, indicating that it

couldn’t successfully find all possible anomalies.

5.3 Further Work

There are several next steps that would make sense for this project. We identify three

main tasks that can be done as follow-ups to the current work that we presented.

First, people interested in conducting further research can try out different pa-

rameters for our models and different anomaly detection techniques altogether. A

more thorough analysis can be carried out by users who can choose a few signals they

would like and run autotuning tools on the signals to figure out what the best hyper-

parameters are. We couldn’t do this for 82 signals and 4 models, as it would be too

complex to do for all the signals simultaneously. Another area that can be explored

is the trying a different anomaly detection technique, such as x-sigma thresholding.

52

Second, for those who would like to apply this model in industry, it would be very

important to be able to run this system in real-time and detect anomalies on-the-go

as they happen. In order to do this, engineers need to keep in mind different data

normalization techniques, in order to keep the input in the range of [-1, 1]. One

effective way of doing this is to clip any data that is larger than the minimum and

maximum possible values that we know ahead of time that sensors can’t and shouldn’t

go beyond.

Third, we encourage researchers to make use of our modular system to try out

different forecasting architectures. In our work, we explored linear AR, MLP, stacked

LSTMs, and LSTM autoencoders, but there are so many other models that can be

used. For instance, there are bidirectional LSTMs, variations of linear regression,

variational autoencoders, convolutional neural networks, recurrent neural networks,

memory-based models, sequence-2-sequence, and gated recurrent units. It would also

be useful and interesting to explore how some of these models can be adapted to work

with multivariate signals. The current architecture should work with multivariate

signals, with only a few minor changes.

5.4 Conclusion

In this work, we analyzed 82 signals coming from NASA spacecraft in order to detect

anomalies. We built a modular infrastructure such that we can rapidly prototype dif-

ferent models, then we compare and contrast different architectures such as modified

versions of the NASA LSTM model, Autoregressive (AR) model, LSTM autoencoder,

and Multilayer Perceptron (MLP) model. We also varied the parameters of these

models to improve the ability to detect anomalies, as measured by the 𝐹0.5 score.

We find that increasing the length of the input sequence 𝑥_𝑙𝑒𝑛 improved the

performance of the model. We were able to achieve an improvement over the NASA

paper’s 𝐹0.5 score of 0.69, when we decreased the number of hidden units to 40 and

achieved a score of 0.76. In contrast, when we increased the number of hidden units

from 80 as in the paper to 100, the results decreased to 0.34. We also got close results

53

when we added a third LSTM layer to the stacked LSTM model, achieving 0.69 score.

The AR model performed as well as the MLP model when the length of the

sequence is 250, but both models performed lower than the NASA paper baseline.

The LSTM Encoder-Decoder didn’t obtain great 𝐹0.5 score, but it yielded the highest

precision score of 0.83. Overall, the best performance came from small improvements

to the NASA LSTM model.

In terms of next steps, we would recommend exploring alternative error thresh-

olding techniques such as x-sigma. We would also try out different machine learning

models such as variational autoencoders, bidirectional LSTM, seq2seq, gated recur-

rent units, among other models. Exploring different architectures would allow us to

converge to systems that best model the data and work together with humans to help

detect anomalies as soon as they happen.

54

Bibliography

[1] Samit Bhanja and Abhishek Das. Impact of data normalization on deep neural
network for time series forecasting. CoRR, abs/1812.05519, 2018.

[2] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and
Tom Soderstrom. Detecting spacecraft anomalies using lstms and nonparametric
dynamic thresholding. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’18, pages 387–
395, New York, NY, USA, 2018. ACM.

[3] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet
Agarwal, and Gautam Shroff. Lstm-based encoder-decoder for multi-sensor
anomaly detection. CoRR, abs/1607.00148, 2016.

[4] Friedrich Pukelsheim. The three sigma rule. The American Statistician, 48(2):88–
91, 1994.

[5] Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016.

[6] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research, 15:1929–1958, 2014.

55

