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Motivation

To take the appropriate action, we need latest information.
But on the contrary, the amount of the information is more and more growing. There are many categories of
information (economy, sports, health, technology...) and also there are many sources (news site, blog,
SNS...).

from THE HISTORICAL GROWTH OF DATA: WHY WE NEED A FASTER TRANSFER SOLUTION FOR LARGE DATA
SETS

So to make an automatically & accurate summaries feature will helps us to understand the topics and
shorten the time to do it.

Task Definition

Basically, we can regard the "summarization" as the "function" its input is document and output is summary.
And its input & output type helps us to categorize the multiple summarization tasks.

Single document summarization
summary = summarize(document)



Multi-document summarization
summary = summarize(document_1, document_2, ...)

We can take the query to add the viewpoint of summarization.

Query focused summarization
summary = summarize(document, query)

This type of summarization is called "Query focused summarization" on the contrary to the "Generic
summarization". Especially, a type that set the viewpoint to the "difference" (update) is called "Update
summarization".

Update summarization
summary = summarize(document, previous_document_or_summary)

And the "summary" itself has some variety.

Indicative summary
It looks like a summary of the book. This summary describes what kinds of the story, but not tell
all of the stories especially its ends (so indicative summary has only partial information).

Informative summary
In contrast to the indicative summary, the informative summary includes full information of the
document.

Keyword summary
Not the text, but the words or phrases from the input document.

Headline summary

Only one line summary.

Discussion

Generic summarization is really useful? Sparck Jones argued that summarization should not be done in a
vacuum, but rather done according to the purpose of summarization (2). She argued that generic
summarization is not necessary and in fact, wrong-headed. On the other hand, the headlines and 3-line
summaries in the newspaper helps us.

Basic Approach

There are mainly two ways to make the summary. Extractive and Abstractive.

Extractive

Select relevant phrases of the input document and concatenate them to form a summary (like "copy-
and-paste").

Pros: They are quite robust since they use existing natural-language phrases that are taken straight
from the input.
Cons: But they lack in flexibility since they cannot use novel words or connectors. They also cannot
paraphrase like people sometimes do.

Now I show the some categories of extractive summarization.

Graph Base

The graph base model makes the graph from the document, then summarize it by considering the relation



between the nodes (text-unit). TextRank is the typical graph based method.

TextRank

TextRank is based on PageRank algorithm that is used on Google Search Engine. Its base concept is "The
linked page is good, much more if it from many linked page". The links between the pages are expressed by
matrix (like Round-robin table). We can convert this matrix to transition probability matrix by dividing the
sum of links in each page. And the page surfer moves the page according to this matrix.

Page Rank Algorithm

TextRank regards words or sentences as pages on the PageRank. So when you use the TextRank, following
points are important.

Define the "text units" and add them as the nodes in the graph.
Define the "relation" between the text units and add them as the edges in the graph.

You can set the weight of the edge also.

Then, solve the graph by PageRank algorithm. LexRank uses the sentence as node and the similarity as
relation/weight (similarity is calculated by IDF-modified Cosine similarity).

If you want to use TextRank, following tools support TextRank.

gensim
pytextrank

Feature Base

The feature base model extracts the features of sentence, then evaluate its importance. Here is the
representative research.

Sentence Extraction Based Single Document Summarization

In this paper, following features are used.

Position of the sentence in input document
Presence of the verb in the sentence
Length of the sentence



Term frequency
Named entity tag NE
Font style

...etc. All the features are accumulated as the score.

The No.of coreferences are the number of pronouns to previous sentence. It is simply calculated by
counting the pronouns occurred in the first half of the sentence. So the Score represents the reference to the
previous sentence.

Now we can evaluate each sentences. Next is selecting the sentence to avoid the duplicate of the
information. In this paper, the same word between the new and selected sentence is considered. And the
refinement to connect the selected sentences are executed.

Luhn’s Algorithm is also feature base. It evaluates the "significance" of the word that is calculated from the
frequency.

You can try feature base text summarization by TextTeaser (PyTeaser is available for Python user).

Topic Base

The topic base model calculates the topic of the document and evaluate each sentences by what kinds of
topics are included (the "main" topic is highly evaluated when scoring the sentence).

Latent Semantic Analysis (LSA) is usually used to detect the topic. It's based on SVD (Singular Value
Decomposition).
The following paper is good starting point to overview the LSA(Topic) base summarization.

Text summarization using Latent Semantic Analysis

The simple LSA base sentence selection

There are many variations the way to calculate & select the sentence according to the SVD value. To select
the sentence by the topic(=V, eigenvectors/principal axes) and its score is most simple method.



If you want to use LSA, gensim supports it.

gensim models.lsimodel

Grammer Base

The grammer base model parses the text and constructs a grammatical structure, then select/reorder
substructures.

Title Generation with Quasi-Synchronous Grammar

This model can produce meaningful "paraphrase" based on the grammatical structure. For example, above
image shows the phrase "in the disputed territory of East Timor" is converted to "in East Timor". To analyze
grammatical structure is useful to reconstruct the phrase with keeping its meaning.

Abstractive

Generate a summary that keeps original intent. It's just like humans do.



Pros: They can use words that were not in the original input. It enables to make more fluent and
natural summaries.
Cons: But it is also a much harder problem as you now require the model to generate coherent
phrases and connectors.

Extractive & Abstractive is not conflicting ways. You can use both to generate the summary. And there are a
way collaborate with human.

Aided Summarization
Combines automatic methods with human input.
Computer suggests important information from the document, and the human decide to use it or
not. It uses information retrieval, and text mining way.

The beginning of the abstractive summarization, Banko et al. (2000) suggest to use machine translatation
model to abstractive summarization model. As like the machine translation model converts a source
language text to a target one, the summarization system converts a source document to a target summary.

Nowadays, encoder-decoder model that is one of the neural network models is mainly used in machine
translation. So this model is also widely used in abstractive summarization model. The summarization
model that used encoder-decoder model first achieved state-of-the-art on the two sentence-level
summarization dataset, DUC-2004 and Gigaword.

If you want to try the encoder-decoder summarization model, tensorflow offers basic model.

Text summarization with TensorFlow

Encoder-Decoder Model

The encoder-decoder model is composed of encoder and decoder like its name. The encoder converts an
input document to a latent representation (vector), and the decoder generates a summary by using it.

from Computer, respond to this email*

But the encoder-decoder model is not the silver bullet. There are many remaining issues are there.

How to set the focus on the important sentence, keyword.
How to handle the novel/rare (but important) word in source document.
How to handle the long document.
Want to make more human-readable summary.
Want to use large vocabulary.

Researches based on Encoder-Decoder Model



A Neural Attention Model for Sentence Summarization

How to set the focus on the important sentence, keyword.?
use Attention (sec 3.2)

How to handle the novel/rare (but important) word in source document.
add n-gram match term to the loss function (sec 5)

Other features
use 1D convolution to capture the local context
use beam-search to generate summary

Implementation

Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond

How to set the focus on the important sentence, keyword.
use enhanced feature such as POS, Named Entity tag, TF, IDF (sec 2.2)

How to handle the novel/rare (but important) word in source document.
switch the decoder(generate word) and pointer(copy from original text). (sec 2.3)

How to handle the long document.
use sentence level attention (sec 2.4)

Want to use large vocabulary.
use subset of vocabulary on the training (sec 2.1, please refer On Using Very Large Target
Vocabulary for Neural Machine Translation)

Get To The Point: Summarization with Pointer-Generator Networks

How to set the focus on the important sentence, keyword.

use Attention (sec 2.1)
How to handle the novel/rare (but important) word in source document.

switch the decoder(generator) and pointer network (by p_gen probability).
combine the distribution of vocabulary and attention with p_gen and (1 - p_gen) weight (please
refer the following picture).

Implementation

A Deep Reinforced Model for Abstractive Summarization

How to set the focus on the important sentence, keyword.
use intra-temporal attention (attention over specific parts of the encoded input sequence) (sec 2.1)

How to handle the novel/rare (but important) word in source document.
use pointer network to copy input token instead of generating it. (sec 2.3)

Want to make more human-readable summary.
use reinforcement learning (ROUGE-optimized RL) with supervised learning. (sec 3.2)



Other features
use intra-decoder attention (attention to decoded context) to supress the repeat of the same
phrases. (sec 2.2)
constrain duplicate trigram to avoid repetition. (sec 2.5)

from Your tldr by an ai: a deep reinforced model for abstractive summarization

Generating Wikipedia by Summarizing Long Sequences

How to set the focus on the important sentence, keyword.
use the encoder-less self-attention network (sec 4.2.3~). it concatenates input & output, and
predict the next token from the previous sequence.

How to handle the long document.
use the extractive model to extract tokens from long document first, then execute the abstractive
model.

Evaluation

ROUGE-N

Rouge-N is a word N-gram count that matche between the model and the gold summary. It is similart to the
"recall" because it evaluates the covering rate of gold summary, and not consider the not included n-gram in
it.

ROUGE-1 and ROUGE-2 is usually used. The ROUGE-1 means word base, so its order is not regarded. So
"apple pen" and "pen apple" is same ROUGE-1 score. But if ROUGE-2, "apple pen" becomes single entity so
"apple pen" and "pen apple" does not match. If you increase the ROUGE-"N" count, finally evaluates
completely match or not.

BLEU

BLEU is a modified form of "precision", that used in machine translation evaluation usually. BLEU is basically
calculated on the n-gram co-occerance between the generated summary and the gold (You don't need to
specify the "n" unlike ROUGE).

Resources



Datasets

DUC 2004
Opinosis Dataset - Topic related review sentences
17 Timelines
Legal Case Reports Data Set
Annotated English Gigaword

Libraries

gensim
gensim.summarization offers TextRank summarization
gensim models.lsimodel offers topic model

pytextrank
TextTeaser

PyTeaser for Python user
TensorFlow summarization
sumeval

Calculate ROUGE and BLEU score

Articles

Wikipedia
Automatic summarization

Blogs
Text summarization with TensorFlow

Your tl;dr by an ai: a deep reinforced model for abstractive summarization
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