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Student Bio

Experience

I am a graduate research assistant currently pursuing my Masters of Science in Computer Science at
Wright State University, with the intent of pursuing a doctorate of Computer Science starting Fall of 2018.
Beginning Fall 2013, I worked in a research position for Dr. Andrew Terzuoli at the Air Force Institute of
Technology (AFIT) as an undergraduate research assistant. I worked at AFIT until I graduated with
my Bachelors of Science in Computer Science in the Fall of 2015, where I continued research work with
reduced hours until Spring 2017. I also worked as an undergraduate research assistant for Dr. Derek
Doran in the Web and Complex Systems lab (WaCS) starting in Fall 2017 doing research that I then
continued as graduate research assistant starting in the Spring of 2016. I currently maintain this position
during the regular academic year.

Background

In my undergraduate years at AFIT, I worked in an educational research group with a number of
undergraduate and graduate students on a diverse range of problems within the realm of scientific
computing. Many of these projects are closed-source, however one such research effort relevant to the
proposed project has lead to two publications (see [29] and [28]), which involved a novel technique for doing
Iterative Closest Point (ICP) using CUDA. Briefly, one of the bottlenecks dominating the computation of
the ICP algorithm is a variant of the standard k-nearest neighbor (kNN) problem, where (in the ICP
context) the goal is to calculate, for every point from a source data set Q, its k = 1 nearest neighbor in
a reference data set R. The project involved improving standard approaches to ICP. The solution we
proposed requires augmenting the traditional data structures used in various kNN applications in such a
way that exploits the intrinsic parallelism of the problem while minimizing suboptimal memory access
issues that are well-known to plague uncoalesced memory transactions. During this research period, I
studied many modern data structures and approaches to the kNN problem (including kd Trees, cover trees,
locality sensitive hashing methods, etc.). I also became fairly proficient with a few parallel architectures
(CUDA, OpenCL), modern C++ optimization, and generic programming techniques.

When I started as graduate research assistant for the WaCS lab, I assisted with a research project
that dealt with the unsupervised problem of discovering meaningful locations within spatial data sets
observed over large geographical areas. My current research has continued on this project, which involves
improving the capability of various clustering models to intrinsically identify “locations” within unlabeled
surveillance data, validated against existing knowledge bases (such as Google Places, OpenStreetMap,
private sources of ‘truth’, etc.). During the preliminary literature review, it was discovered that the
location discovery and recommendation field is largely saturated with density-based clustering and/or
network-based approaches, which lead me to delve into the internals of such methods. In particular, I
discovered that the density-based clustering field offered extremely scalable and useful techniques for the
geospatial domain. Despite the utility of such methods, the statistical properties of most density-based
algorithms are generally unknown, preventing the possibility of doing statistical inference.

In pursuit of an approach that allows for formal analysis yet maintains the strengths of practical
density-based algorithms, I became engrossed by the underlying statistical theory of clustering. Perhaps
the most popular algorithm in the applied density-based clustering field—having won SIGKDD 2014’s
Test of Time Award [31]—is the DBSCAN algorithm [11]. Although algorithmically simple and intuitive
to understand, I noticed DBSCAN manifesting in many applied contexts, which lead me to attempt to
understand why DBSCAN has proven so useful. This trail of research also lead me to contribute a number
of additions to the popular dbscan R package. A few authors have recently noticed many commonalities
between DSBCAN and more statistically-principled concepts [4] [33]. It was this research that lead me to
the theory underlying the ‘cluster tree’ and the associated notion of fractional consistency put forth by
John Hartigan in his seminal paper on the consistency of single linkage [14]. Although the theory by itself
is appealing in the sense that it offers a reasonable definition of what a ‘natural cluster’ is, the direct
use of recent, significant advances to the cluster tree theory to solve applied problems seems virtually
nonexistent (by the author’s knowledge). This application is a brief summary of such advances, why I
think they are relevant and novel, and why a common R package that brings the tools used in applied
density-based clustering together with the theoretical advances of the cluster tree is important to the
progression of the clustering field as a whole. Furthermore, my unique skill set, verifiable experience, and
formal statistical background make me an excellent candidate for this project.
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Coding Plan and Methods

Project overview

The purpose of this project is to develop an efficient C++/Rcpp implementation of the first provably
consistent algorithm for estimating the cluster tree, referred to as Robust Single Linkage (RSL) algorithm [6].
Additionally, a secondary goal is to modularize the algorithmic scheme of RSL and extensions to the RSL
algorithms (referred to here as RSL variants, explained more below) used to estimate the cluster tree.
The outcome of such a package would not only unify recent extensions to the cluster tree into a simple
R package, but also it would bring the theory of empirical approximations of the cluster tree to a state
where they are easily usable for applications that seek to perform formal hierarchical cluster analysis on
sufficiently large data sets.

Package design

The design focus of the package is centered on usability, scalability, and extensibility. This implies that
the algorithms related to the cluster tree and its related extensions will, when appropriate, be based
around standard data structures and classes often used in clustering and familiar to most R users. For
example, the representation of the “cluster tree” is a hierarchical representation of connected components;
so it would be most useful to represent the tree as a valid hclust or dendrogram object, with possible
conversion methods to graph-based representations (e.g., adjacency list, matrix, and edgelists). Since
a primary focus of the proposed package is scalability, any of the computationally difficult tasks would
be written in Rcpp/C++. To illustrate extensibility, algorithms to compute various statistics between
multiple cluster tree approximations (such as merge distortion [10]) will be included. The intent is that
this package can serve as a unified implementation to incorporate ongoing advancements and extensions
to the cluster tree itself. The package will also include useful visualizations (such as contour plots,
specializations to existing plot.dendrogram S3 method, etc.), with the intention of simplifying analysis
of the resulting tree and its related algorithms.

Background

Consider the context and general goal of clustering and its relationship to statistical learning. A foremost
goal of statistical learning is to understand what a finite data set reveals about the underlying distribution
from which the data were sampled [6], whereas the goal of clustering is to group a given collection of
unlabeled patterns into meaningful clusters [19]. The effectiveness, evaluation strategies, and limitations
of parametric clustering models—such as the popular Gaussian Mixtures Models (GMMs) and K-means
models—are well studied. In contrast to such model-based approaches, a widely used class of algorithms
that fall under the category of hierarchical clustering have been developed for the purpose of representing
data in terms of a certain tree structure [18] [10], however, the statistical properties of many such clustering
algorithms are generally unknown, prohibiting the capability of performing formal inference [12]. From
the statistical learning perspective, a (highly) desirable goal of hierarchical clustering is understand
what the nested, hierarchical relationships obtained from a finite data sample reveal about the true
relationships of the underlying population from which the data were observed. This goal shares many
commonalities with the field density-based clustering, which comprises a set of algorithms and techniques
that define clusters to be “contiguous region[s] of high point density, separated from other such clusters
by contiguous regions of low point density” [30], following some predefined notion of density. But even
given an appropriate definition of density, how does one go about selecting these ‘regions’ of low densities
that delimit disjoint clusters? Intuitively, an alternative definition of density-based clustering is one that
identifies clusters based on the order relationships the data reveals about the underlying population density.
Viewed from the latter definition, the field of hierarchical and density-based clustering have remarkably
similar analysis goals, and as such, density-based clustering methods stand as a popular paradigm for
incorporating elements from nonparametric statistics [5]. From the applied perspective, density-based
clustering methods also exhibit many favorable characteristics; they are generally capable of finding
clusters of ‘arbitrary’ shape, they are usually robust to noise, they often capture clusters with minimal a
priori information (i.e., it is often not required to specify the number of clusters, k), and they are often
much more computationally efficient relative to model-based approaches [30] [5] [23] [11].

In this application, I follow some previous work on clustering [15]. For a density f on Rd, a high-density
cluster is any connected component Cf (λ) of {x : f(x) ≥ λ}, for some λ > 0. The set of high-density
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clusters across all possible values of λ forms an (infinite) hierarchy called the cluster tree of f . Following
the notation above, one of the general tasks of hierarchical clustering is to, given a sample Xn ⊂ X of size
n, construct an empirical tree Ĉfn that estimates the cluster tree Cf of f . A natural goal of such a class
of algorithms would be to, as n→∞, establish a notion of consistency in the estimation process1. John
Hartigan gives a reasonable definition of consistency [14]2:

Definition 1. For any sets A,A′ ⊂ X, let An (respectively, A′n) denote the smallest cluster of Ĉfn

containing A ∩Xn (respectively A′ ∩Xn). We say Ĉfn is consistent if, whenever A and A′ are different
connected components of {x : f(x) ≥ λ} (for some λ > 0), P(An is disjoint from A′n) → 1 as n→∞

In 1981, Hartigan established that the single linkage algorithm is a consistent estimator of the cluster
tree for densities in R [14] (for d = 1) however inconsistent for any d ≥ 2. The problem is actually a very
intuitive result of the requirement that A ∩Xn ⊂ An: consider the situation where a clustering algorithm
attempts to capture all of A—there is a reasonable chance that the resulting cluster An, containing a
portion of A, also contains part of A′. As a result, if d ≥ 2, any single-linkage cluster containing all of the
sample points of A will also contain nearly all of the sample points of A′, in probability as n→∞. See
Theorem 1 of [14] for the proof of this.

From this concept, Hartigan deviates from the traditional notion of consistency by defining fractional
consistency (also sometimes called Hartigan consistency), founded on the idea that An (respectively, A′n)
need not contain all of A ∩Xn (respectively, A′ ∩Xn), but it should contain a large portion of it—and
that portion should be arbitrarily close (An contains a positive fraction of points in A, passing arbitrarily
close to every point in A, at distance → 0 as n→∞). As above, see any of [14] [22] [10] [6] [7] for more
details.

Computing a cluster tree: current practice and limitations

Under this notion of consistency, an ideal approach to ‘density-based’ clustering might involve the study
and use of uniformly consistent kernel density estimators (KDE), i.e. the use of approaches that estimate
the density of a sample, given some x ∈ Xn:

p̂ =
1

n

N∑
i=1

κh(x− xi)

where κ is a ‘smoothing’ kernel that satisfies a few convenient properties3, and the subscript h
is the well-known bandwidth parameter. After the model is ‘fitted’ with the appropriate kernel and
bandwidth parameter, the data sample can act as input to the resulting estimated density through a
post-processing algorithm as a means of producing high-density clusters. The difficulty is that Ĉfn is not
easy to compute for typical density estimates fn (see the appendix, section 5 in [6] for details). As a
result, attempts to approximate Ĉfn have been made in several cases, usually using either parametric
or nearest neighbor estimates, but generally without proof of convergence [36] [35]. Furthermore, from
a practical standpoint, such models generally require a significant amount of memory to store, and are
often computationally inefficient for large data sets [26].

Robust Single Linkage: In 2010, the first provably consistent algorithm for estimating the cluster
tree for densities in Rd, referred to (as above) as the Robust Single Linkage (RSL) algorithm, was
published [6]. It is not only a tractable algorithm, but it also maintains much of the elegance an simplicity
of single-linkage. This is significant to the clustering field: insofar as statistical learning is concerned
about what a finite data sample reveals about the underlying density f , density-based clustering methods
are concerned with finding clusters based on meaningful notions on density. This is, in essence, what
many applied density-based clustering algorithms attempt to approximate [17] [8] [20]. Campello et al go
so far as to assert that nearly all density-based clustering algorithms are, either strictly or loosely, based
on Hartigan’s model [5].

Consider the RSL algorithm posed by Kamalika Chaudhuri and Sanjoy Dasgupta (henceforth referred
to as KC and SD) for estimating the cluster tree from a finite data sample Xn = {x1, . . . , xn} sampled
from a density f on X, where X is a subset Rd. Let the distances denoted with ‖·‖ be exclusively Euclidean

1Recall that an estimator Θ̂n of a parameter θ if, as more samples are collected (n → ∞), the estimator converges in

probability to the true value of the parameter, plim
n→∞

(Θ̂n) = θ

2To make things more explicit, I deviate slightly from reference notation and use Ĉfn to denote the empirical cluster tree.

This is to emphasize that the set of connected components (Ĉ), created from a finite sample of size n, are estimates of the true
cluster tree (Cf ) for a population density f on Rd.

3See section 14.7. of [26]
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distances on X, and let B(x, r) be the closed ball of radius r around x. The algorithm given in [6] is as
follows:

1. For each xi set rk(xi) = inf{r : B(xi, r) contains k data points}.
2. As r grows from 0 to ∞:

(a) Construct a graph Gr with nodes {xi : rk(xi) ≤ r}.
Include edge (xi, xj) if ‖xi − xj‖ ≤ αr

(b) Let Ĉ(r) be the connected components of Gr.

One of the practical difficulties with implementing this algorithm is in the dermination of the critical
radii r that connect the density upper level sets, represented using graph terminology as the connected
components (CCs) Ĉ(r)4 of Gr. To determine such radii requires knowledge of which xi ∈ Xn are
connected at every level of Gr, implying all

(
n
2

)
pairwise distances need to be computed. Additional

overhead exists in efficiently tracking the memberships of each xi at each level, Ĉ(r). An example of this
simple algorithm for calculating the connected components following Wishart’s original scheme [35] might
algorithmically be stated as follows:

Given a finite sample Xn, compute and store the radius to the kth nearest neighbor for each xi ∈ Xn,
denoted as rk(xi), such that rk(xi) = inf{r : B(xi, r) contains k data points}. Compute and sort the

(
n
2

)
Euclidean distances in increasing order, denoted as R. Iterate through these distances r ∈ R, connecting
the ‘edges’ (xi, xj) subject to the constraint that ‖xi − xj‖ ≤ rk(xi) and ‖xi − xj‖ ≤ rk(xj). Track the
connected components of the Gr, recording the smallest radius r that changes component membership.
The resulting components build an approximation of the hierarchy Cfn , what many are refer to as the
cluster tree.

Below is a direct, näıve R implementation of this algorithm using the igraph and FNN packages, with
parameters k = 5 and α = 15.:

R Example 0.1.

suppressMessages({ require("igraph"); require("FNN") })
data(iris)

X <- iris[1:50, 1:4]

## Initialize variables

{ n <- nrow(X); dist_iris <- dist(X); k <- 5 }

## Get the smallest radius as a starting point for r

r <- min(dist_iris)

## Start off with empty adjacency graph

G_r <- igraph::graph_from_adjacency_matrix(diag(n))

## Get balls centered at each x of radius r_k

## (containing k points inclusive of x_i itself)

r_k <- apply(FNN::knn.dist(X, k = k - 1, algorithm = "kd_tree"), 1, max)

## Initiate cluster tree and distance matrix to simplify indexing

clustertree <- list()

l2_dist <- as.matrix(dist_iris)

diag(l2_dist) <- Inf

## Vector of sorted radii to iterate through and a counter

lambda <- sort(dist_iris)

alpha <- 1

i <- 1

4Note that KC and SD use Ĉ(r) to emphasize r as an algorithmic component. The result of Ĉ(r) effectively represents Cfn
following the notation from the background section, and thus they will be used interchangeably in this paper.

5It’s worth noting that consistency was shown for α ≥
√

2.
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## expand eps-Ball from 0 -> Inf

for (r in lambda){

## Wisharts scheme: Only connect points that have at least

## k neighbors within distance r

eps <- mapply(function(i, j) ( l2_dist[i, j] <= r * alpha &&

r_k[i] <= r && # radius of x_i

r_k[j] <= r ), # radius of x_j

row(l2_dist), col(l2_dist))

## Construct the adjacency graph, recording distinct CCs as the level sets

adj_matrix <- matrix(as.integer(eps), nrow = n, ncol = n)

G_r <- igraph::graph_from_adjacency_matrix(adj_matrix)

CC <- igraph::components(G_r)$membership

## Record distinct level sets

if (i == 1 || any(CC != clustertree[[i-1]]$cluster)){
clustertree[[i]] <- list(cluster=CC, radius=r * alpha)

i <- i + 1

}
if (length(clustertree) == n - 1) break

}

The section of code in R Example 0.1 above is very inefficient, requiring more than several seconds on
remarkably small data sets, using commodity-grade hardware6. It’s been stated that the algorithm itself
is computationally infeasible as it “requires a combinatorial search over all possible paths connecting
any two points in the mesh” [20]. To avoid iterating to determine the critical r, others have come up
with different approximations of estimating the empirical cluster tree. One such approximation of these
radii distances that the Python package DEnsity BAsed CLustering (DeBaCl) [20] algorithm uses is to
calculate the k-NN density estimate using the volume of the xi-centered spheres directly:

f̂(xi) =
k

n · vd · rdk(xi)

This density estimate f̂(xi) is then used along with a graph-based approach akin to the approach from
R Example 0.1 to estimate the hierarchy. This is an alternative formulation of λ (see section 3 in [7]),
and is also the strategy employed by the newer Topological Data Analysis (TDA) R package with its
‘clusterTree’ function. Consider the usage of this function from the TDA package in R Example 0.2, using
the example data from the dbscan examples page in the Flexible Procedures for Clustering (FPC) package
documentation [16].

R Example 0.2.

suppressMessages({ require("TDA"); require("microbenchmark") })
## Generate data: 3 clusters

set.seed(665544)

N <- 600

x <- cbind(runif(10, 0, 10)+rnorm(N, sd=0.2),

runif(10, 0, 10)+rnorm(N, sd=0.2))

K <- 50

## Density clustering using knn

microbenchmark(TDA::clusterTree(x, K, density = "knn", Nlambda = N), times = 15L)

## Unit: seconds

## expr min lq

## TDA::clusterTree(x, K, density = "knn", Nlambda = N) 2.403383 2.422091

## mean median uq max neval

## 2.487246 2.469215 2.514771 2.778309 15

6Benchmarks performed on a 2014 MacBook Pro equipped w/ a 2.5 GHz Intel Core i7
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Although the approximation may have theoretical merit in its own right, runtime performance suffers
for larger data sets. There are also a number of other issues with this implementation; by default, the
‘Nlambda’ parameter is kept small (100) as a means of reducing the number of λ values to cut the
density estimates at. This algorithm only approximates the RSL solution, the results are not returned in
representation well known to the R community (such as in the form of a dendrogram or hclust object),
and there are no readily available means of comparing the results to the output of alternative hierarchical
clustering trees for the purpose of analysis without significant post-processing.

Improved cluster tree estimation motivated by applied density-based
clustering

Two motivating algorithms that are not dependent on the computationally expensive kernels and yet
directly relate to the cluster tree include the widely known algorithm DBSCAN [11] and its corresponding
extension, OPTICS [1]. Both algorithms have been mentioned, albeit briefly, in relation to the cluster
tree [33] [32] and are of particular interest to this problem as they conform to Hartigan’s notion of a
high-density cluster at a fixed level λ of the cluster tree7. Can the algorithmic scalability of density-based
clustering algorithms, such as DBSCAN, and the associated spatial indexing and efficiency improvements
that have been proposed with it, be applied to the problem of efficiently estimating the cluster tree?

Campello et al in 2013 [4] and again in 2015 [5] (see Prop. 1 in the 2013 paper and Prop. 3.4 in the
2015 paper) established a hierarchical version of DBSCAN called “HDBSCAN”, and in doing so made a
few interesting observations. They extended a simple idea originally introduced by the OPTICS algorithm
by defining a symmetric version of kNN distance called “mutual reachability distance”, defined as follows:

dmreach(xp, xq) = max{dcore(xp), dcore(xq), d(xp, xq)}

where dcore(xp) is defined as the “core distance” or the distance from xp to its ‘minPts’ nearest-
neighbor. While KC and SD do not explicitly mentioned DBSCAN in their recent work [6] [7], it’s straight
forward to notice that by setting k = minPts, the core distance of a point x corresponds to the closed ball
B(x, r) with radius rk that contains k data points (including the point itself, as the same with DBSCAN).

This observation simplifies the problem of estimating the cluster tree, and the tools and procedures
implemented by readily-available density-based clustering algorithms now become relevant. Namely,
Campello et al noted that by applying single-linkage or Kruskal’s algorithm to the distances computed in
mutual reachability space, the resulting minimum spanning tree (MST) corresponds to the hierarchy of
DBSCAN* clusters at every parameter setting of ε. A similar observation was noted by [7], “A further
simplification is that the graphs Gr don’t need to be explicitly created. Instead, the clusters can be
generated directly using Kruskal’s algorithm, as is done for single linkage.”

To illustrate, consider the following simpler version of Algorithm 1:

R Example 0.3.

## 'Mutual Reachability Distance'

mrd <- mapply(function(i, j) max(c(r_k[i], r_k[j], l2_dist[i, j] * alpha)),

row(l2_dist), col(l2_dist))

mrd <- as.dist(matrix(mrd, nrow=n, ncol=n))

## Campellos et al's observation: running SL on MRD produces DBSCAN* results

clustertree2 <- hclust(mrd, method = "single")

## Now cutting the hclust object produces equivalent cuts to iterative approach

identical <- rep(FALSE, length(clustertree))

for (i in seq_along(clustertree)){
identical[i] <- all.equal(clustertree[[i]]$cluster,

cutree(clustertree2, h = clustertree[[i]]$radius))

}
all(identical)

## [1] TRUE

7For α = 1, DBSCAN* [4] (DBSCAN excluding border points) conforms exactly to Hartigans notion of a high-density cluster.
Note that this also implies DBSCAN* with minPts = k and fixed ε corresponds to the CCs of Gr a fixed level λ.

7



This simplification of the problem is one such motivation that may allow the empirical cluster tree
computation to be expressed in a scalable fashion. The vast literature available for efficiently computing
the MST becomes applicable. One such optimization that a Python implementation of HDBSCAN uses,
which is part of the popular SciKit-learn library [27], is a algorithm known as the ‘Dual-Tree Bor̊uvka’
(DTB) approach, which reduces the complexity associated with computing all

(
n
2

)
pairwise distances to a

conjectured asymptotically fastest O(N logN) runtime [24]. The approach is a clever combination using
Bor̊uvka steps (from Bor̊uvkas MST algorithm) together with the branch-and-bound properties of various
space indexing trees to—when the upper bounds allow—prune unneeded neighbor queries, dramatically
reducing the number of distance calculations needed to be computed.

RSL algorithm design

The original RSL algorithm from [6], along with Algorithm 2 from [7], and various alternative approaches
such as the “Spatially Adaptive” RSL algorithm from [3] all follow a similar algorithmic framework8.
Each RSL variant can generally be broken down into the following steps:

Given data Xn = {x1, x2, . . . , xn} drawn i.i.d from some unknown density f on Rd,

1. Compute the radius r∗ of the closed ball B(x, r) around each xi, denoted r∗(xi)
where r∗(xi) = min{r : B(xi, r) that satisfies r∗}

2. Construct a graph Gr with nodes {xi : r∗(xi) ≤ r}
3. Compute the connection radius ‖xi − xj‖ ≤ R:

(a) If R can be expressed as metric, use DTB to recover critical radii r ∈ R
(b) Otherwise, compute all pairwise R and iterate as in R Example 0.1

4. Track the connected components Ĉ(r) (using a disjoint-set data structure)

r∗(xi) is used to generically refer to any function that computes the radius of a closed ball centered
at xi. Note that this does not always correspond to the radius rk, as in [3]. The important note is that
such algorithmic components of RSL algorithms and similar RSL variants can be broken up into a set of
modular sub-tasks using existing tools and data structures that, collectively, allow for the creation of a
systematic set of tools for estimating and extending the empirical cluster tree.

Specifically, consider the the case where the special case where the connection radius αr ( [3] use
R) can be expressed as a metric. The use of efficient spatial-indexing structures can be used for the
subsequent radius queries. The aforementioned Dual-Tree Bor̊uvka MST algorithm has been implemented
in the MLPACK library [9], has been ported to R with RcppMLPACK [21], and supports the use of
arbitrary metrics through the use of template meta-programming. A more involved, but nonetheless viable
alternative would be to augment the more mature ANN library [25], which is used for kNN queries in
both the FRNN and dbscan packages, to support non-Minkowski metrics9 The tracking of each connected
component Ĉ(r) can be efficiently performed using a disjoint-set data structure [34]. It is straightforward
to compute the MST directly over the dense graph of all possible pairwise connection distances R, but
such an algorithm requires the results be constrained during the algorithms run time to include edges
iff ‖xi − xj‖ ≥ max(r∗(xi), r∗(xj)). Note the only reason the default MST computation was valid for
Campello et al’s Hierarchical DBSCAN* [4] was due to the lack of setting of α.

Deliverables

The simplicity of the MST method on the transformed space of mutual reachability distances only follows
from the RSL results if α = 1, the consistency of which is an open problem. Implementing the RSL
algorithm that supports varying the setting of α would represent the first R implementation
of an efficient cluster tree estimator following KC and SD’s work. Thus, the deliverables would
be as follows:

1. Validated solution of Robust Single Linkage algorithm in Rcpp.

8The spatially adaptive RSL algorithm denotes αr as the connection radius R and replaces the radius of a point rk(xi) with
an alternative ’V-ball’ representing the volume of a ball centered at xi on a known manifold.

9Note that the ANN library actually uses incremental distance calculations [2] for the many of the internal distance calculations
and requires recompilation of the library to support alternative measures, which is why it is mentioned as a ’more involved’
alternative.
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2. Capability of representing cluster tree using standard hierarchical representations (dendrogram,
hclust objects).

3. Support for approximating kNN and mutual-kNN on arbitrary metric spaces (see [7]).

4. Demonstratable use of extension(s) to the cluster tree with the package (such as runt pruning, merge
distortion, etc.).

5. Additional visualization and utility tools that help analyze the cluster tree. This includes contour
plots, S3 specializations for dendrogram objects, a split tree options (see Section 7 discussing related
work in [10]).

6. A unified R package for creating, analyzing, and visualizing empirical approximations of the cluster
tree.

Qualifications

Motivated by the ingenuity of the hierarchical clustering extraction algorithm proposed by OPTICS—
which could actually be considered a (very loose) approximation to RSL—I contributed to and became a
coauthor of the popular dbscan package [13], a package developed to offer significantly faster versions of
density-based algorithms in the DBSCAN family compared to native R implementations (such as the those
in the FPC). In doing so, I gained a familiarity with both the algorithmic and theoretical components
related to the popular density-based clustering algorithms DBSCAN, OPTICS, and HDBSCAN, along
with general density and hierarchical-type clustering algorithms. As the author of the HDBSCAN
implementation, which effectively represents the RSL solution with α = 1 and k = minPts, I have
demonstrably implemented a variant of RSL whose performance are scalability is essentially bounded by
the ‘dist’ method from the stats package. More specifically, I have actually implemented a number of
the basic data structures and algorithms required to make this project reality. Consider the following
benchmarks using the same data set and parameter (K) from R Example 0.2:

suppressMessages({library("dbscan", quietly = T)})

## DBSCAN's performance depends the distance threshold, eps

dist_x <- dist(x)

eps_vals <- quantile(dist_x)[2:5]

microbenchmark(dbscan::dbscan(x, eps = eps_vals[1], minPts = K))

## Unit: milliseconds

## expr min lq

## dbscan::dbscan(x, eps = eps_vals[1], minPts = K) 1.573344 1.62555

## mean median uq max neval

## 1.755586 1.745274 1.825972 2.646154 100

microbenchmark(dbscan::dbscan(x, eps = eps_vals[2], minPts = K))

## Unit: milliseconds

## expr min lq

## dbscan::dbscan(x, eps = eps_vals[2], minPts = K) 2.633905 2.731498

## mean median uq max neval

## 2.906061 2.833576 2.952692 4.862466 100

microbenchmark(dbscan::dbscan(x, eps = eps_vals[3], minPts = K))

## Unit: milliseconds

## expr min lq

## dbscan::dbscan(x, eps = eps_vals[3], minPts = K) 3.728351 3.948377

## mean median uq max neval

## 4.420617 4.186122 4.612718 6.424246 100

microbenchmark(dbscan::dbscan(x, eps = eps_vals[4], minPts = K))

## Unit: milliseconds

## expr min lq

## dbscan::dbscan(x, eps = eps_vals[4], minPts = K) 4.565938 4.71685

## mean median uq max neval

## 4.995963 4.805423 5.038913 7.596683 100
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## HDBSCAN is DBSCAN* at every n-1 eps levels,

## (in this case, equivalent to running DBSCAN* 599 times)

microbenchmark(dbscan::hdbscan(x, minPts = K, xdist = dist_x))

## Unit: milliseconds

## expr min lq mean

## dbscan::hdbscan(x, minPts = K, xdist = dist_x) 21.93835 25.58014 30.89045

## median uq max neval

## 27.36258 28.87601 108.3182 100

This was made possible due to a number of optimizations made to the internal components associated
with the HDBSCAN computation, developed after discovering that many native R methods were inefficient.
This includes, for example, computation of the MST, the conversion utilities related to dendrogram and
hclust objects, etc.

suppressMessages({ library("optrees", quietly = T);

library("ape", quietly = T);

library("vegan", quietly = T) })

dist_m <- as.matrix(dist_x)

edge_list <- cbind(col(dist_m)[lower.tri(dist_m)],

row(dist_m)[lower.tri(dist_m)],

as.vector(dist_x))

## optree package

microbenchmark(optrees::msTreeKruskal(seq(attr(dist_x, "Size")), edge_list), times = 15L)

## Unit: seconds

## expr min

## optrees::msTreeKruskal(seq(attr(dist_x, "Size")), edge_list) 1.17099

## lq mean median uq max neval

## 1.258867 1.286953 1.271425 1.319571 1.369981 15

microbenchmark(optrees::msTreePrim(seq(attr(dist_x, "Size")), edge_list), times = 15L)

## Unit: seconds

## expr min lq

## optrees::msTreePrim(seq(attr(dist_x, "Size")), edge_list) 18.07935 18.573

## mean median uq max neval

## 19.12181 19.20862 19.56281 19.91762 15

microbenchmark(optrees::msTreeBoruvka(seq(attr(dist_x, "Size")), edge_list), times = 15L)

## Unit: seconds

## expr min

## optrees::msTreeBoruvka(seq(attr(dist_x, "Size")), edge_list) 66.04695

## lq mean median uq max neval

## 66.67851 67.48934 67.19317 68.28682 69.92305 15

## iGraph

graph <- igraph::graph_from_adjacency_matrix(as.matrix(dist_x), weighted = T)

microbenchmark(igraph::mst(graph), times = 15L)

## Unit: milliseconds

## expr min lq mean median uq max

## igraph::mst(graph) 251.7339 293.3739 356.1521 379.6413 389.9387 513.048

## neval

## 15

## ape package

microbenchmark(ape::mst(dist_x), times = 15L)

## Unit: seconds

## expr min lq mean median uq max

## ape::mst(dist_x) 27.62657 28.07033 28.17803 28.13589 28.3813 28.59785

## neval

## 15

10



## vegan package

microbenchmark(vegan::spantree(dist_x), times = 15L)

## Unit: milliseconds

## expr min lq mean median uq

## vegan::spantree(dist_x) 1.618073 1.807647 2.065632 2.03914 2.30635

## max neval

## 2.587063 15

## mst used by dbscan package (written by the author)

microbenchmark(dbscan:::prims(dist_x, attr(dist_x, "Size")), times = 15L)

## Unit: microseconds

## expr min lq mean

## dbscan:::prims(dist_x, attr(dist_x, "Size")) 976.644 1094.588 1284.379

## median uq max neval

## 1274.286 1392.777 1844.541 15

## Example of a simple conversion utility against native R S3 method

sl_x <- hclust(dist_x, method = "single")

microbenchmark(stats::as.dendrogram(sl_x))

## Unit: milliseconds

## expr min lq mean median uq

## stats::as.dendrogram(sl_x) 11.9797 12.52527 13.97469 13.05298 14.13366

## max neval

## 25.65983 100

microbenchmark(dbscan:::as.dendrogram.hclust(sl_x))

## Unit: microseconds

## expr min lq mean median

## dbscan:::as.dendrogram.hclust(sl_x) 556.195 627.68 713.6239 714.9375

## uq max neval

## 780.6905 943.102 100

My experience contributing to the dbscan has also allowed me to become proficient with developing,
optimizing, and documenting package-ready code for R.

As a coauthor with experience creating and comparing various kNN data structures in applied
contexts [29] [28], I have experience developing, augmenting, and extending such spatial-indexing structures.
I believe this experience would prove useful in working with the various indexing-trees offered by the
ANN and MLPACK libraries.

Finally, as a data scientist10 and motivated student of statistics, I am comfortable with the theory
and terminology present in most of the cluster tree literature to implement all of the above deliverables
under the guidance of my mentors, Michael Hahsler and Mikhail Belkin.

Timeline

This week-by-week timeline provides a rough guideline of how the project will be done.
May 15 – May 29:
Prepare initial report to mentors detailing the coding plan, and ensure the practical plan of approach
matches mentors expectations.
May 30 – June 15:
Prepare initial skeleton of library, along with test data sets and needed libraries. Add initial standard data
structures to use in the algorithm (disjoint set class, MST to hclust methods, dendrogram conversion
methods, etc.). Rcpp connections with RcppMLPack added to access standard data structures and algo-
rithms not immediately cluster tree specific, including the kNN tree structures and EMST implementation.
June 16 – June 26:
Establish initial validation tests using igraph. Finish initial implementation of basic RSL algorithm using
Rcpp with variable α. Prepare evaluations.

10For my full curriculum vitae, see my web page: http:://mattpiekenbrock.com
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June 26 – July 15:
Begin work on testing and incorporating other metric spaces. Begin development the extensible API for
augmenting the cluster tree approximation using an existing extension as a proof of concept (for example,
merge distortion, or spatially adaptive radii calculations). Create initial round of unit tests and populate
documentation.
July 15 – July 30:
Validate work with incorporating other metric spaces (testing the incorporation of the MLPACK extensions
into the work flow). Include the option to compute the MST for arbitrary metrics defined using templates,
if compatible. Add tests and documentation/examples of extending the tree. Develop the ability to
compare different cluster trees using arbitrary tree comparison functions.
August 1 – August 15:
Ensure both kNN and mutual kNN graph can be computed using Algorithm 2 in [7] using the workflow
above. Further refine tests and documentation for the whole project. Add visualization capability beyond
the default options available from the hclust and dendrogram S3 plot methods from the stats package.
August 15 – August 30:
Check final documentation and ensure there are no programmatic issues. Write examples highlighting the
use cases and differences between RSL-based approaches with traditional hierarchical clustering using
other types of linkage criterion.

Management of Coding Project

The validation code for ensuring the optimized RSL implementation is given in R Example 0.1. I plan
to commit every day. Minimally, I should have a commit at least every once every three days; as the
theory behind the cluster tree is fairly involved, commits concerning existing cluster tree extensions may
take more time to implement. Furthermore, the code within the MLPACK library is newer C++ code,
augmenting the existing Dual-Tree Bor̊uvka algorithm to work with the RSL scheme may also take longer
to implement.

Schedule Conflicts

As of March 30, 2017, I have no other commitments. I have applied and awaiting responses from IBM
and DataONE, however in the case of conflicts, GSOC takes priority over any other potential offers.
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