
Understanding UMAP
Andy Coenen, Adam Pearce | Google PAIR

Dimensionality reduction is a powerful tool for machine learning practitioners to

visualize and understand large, high dimensional datasets. One of the most widely

used techniques for visualization is t-SNE, but its performance suffers with large

datasets and using it correctly can be challenging.

UMAP is a new technique by McInnes et al. that offers a number of advantages over

t-SNE, most notably increased speed and better preservation of the data's global

structure. In this article, we'll take a look at the theory behind UMAP in order to

better understand how the algorithm works, how to use it effectively, and how its

performance compares with t-SNE.

Points arranged in a radial star pattern

2/26/25, 10:46 AM Understanding UMAP

https://pair-code.github.io/understanding-umap/ 1/12

https://ai.google/research/teams/brain/pair
https://lvdmaaten.github.io/tsne/
https://distill.pub/2016/misread-tsne/
https://github.com/lmcinnes/umap

Figure 1: Apply UMAP projection to various toy datasets, powered by umap-js.

So what does UMAP bring to the table? Most importantly, UMAP is fast, scaling well

in terms of both dataset size and dimensionality. For example, UMAP can project the

784-dimensional, 70,000-point MNIST dataset in less than 3 minutes, compared to

45 minutes for scikit-learn's t-SNE implementation. Additionally, UMAP tends to

better preserve the global structure of the data. This can be attributed to UMAP's

strong theoretical foundations, which allow the algorithm to better strike a balance

between emphasizing local versus global structure.

UMAP vs t-SNE, at first glance

Before diving into the theory behind UMAP, let's take a look at how it performs on

real-world, high-dimensional data. The following visualization shows a comparison

between using UMAP and t-SNE to project a subset of the 784-dimensional Fashion

MNIST dataset down to 3 dimensions. Notice how well clustered each different

category is (local structure), while similar categories (such as sandal, sneaker, and

ankle boot) tend to colocate (global structure).

Dataset Parameters
Number of points 100

Number of arms 5

Dimensions 17

UMAP Parameters
n_neighbors 44

min_dist 0.15

Step
400

UMAP t-SNE

2/26/25, 10:46 AM Understanding UMAP

https://pair-code.github.io/understanding-umap/ 2/12

https://github.com/PAIR-code/umap-js
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist

Figure 2: Dimensionality reduction applied to the Fashion MNIST dataset. 28x28
images of clothing items in 10 categories are encoded as 784-dimensional vectors

and then projected to 3 using UMAP and t-SNE.

While both algorithms exhibit strong local clustering and group similar categories

together, UMAP much more clearly separates these groups of similar categories

from each other. It's also worth noting that UMAP projection of the dataset took 4

minutes in comparison to 27 minutes with multicore t-SNE.

A dip into UMAP theory

UMAP, at its core, works very similarly to t-SNE - both use graph layout algorithms

to arrange data in low-dimensional space. In the simplest sense, UMAP constructs a

high dimensional graph representation of the data then optimizes a low-dimensional

graph to be as structurally similar as possible. While the mathematics UMAP uses to

construct the high-dimensional graph is advanced, the intuition behind them is

remarkably simple.

T-shirt/top Shirt Pullover Coat Dress Sandal Sneaker Ankle boot

Trouser Bag

2/26/25, 10:46 AM Understanding UMAP

https://pair-code.github.io/understanding-umap/ 3/12

In order to construct the initial high-dimensional graph, UMAP builds something

called a "fuzzy simplicial complex". This is really just a representation of a weighted

graph, with edge weights representing the likelihood that two points are connected.

To determine connectedness, UMAP extends a radius outwards from each point,

connecting points when those radii overlap. Choosing this radius is critical - too

small a choice will lead to small, isolated clusters, while too large a choice will

connect everything together. UMAP overcomes this challenge by choosing a radius

locally, based on the distance to each point's nth nearest neighbor. UMAP then

makes the graph "fuzzy" by decreasing the likelihood of connection as the radius

grows. Finally, by stipulating that each point must be connected to at least its

closest neighbor, UMAP ensures that local structure is preserved in balance with

global structure.

Figure 3: Adjust the slider to extend a radius outwards from each point, computed
by the distance to its nth nearest neighbor. Notice that past the intersection with
the first neighbor, the radius begins to get fuzzy, with subsequent connections

appearing with less weight;

Once the high-dimensional graph is constructed, UMAP optimizes the layout of a

low-dimensional analogue to be as similar as possible. This process is essentially

extent: 50%

n_nearest: 4

2/26/25, 10:46 AM Understanding UMAP

https://pair-code.github.io/understanding-umap/ 4/12

the same as in t-SNE, but using a few clever tricks to speed up the process.

The key to effectively using UMAP lies in understanding the construction of the

initial, high-dimensional graph. Though the ideas behind the process are very

intuitive, the algorithm relies on some advanced mathematics to give strong

theoretical guarantees about how well this graph actually represents the data.

Interested readers can dive deeper into the entire process in the supplementary

section: A deeper dive into UMAP theory.

UMAP Parameters

By understanding the theory behind UMAP, it becomes much easier to understand

the algorithm's parameters, especially compared with the perplexity parameter in

t-SNE. We'll consider the two most commonly used parameters: n_neighbors and

min_dist , which are effectively used to control the balance between local and

global structure in the final projection.

5

15

30

50

100

nxn images of a line rotated
around the center, represented
as an n*n dimensional vector.
Grouped by similar angles.

Number of lines: 200
Number of clusters: 10
Noise: 8
Pixels per side: 28

Figure 4: UMAP projection of various toy datasets with a variety of common values
for the n_neighbors and min_dist parameters.

n
_
n
e
ig
h
b
o
rs

min_dist

0 0.01 0.05 0.1 0.5 1

2/26/25, 10:46 AM Understanding UMAP

https://pair-code.github.io/understanding-umap/ 5/12

https://pair-code.github.io/understanding-umap/supplement.html

The most important parameter is n_neighbors - the number of approximate

nearest neighbors used to construct the initial high-dimensional graph. It effectively

controls how UMAP balances local versus global structure - low values will push

UMAP to focus more on local structure by constraining the number of neighboring

points considered when analyzing the data in high dimensions, while high values will

push UMAP towards representing the big-picture structure while losing fine detail.

The second parameter weʼll investigate is min_dist , or the minimum distance

between points in low-dimensional space. This parameter controls how tightly

UMAP clumps points together, with low values leading to more tightly packed

embeddings. Larger values of min_dist will make UMAP pack points together

more loosely, focusing instead on the preservation of the broad topological

structure.

The following visualization - extended from excellent work by Max Noichl - is an

exploration of the impact of UMAP parameters on a 2D projection of 3D data. By

changing the n_neighbors and min_dist parameters, you can explore their

impact on the resulting projection.

2D UMAP Projection

n_neighbors: 100

Original 3D Data
undefined

2/26/25, 10:46 AM Understanding UMAP

https://pair-code.github.io/understanding-umap/ 6/12

https://homepage.univie.ac.at/noichlm94/

min_dist: 0.25

Figure 5: UMAP projections of a 3D woolly mammoth skeleton (50k points, 10k
shown) into 2 dimensions, with various settings for the n_neighbors and min_dist

parameters.

While most applications of UMAP involve projection from high-dimensional data, the

projection from 3D serves as a useful analogy to understand how UMAP prioritizes

global vs local structure depending on its parameters. As n_neighbors increases,

UMAP connects more and more neighboring points when constructing the graph

representation of the high-dimensional data, which leads to a projection that more

accurately reflects the global structure of the data. At very low values, any notion of

global structure is almost completely lost. As the min_dist parameter increases,

UMAP tends to "spread out" the projected points, leading to decreased clustering of

the data and less emphasis on global structure.

2/26/25, 10:46 AM Understanding UMAP

https://pair-code.github.io/understanding-umap/ 7/12

UMAP vs t-SNE, revisited

The biggest difference between the the output of UMAP when compared with t-SNE

is this balance between local and global structure - UMAP is often better at

preserving global structure in the final projection. This means that the inter-cluster

relations are potentially more meaningful than in t-SNE. However, it's important to

note that, because UMAP and t-SNE both necessarily warp the high-dimensional

shape of the data when projecting to lower dimensions, any given axis or distance in

lower dimensions still isnʼt directly interpretable in the way of techniques such as

PCA.

2D t-SNE projection

perplexity: 500

time: 42m 24s

2D UMAP projection

n_neighbors: 10

min_dist: 0.1

time: 51s

Figure 6: A comparison between UMAP and t-SNE projections of a 3D woolly
mammoth skeleton (50,000 points) into 2 dimensions, with various settings for
parameters. Notice how much more global structure is preserved with UMAP,

particularly with larger values of n_neighbors .

Going back to the 3D mammoth example, we can easily see some big differences

between the two algorithms' output. For lower values of the perplexity

undefined undefined

2/26/25, 10:46 AM Understanding UMAP

https://pair-code.github.io/understanding-umap/ 8/12

parameter, t-SNE tends to "spread out" the projected data with very little

preservation of the global structure. In contrast, UMAP tends to group adjacent

pieces of the higher-dimensional structure together in low dimensions, which

reflects an increased preservation of global structure. Note that, using t-SNE, it

takes an extremely high perplexity (~1000) to begin to see the global structure

emerge, and at such large perplexity values the time to compute is dramatically

longer. It's also notable that t-SNE projections vary widely from run to run, with

different pieces of the higher-dimensional data projected to different locations.

While UMAP is also a stochastic algorithm, it's striking how similar the resulting

projections are from run to run and with different parameters. This is due, again, to

UMAP's increased emphasis on global structure in comparison to t-SNE.

It's worth noting that t-SNE and UMAP wind up performing very similarly on the toy

examples from earlier figures, with the notable exception of the following example: A

dense, tight cluster inside of a wide, sparse cluster. Interestingly, UMAP is unable to

separate the two nested clusters, especially when dimensionality is high.

2/26/25, 10:46 AM Understanding UMAP

https://pair-code.github.io/understanding-umap/ 9/12

t-SNE

UMAP

Points
arranged in
a radial star
pattern

Number of
points: 300
Number of
arms: 12
Dimensions:
10

Figure 7: Comparison between UMAP and t-SNE projecting various toy datasets.

The failure of the algorithm to handle this case of "containment" may be explained

by UMAP's use of local distances in the initial graph construction. Since distances

between points in high dimensions tend to be very similar (the curse of

dimensionality), UMAP seems to be connecting the outer points of the inner cluster

to those of the outer cluster. This, in effect, blends the two clusters together.

How to (mis)read UMAP

While UMAP offers a number of advantages over t-SNE, it's by no means a silver

bullet - and reading and understanding its results requires some care. It's worth

revisiting our previous work on (mis)reading t-SNE, since many of the same

takeaways apply to UMAP:

1. Hyperparameters really matter

perplexity / n_neighbors

3 5 15 30 50 100

2/26/25, 10:46 AM Understanding UMAP

https://pair-code.github.io/understanding-umap/ 10/12

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://distill.pub/2016/misread-tsne/

Choosing good values isn't easy, and depends on both the data and your goals (eg,

how tightly packed the projection ought to be). This is where UMAP's speed is a big

advantage - By running UMAP multiple times with a variety of hyperparameters, you

can get a better sense of how the projection is affected by its parameters.

2. Cluster sizes in a UMAP plot mean nothing

Just as in t-SNE, the size of clusters relative to each other is essentially

meaningless. This is because UMAP uses local notions of distance to construct its

high-dimensional graph representation.

3. Distances between clusters might not mean anything

Likewise, the distances between clusters is likely to be meaningless. While it's true

that the global positions of clusters are better preserved in UMAP, the distances

between them are not meaningful. Again, this is due to using local distances when

constructing the graph.

4. Random noise doesnʼt always look random.

Especially at low values of n_neighbors , spurious clustering can be observed.

5. You may need more than one plot

Since the UMAP algorithm is stochastic, different runs with the same

hyperparameters can yield different results. Additionally, since the choice of

hyperparameters is so important, it can be very useful to run the projection multiple

times with various hyperparameters.

Conclusion

UMAP is an incredibly powerful tool in the data scientist's arsenal, and offers a

number of advantages over t-SNE. While both UMAP and t-SNE produce somewhat

similar output, the increased speed, better preservation of global structure, and

2/26/25, 10:46 AM Understanding UMAP

https://pair-code.github.io/understanding-umap/ 11/12

more understandable parameters make UMAP a more effective tool for visualizing

high dimensional data. Finally, it's important to remember that no dimensionality

reduction technique is perfect - by necessity, we're distorting the data to fit it into

lower dimensions - and UMAP is no exception. However, by building up an intuitive

understanding of how the algorithm works and understanding how to tune its

parameters, we can more effectively use this powerful tool to visualize and

understand large, high-dimensional datasets.

Acknowledgements

We'd like to thank Max Noichl for the delightful mammoth visualization idea, and the Smithsonian
Institute for the 3D mammoth model. We'd also like to thank Leland McInnes for his excellent
feedback, and of course the UMAP library itself.

Source code available on github. Interactive UMAP projections powered by umap-js. 3D Scatter
plots powered by scatter-gl.

2/26/25, 10:46 AM Understanding UMAP

https://pair-code.github.io/understanding-umap/ 12/12

https://homepage.univie.ac.at/noichlm94/
https://3d.si.edu/
https://3d.si.edu/
https://twitter.com/leland_mcinnes?lang=en
https://github.com/PAIR-code/understanding-umap
https://github.com/PAIR-code/umap-js
https://github.com/PAIR-code/scatter-gl

