
A bivariate Gaussian probability
density function centered at (0, 0),
with covariance matrix given by 

Sample points from a bivariate
Gaussian distribution with a
standard deviation of 3 in roughly
the lower left–upper right direction
and of 1 in the orthogonal direction.
Because the x and y components
co-vary, the variances of  and  do
not fully describe the distribution. A 

 covariance matrix is needed;
the directions of the arrows
correspond to the eigenvectors of
this covariance matrix and their
lengths to the square roots of the
eigenvalues.

Covariance matrix

In probability theory and statistics, a covariance matrix (also

known as auto-covariance matrix, dispersion matrix,

variance matrix, or variance–covariance matrix) is a

square matrix giving the covariance between each pair of elements

of a given random vector. Any covariance matrix is symmetric and

positive semi-definite and its main diagonal contains variances

(i.e., the covariance of each element with itself).

Intuitively, the covariance matrix generalizes the notion of

variance to multiple dimensions. As an example, the variation in a

collection of random points in two-dimensional space cannot be

characterized fully by a single number, nor would the variances in

the  and  directions contain all of the necessary information; a 

 matrix would be necessary to fully characterize the two-

dimensional variation.

The covariance matrix of a random vector  is typically denoted

by  or .
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Throughout this article, boldfaced unsubscripted  and  are used to refer to random vectors, and

unboldfaced subscripted  and  are used to refer to scalar random variables.

If the entries in the column vector

are random variables, each with finite variance and expected value, then the covariance matrix 

is the matrix whose  entry is the covariance
[1]: p. 177 

where the operator  denotes the expected value (mean) of its argument.

Nomenclatures differ. Some statisticians, following the probabilist William Feller in his two-volume

book An Introduction to Probability Theory and Its Applications,
[2]

 call the matrix  the

variance of the random vector , because it is the natural generalization to higher dimensions of the

1-dimensional variance. Others call it the covariance matrix, because it is the matrix of covariances

between the scalar components of the vector .

Both forms are quite standard, and there is no ambiguity between them. The matrix  is also

often called the variance-covariance matrix, since the diagonal terms are in fact variances.

By comparison, the notation for the cross-covariance matrix between two vectors is

The auto-covariance matrix  is related to the autocorrelation matrix  by
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where the autocorrelation matrix is defined as .

An entity closely related to the covariance matrix is the matrix of Pearson product-moment

correlation coefficients between each of the random variables in the random vector , which can be

written as

where  is the matrix of the diagonal elements of  (i.e., a diagonal matrix of the

variances of  for ).

Equivalently, the correlation matrix can be seen as the covariance matrix of the standardized random

variables  for .

Each element on the principal diagonal of a correlation matrix is the correlation of a random variable

with itself, which always equals 1. Each off-diagonal element is between −1 and +1 inclusive.

The inverse of this matrix, , if it exists, is the inverse covariance matrix, also known as the

concentration matrix or precision matrix.
[3]

For  and , where 

 is a -dimensional random variable, the following basic properties apply:
[4]
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1. 

2.  is positive-semidefinite, i.e. 
3.  is symmetric, i.e. 
4. For any constant (i.e. non-random)  matrix  and constant  vector , one has 

5. If  is another random vector with the same dimension as , then 
 where  is the

cross-covariance matrix of  and .

The joint mean  and joint covariance matrix  of  and  can be written in block form

where ,  and .

 and  can be identified as the variance matrices of the marginal distributions for  and 

respectively.

If  and  are jointly normally distributed,

then the conditional distribution for  given  is given by

[5]

defined by conditional mean

and conditional variance

The matrix  is known as the matrix of regression coefficients, while in linear algebra 

is the Schur complement of  in .

The matrix of regression coefficients may often be given in transpose form, , suitable for

post-multiplying a row vector of explanatory variables  rather than pre-multiplying a column

vector . In this form they correspond to the coefficients obtained by inverting the matrix of the

normal equations of ordinary least squares (OLS).

Block matrices

https://en.wikipedia.org/wiki/Positive-semidefinite_matrix
https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Cross-covariance_matrix
https://en.wikipedia.org/wiki/Cross-covariance_matrix
https://en.wikipedia.org/wiki/Marginal_distribution
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Conditional_distribution
https://en.wikipedia.org/wiki/Conditional_mean
https://en.wikipedia.org/wiki/Conditional_variance
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Schur_complement
https://en.wikipedia.org/wiki/Normal_equations
https://en.wikipedia.org/wiki/Ordinary_least_squares


A covariance matrix with all non-zero elements tells us that all the individual random variables are

interrelated. This means that the variables are not only directly correlated, but also correlated via

other variables indirectly. Often such indirect, common-mode correlations are trivial and

uninteresting. They can be suppressed by calculating the partial covariance matrix, that is the part of

covariance matrix that shows only the interesting part of correlations.

If two vectors of random variables  and  are correlated via another vector , the latter correlations

are suppressed in a matrix
[6]

The partial covariance matrix  is effectively the simple covariance matrix  as if the

uninteresting random variables  were held constant.

If a column vector  of  possibly correlated random variables is jointly normally distributed, or

more generally elliptically distributed, then its probability density function  can be expressed in

terms of the covariance matrix  as follows
[6]

where  and  is the determinant of .

Applied to one vector, the covariance matrix maps a linear combination c of the random variables X

onto a vector of covariances with those variables: . Treated as a bilinear form,

it yields the covariance between the two linear combinations: . The

variance of a linear combination is then , its covariance with itself.

Similarly, the (pseudo-)inverse covariance matrix provides an inner product ,

which induces the Mahalanobis distance, a measure of the "unlikelihood" of c.

From the identity just above, let  be a  real-valued vector, then

which must always be nonnegative, since it is the variance of a real-valued random variable, so a

covariance matrix is always a positive-semidefinite matrix.
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The above argument can be expanded as follows:

where the last inequality follows from the observation that  is a scalar.

Conversely, every symmetric positive semi-definite matrix is a covariance matrix. To see this, suppose

 is a  symmetric positive-semidefinite matrix. From the finite-dimensional case of the

spectral theorem, it follows that  has a nonnegative symmetric square root, which can be denoted

by M
1/2

. Let  be any  column vector-valued random variable whose covariance matrix is the 

 identity matrix. Then

The variance of a complex scalar-valued random variable with expected value  is conventionally

defined using complex conjugation:

where the complex conjugate of a complex number  is denoted ; thus the variance of a complex

random variable is a real number.

If  is a column vector of complex-valued random variables, then the conjugate

transpose  is formed by both transposing and conjugating. In the following expression, the product

of a vector with its conjugate transpose results in a square matrix called the covariance matrix, as

its expectation:
[7]: p. 293 

,

The matrix so obtained will be Hermitian positive-semidefinite,
[8]

 with real numbers in the main

diagonal and complex numbers off-diagonal.

Properties

The covariance matrix is a Hermitian matrix, i.e. .[1]: p. 179 

The diagonal elements of the covariance matrix are real.[1]: p. 179 
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For complex random vectors, another kind of second central moment, the pseudo-covariance

matrix (also called relation matrix) is defined as follows:

In contrast to the covariance matrix defined above, Hermitian transposition gets replaced by

transposition in the definition.
 Its diagonal elements may be complex valued; it is a complex

symmetric matrix.

If  and  are centred data matrices of dimension  and  respectively, i.e. with n

columns of observations of p and q rows of variables, from which the row means have been

subtracted, then, if the row means were estimated from the data, sample covariance matrices 

and  can be defined to be

or, if the row means were known a priori,

These empirical sample covariance matrices are the most straightforward and most often used

estimators for the covariance matrices, but other estimators also exist, including regularised or

shrinkage estimators, which may have better properties.

The covariance matrix is a useful tool in many different areas. From it a transformation matrix can be

derived, called a whitening transformation, that allows one to completely decorrelate the data or,

from a different point of view, to find an optimal basis for representing the data in a compact way (see

Rayleigh quotient for a formal proof and additional properties of covariance matrices).
This is called

principal component analysis (PCA) and the Karhunen–Loève transform (KL-transform).

The covariance matrix plays a key role in financial economics, especially in portfolio theory and its

mutual fund separation theorem and in the capital asset pricing model. The matrix of covariances

among various assets' returns is used to determine, under certain assumptions, the relative amounts

of different assets that investors should (in a normative analysis) or are predicted to (in a positive

analysis) choose to hold in a context of diversification.

The evolution strategy, a particular family of Randomized Search Heuristics, fundamentally relies on

a covariance matrix in its mechanism. The characteristic mutation operator draws the update step

from a multivariate normal distribution using an evolving covariance matrix. There is a formal proof
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that the evolution strategy's covariance matrix adapts to the inverse of the Hessian matrix of the

search landscape, up to a scalar factor and small random fluctuations (proven for a single-parent

strategy and a static model, as the population size increases, relying on the quadratic

approximation).
[9]

 Intuitively, this result is supported by the rationale that the optimal covariance

distribution can offer mutation steps whose equidensity probability contours match the level sets of

the landscape, and so they maximize the progress rate.

In covariance mapping the values of the  or  matrix are plotted as a 2-

dimensional map. When vectors  and  are discrete random functions, the map shows statistical

relations between different regions of the random functions. Statistically independent regions of the

functions show up on the map as zero-level flatland, while positive or negative correlations show up,

respectively, as hills or valleys.

In practice the column vectors , and  are acquired experimentally as rows of  samples, e.g.

where  is the i-th discrete value in sample j of the random function . The expected values

needed in the covariance formula are estimated using the sample mean, e.g.

and the covariance matrix is estimated by the sample covariance matrix

where the angular brackets denote sample averaging as before except that the Bessel's correction

should be made to avoid bias. Using this estimation the partial covariance matrix can be calculated as

where the backslash denotes the left matrix division operator, which bypasses the requirement to

invert a matrix and is available in some computational packages such as Matlab.
[10]

Covariance mapping
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Figure 1: Construction of a partial covariance map of N2 molecules undergoing Coulomb
explosion induced by a free-electron laser.[11] Panels a and b map the two terms of the
covariance matrix, which is shown in panel c. Panel d maps common-mode correlations via intensity
fluctuations of the laser. Panel e maps the partial covariance matrix that is corrected for the intensity
fluctuations. Panel f shows that 10% overcorrection improves the map and makes ion-ion
correlations clearly visible. Owing to momentum conservation these correlations appear as lines
approximately perpendicular to the autocorrelation line (and to the periodic modulations which are
caused by detector ringing).

Fig. 1

illustrates

how a

partial

covariance

map is

constructed

on an

example of

an

experiment

performed

at the

FLASH

free-

electron

laser in

Hamburg.
[11]

 The random function  is the time-of-flight spectrum of ions from a Coulomb

explosion of nitrogen molecules multiply ionised by a laser pulse. Since only a few hundreds of

molecules are ionised at each laser pulse, the single-shot spectra are highly fluctuating. However,

collecting typically  such spectra, , and averaging them over  produces a smooth

spectrum , which is shown in red at the bottom of Fig. 1. The average spectrum  reveals

several nitrogen ions in a form of peaks broadened by their kinetic energy, but to find the correlations

between the ionisation stages and the ion momenta requires calculating a covariance map.

In the example of Fig. 1 spectra  and  are the same, except that the range of the time-of-

flight  differs. Panel a shows , panel b shows  and panel c shows their difference,

which is  (note a change in the colour scale). Unfortunately, this map is overwhelmed by

uninteresting, common-mode correlations induced by laser intensity fluctuating from shot to shot. To

suppress such correlations the laser intensity  is recorded at every shot, put into  and 
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 is calculated as panels d and e show. The suppression of the uninteresting

correlations is, however, imperfect because there are other sources of common-mode fluctuations

than the laser intensity and in principle all these sources should be monitored in vector . Yet in

practice it is often sufficient to overcompensate the partial covariance correction as panel f shows,

where interesting correlations of ion momenta are now clearly visible as straight lines centred on

ionisation stages of atomic nitrogen.

Two-dimensional infrared spectroscopy employs correlation analysis to obtain 2D spectra of the

condensed phase. There are two versions of this analysis: synchronous and asynchronous.

Mathematically, the former is expressed in terms of the sample covariance matrix and the technique

is equivalent to covariance mapping.
[12]
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