19 Data Structures for Disjoint Sets

Some applications involve grouping n distinct elements into a collection
of disjoint sets—sets with no elements in common. These applications
often need to perform two operations in particular: finding the unique
set that contains a given element and uniting two sets. This chapter
explores methods for maintaining a data structure that supports these
operations.

Section 19.1 describes the operations supported by a disjoint-set data
structure and presents a simple application. Section 19.2 looks at a
simple linked-list implementation for disjoint sets. Section 19.3 presents
a more efficient representation using rooted trees. The running time
using the tree representation is theoretically superlinear, but for all
practical purposes it is linear. Section 19.4 defines and discusses a very
quickly growing function and its very slowly growing inverse, which
appears in the running time of operations on the tree-based
implementation, and then, by a complex amortized analysis, proves an
upper bound on the running time that is just barely superlinear.

19.1 Disjoint-set operations

A disjoint-set data structure maintains a collection /= {S1, S, ..., Sk}

of disjoint dynamic sets. To identify each set, choose a representative,
which is some member of the set. In some applications, it doesn’t matter
which member is used as the representative; it matters only that if you
ask for the representative of a dynamic set twice without modifying the

set between the requests, you get the same answer both times. Other
applications may require a prespecified rule for choosing the
representative, such as choosing the smallest member in the set (for a set
whose elements can be ordered).

As in the other dynamic-set implementations we have studied, each
element of a set is represented by an object. Letting x denote an object,
we’ll see how to support the following operations:

MAKE-SET(x), where x does not already belong to some other set,
creates a new set whose only member (and thus representative) is x.

UNION(x, p) unites two disjoint, dynamic sets that contain x and y, say
Sx and Sy, into a new set that is the union of these two sets. The

representative of the resulting set 1s any member of S, U S, although

many implementations of UNION specifically choose the
representative of either Sy or Sy, as the new representative. Since the

sets in the collection must at all times be disjoint, the UNION
operation destroys sets S, and Sy, removing them from the collection

o/ In practice, implementations often absorb the elements of one of
the sets into the other set.

FIND-SET(x) returns a pointer to the representative of the unique set
containing x.

Throughout this chapter, we’ll analyze the running times of disjoint-
set data structures in terms of two parameters: n, the number of MAKE-
SET operations, and m, the total number of MAKE-SET, UNION, and
FIND-SET operations. Because the total number of operations m
includes the n MAKE-SET operations, m > n. The first n operations are
always MAKE-SET operations, so that after the first n operations, the
collection consists of n singleton sets. Since the sets are disjoint at all
times, each UNION operation reduces the number of sets by 1. After n —
1 UNION operations, therefore, only one set remains, and so at most n —
1 UNION operations can occur.

An application of disjoint-set data structures

One of the many applications of disjoint-set data structures arises in
determining the connected components of an undirected graph (see
Section B.4). Figure 19.1(a), for example, shows a graph with four
connected components.

The procedure CONNECTED-COMPONENTS on the following
page uses the disjoint-set operations to compute the connected
components of a graph. Once the CONNECTED-COMPONENTS
procedure has preprocessed the graph, the procedure SAME-
COMPONENT answers queries about whether two vertices belong to
the same connected component. In pseudocode, we denote the set of
vertices of a graph G by G.V and the set of edges by G.E.

The procedure CONNECTED-COMPONENTS initially places each
vertex v in its own set. Then, for each edge (u, v), it unites the sets
containing u and v. By Exercise 19.1-2, after all the edges are processed,
two vertices belong to the same connected component if and only if the
objects corresponding to the vertices belong to the same set. Thus
CONNECTED-COMPONENTS computes sets in such a way that the
procedure SAME-COMPONENT can determine whether two vertices
are in the same connected component. Figure 19.1(b) illustrates how
CONNECTED-COMPONENTS computes the disjoint sets.

a —.b e Edge processed Collection of disjoint sets
Lo] initalsets | {a} {8} {c}{@}{e} (B (& W} {3 O
¢ d f b, d) {a} {b.d} {c} {et {# {at {1y {3 U}
| (e.N {a} {b.d} {c} {e.f} {g} (B} {i} U}
h)—i 8 (a,c) {a.c} {b.d} {e.f} {g} (B} {i} {1}
(h, D) {a.c} {b.d} {e.[} {8} {h.1i} Ut
J (a,b) {a.b,c.d} {e.f} {8} {h.1} {3
.8 {a,b,c.d} {e.f.8} {h,i} {}
(b,0) {a.b,c,d} {e.f. g} {h,i} {3

(@) (b)

Figure 19.1 (a) A graph with four connected components: {a, b, ¢, d}, {e, f, g}, {h, i}, and {j }. (b)
The collection of disjoint sets after processing each edge.

CONNECTED-COMPONENTS(G)

1 for each vertex v € G.V

2 MAKE-SET(v)

3 for each edge (v, v) € G.E

4 if FIND-SET(u) # FIND-SET(v)
5 UNION(u, v)

SAME-COMPONENT (u, v)

1if FIND-SET(u) == FIND-SET(v)
2 return TRUE

3 else returnFALSE

In an actual implementation of this connected-components
algorithm, the representations of the graph and the disjoint-set data
structure would need to reference each other. That is, an object
representing a vertex would contain a pointer to the corresponding
disjoint-set object, and vice versa. Since these programming details
depend on the implementation language, we do not address them further
here.

When the edges of the graph are static—not changing over time—
depth-first search can compute the connected components faster (see
Exercise 20.3-12 on page 572). Sometimes, however, the edges are added
dynamically, with the connected components updated as each edge is
added. In this case, the implementation given here can be more efficient
than running a new depth-first search for each new edge.

Exercises

19.1-1

The CONNECTED-COMPONENTS procedure is run on the
undirected graph G = (V, E), where V= {a, b, c, d, e, f, g, h, i, j, k}, and
the edges of E are processed in the order (d, i), (f, k), (g, i), (b, g), (a, h),
i,)), (d, k), (b,)), (d, /), (g,)), (a, e). List the vertices in each connected
component after each iteration of lines 3-5.

19.1-2
Show that after all edges are processed by CONNECTED-
COMPONENTS, two vertices belong to the same connected component

if and only if they belong to the same set.

19.1-3

During the execution of CONNECTED-COMPONENTS on an
undirected graph G = (V, E) with k connected components, how many
times 1s FIND-SET called? How many times is UNION called? Express
your answers in terms of | V|, |E], and k.

19.2 Linked-list representation of disjoint sets

Figure 19.2(a) shows a simple way to implement a disjoint-set data
structure: each set is represented by its own linked list. The object for
each set has attributes head, pointing to the first object in the list, and
tail, pointing to the last object. Each object in the list contains a set
member, a pointer to the next object in the list, and a pointer back to the
set object. Within each linked list, the objects may appear in any order.
The representative is the set member in the first object in the list.

With this linked-list representation, both MAKE-SET and FIND-
SET require only O(1) time. To carry out MAKE-SET(x), create a new
linked list whose only object is x. For FIND-SET(x), just follow the
pointer from x back to its set object and then return the member in the
object that head points to. For example, in Figure 19.2(a), the call FIND-
SET(g) returns f.

- T e ——— N A
(\l \ | | l I |
| | | | | | |
(a) v f 8 d AR c h € b
S head D > > 2 S head D > 7
1 2 A
tail IL } tail =~
o S N h
Y
e | |
l I I i i i i i
() f g d c I e b
head IL > 7
tail D -

Figure 19.2 (a) Linked-list representations of two sets. Set S contains members d, f, and g, with
representative f, and set S» contains members b, ¢, e, and A, with representative ¢. Each object in

the list contains a set member, a pointer to the next object in the list, and a pointer back to the set
object. Each set object has pointers head and tail to the first and last objects, respectively. (b) The
result of UNION(g, e), which appends the linked list containing e to the linked list containing g.
The representative of the resulting set is f. The set object for €’s list, S, is destroyed.

A simple implementation of union

The simplest implementation of the UNION operation using the linked-
list set representation takes significantly more time than MAKE-SET or
FIND-SET. As Figure 19.2(b) shows, the operation UNION(x, y)
appends y’s list onto the end of x’s list. The representative of x’s list
becomes the representative of the resulting set. To quickly find where to
append y’s list, use the tail pointer for x’s list. Because all members of y’s
list join x’s list, the UNION operation destroys the set object for y’s list.
The UNION operation 1s where this implementation pays the price for
FIND-SET taking constant time: UNION must also update the pointer
to the set object for each object originally on y’s list, which takes time
linear in the length of y’s list. In Figure 19.2, for example, the operation
UNION(g, e) causes pointers to be updated in the objects for b, ¢, e, and
h.

In fact, we can construct a sequence of m operations on n objects that

requires @(nz) time. Starting with objects x1, x2, ... , Xy, execute the

sequence of n MAKE-SET operations followed by n — 1 UNION
operations shown in Figure 19.3, so that m = 2n—1. The n MAKE-SET
operations take ®(n) time. Because the ith UNION operation updates i
objects, the total number of objects updated by all n—1 UNION
operations forms an arithmetic series:

Operation Number of objects updated
MAKE-SET(xy) 1
MAKE-SET(x,) 1
MAKE-SET(xy) 1
UNION(x2,x1) 1
UNION(x3,x3) 2
UNION(x4,x3) 3

L.:\'IO.\'(.\'N Xn—1) n—1

Figure 19.3 A sequence of 2n — 1 operations on n objects that takes @(nz) time, or ®(n) time per
operation on average, using the linked-list set representation and the simple implementation of
UNION.

n—1
Zi = O(n?).
i=1

The total number of operations is 2n—1, and so each operation on
average requires ®(n) time. That is, the amortized time of an operation is
B(n).

A weighted-union heuristic

In the worst case, the above implementation of UNION requires an
average of ®(n) time per call, because it might be appending a longer list
onto a shorter list, and the procedure must update the pointer to the set
object for each member of the longer list. Suppose instead that each list
also includes the length of the list (which can be maintained
straightforwardly with constant overhead) and that the UNION

procedure always appends the shorter list onto the longer, breaking ties
arbitrarily. With this simple weighted-union heuristic, a single UNION
operation can still take Q(7n) time if both sets have ()(n) members. As the
following theorem shows, however, a sequence of m MAKE-SET,
UNION, and FIND-SET operations, n of which are MAKE-SET
operations, takes O(m + n lIg n) time.

Theorem 19.1

Using the linked-list representation of disjoint sets and the weighted-
union heuristic, a sequence of m MAKE-SET, UNION, and FIND-SET
operations, n of which are MAKE-SET operations, takes O(m + n 1g n)
time.

Proof Because each UNION operation unites two disjoint sets, at most
n — 1 UNION operations occur over all. We now bound the total time
taken by these UNION operations. We start by determining, for each
object, an upper bound on the number of times the object’s pointer back
to its set object 1s updated. Consider a particular object x. Each time x’s
pointer is updated, x must have started in the smaller set. The first time
x’s pointer is updated, therefore, the resulting set must have at least 2
members. Similarly, the next time x’s pointer is updated, the resulting set
must have had at least 4 members. Continuing on, for any k < n, after x’s

pointer has been updated [Ig k] times, the resulting set must have at least
k members. Since the largest set has at most » members, each object’s

pointer is updated at most [lg n] times over all the UNION operations.
Thus the total time spent updating object pointers over all UNION
operations is O(n 1g n). We must also account for updating the tail
pointers and the list lengths, which take only ©(1) time per UNION
operation. The total time spent in all UNION operations is thus O(n 1g
n).

The time for the entire sequence of m operations follows. Each
MAKE-SET and FIND-SET operation takes O(1) time, and there are
O(m) of them. The total time for the entire sequence 1s thus O(m + n Ig
n).

Exercises

19.2-1

Write pseudocode for MAKE-SET, FIND-SET, and UNION using the
linked-list representation and the weighted-union heuristic. Make sure to
specify the attributes that you assume for set objects and list objects.

19.2-2

Show the data structure that results and the answers returned by the
FIND-SET operations in the following program. Use the linked-list
representation with the weighted-union heuristic. Assume that if the sets
containing x; and Xj have the same size, then the operation UNION(x;,

xj) appends x;’s list onto x;’s list.

ifori=1to 16

2 MAKE-SET(x;)
3sfori=1to 15by2

4 UNION(x;, xj+1)
sfori=1to13by4

6 UNION(x;, xj+2)
7UNION(x1, x35)
§UNION(x11, x13)
9UNION(x1, x10)
10FIND-SET(x»)
11FIND-SET(x9)

19.2-3

Adapt the aggregate proof of Theorem 19.1 to obtain amortized time
bounds of O(1) for MAKE-SET and FIND-SET and O(lg n) for
UNION using the linked-list representation and the weighted-union
heuristic.

19.2-4

Give a tight asymptotic bound on the running time of the sequence of
operations in Figure 19.3 assuming the linked-list representation and the
weighted-union heuristic.

19.2-5

Professor Gompers suspects that it might be possible to keep just one
pointer in each set object, rather than two (head and tail), while keeping
the number of pointers in each list element at two. Show that the
professor’s suspicion is well founded by describing how to represent each
set by a linked list such that each operation has the same running time as
the operations described in this section. Describe also how the
operations work. Your scheme should allow for the weighted-union
heuristic, with the same effect as described in this section. (Hint: Use the
tail of a linked list as its set’s representative.)

19.2-6

Suggest a simple change to the UNION procedure for the linked-list
representation that removes the need to keep the tail pointer to the last
object in each list. Regardless of whether the weighted-union heuristic is
used, your change should not change the asymptotic running time of the
UNION procedure. (Hint: Rather than appending one list to another,
splice them together.)

19.3 Disjoint-set forests

A faster implementation of disjoint sets represents sets by rooted trees,
with each node containing one member and each tree representing one
set. In a disjoint-set forest, illustrated in Figure 19.4(a), each member
points only to its parent. The root of each tree contains the
representative and is its own parent. As we’ll see, although the
straightforward algorithms that use this representation are no faster than
ones that use the linked-list representation, two heuristics—“union by
rank” and “path compression”—yield an asymptotically optimal
disjoint-set data structure.

The three disjoint-set operations have simple implementations. A
MAKE-SET operation simply creates a tree with just one node. A
FIND-SET operation follows parent pointers until it reaches the root of
the tree. The nodes visited on this simple path toward the root constitute
the find path. A UNION operation, shown in Figure 19.4(b), simply
causes the root of one tree to point to the root of the other.

-\ N\ ‘,/'\"
f
s
A
h e

=
o

oo —>»{a))_

o — 0,

(@ (b)

Figure 19.4 A disjoint-set forest. (a) Trees representing the two sets of Figure 19.2. The tree on
the left represents the set {b, ¢, e, h}, with ¢ as the representative, and the tree on the right
represents the set {d, f, g}, with f'as the representative. (b) The result of UNION (e, g).

Heuristics to improve the running time

So far, disjoint-set forests have not improved on the linked-list
implementation. A sequence of n — 1 UNION operations could create a
tree that is just a linear chain of n nodes. By using two heuristics,
however, we can achieve a running time that is almost linear in the total
number m of operations.

The first heuristic, union by rank, is similar to the weighted-union
heuristic we used with the linked-list representation. The common-sense
approach is to make the root of the tree with fewer nodes point to the
root of the tree with more nodes. Rather than explicitly keeping track of
the size of the subtree rooted at each node, however, we’ll adopt an
approach that eases the analysis. For each node, maintain a rank, which
1s an upper bound on the height of the node. Union by rank makes the
root with smaller rank point to the root with larger rank during a
UNION operation.

The second heuristic, path compression, is also quite simple and
highly effective. As shown in Figure 19.5, FIND-SET operations use it to
make each node on the find path point directly to the root. Path
compression does not change any ranks.

Pseudocode for disjoint-set forests

The union-by-rank heuristic requires its implementation to keep track of
ranks. With each node x, maintain the integer value x.rank, which is an
upper bound on the height of x (the number of edges in the longest
simple path from a descendant leaf to x). When MAKE-SET creates a
singleton set, the single node in the corresponding tree has an initial rank
of 0. Each FIND-SET operation leaves all ranks unchanged. The
UNION operation has two cases, depending on whether the roots of the
trees have equal rank. If the roots have unequal ranks, make the root
with higher rank the parent of the root with lower rank, but don’t
change the ranks themselves. If the roots have equal ranks, arbitrarily
choose one of the roots as the parent and increment its rank.

%

(@) (b)

Figure 19.5 Path compression during the operation FIND-SET. Arrows and self-loops at roots
are omitted. (a) A tree representing a set prior to executing FIND-SET(«). Triangles represent
subtrees whose roots are the nodes shown. Each node has a pointer to its parent. (b) The same set
after executing FIND-SET(a). Each node on the find path now points directly to the root.

Let’s put this method into pseudocode, appearing on the next page.
The parent of node x is denoted by x.p. The LINK procedure, a
subroutine called by UNION, takes pointers to two roots as inputs. The
FIND-SET procedure with path compression, implemented recursively,
turns out to be quite simple.

The FIND-SET procedure is a two-pass method: as it recurses, it
makes one pass up the find path to find the root, and as the recursion
unwinds, it makes a second pass back down the find path to update each
node to point directly to the root. Each call of FIND-SET(x) returns x.p
in line 3. If x 1s the root, then FIND-SET skips line 2 and just returns
x.p, which is x. In this case the recursion bottoms out. Otherwise, line 2
executes, and the recursive call with parameter x.p returns a pointer to
the root. Line 2 updates node x to point directly to the root, and line 3
returns this pointer.

MAKE-SET(x)
1 X.p=x
2 x.rank =0

UNION(x, »)
1 LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)

1 if x.rank > y.rank

2 yp=Xx

3elsexp=y

4 if x.rank == y.rank

5 y.rank = y.rank + 1

FIND-SET(x)

1ifx=xp Il not the root?
2 x.p = FIND-SET(x.p) Il the root becomes the parent
3 return x.p Il return the root

Effect of the heuristics on the running time

Separately, either union by rank or path compression improves the
running time of the operations on disjoint-set forests, and combining the
two heuristics yields an even greater improvement. Alone, union by rank
yields a running time of O(m lg n) for a sequence of m operations, n of
which are MAKE-SET (see Exercise 19.4-4), and this bound is tight (see

Exercise 19.3-3). Although we won’t prove it here, for a sequence of n
MAKE-SET operations (and hence at most » — 1 UNION operations)
and f FIND-SET operations, the worst-case running time using only the
path-compression heuristic 1s @(n + - (1 + logo+ f/nn)).

Combining union by rank and path compression gives a worst-case
running time of O(m a(n)), where a(n) is a very slowly growing function,
defined in Section 19.4. In any conceivable application of a disjoint-set
data structure, a(n) < 4, and thus, its running time is as good as linear in
m for all practical purposes. Mathematically speaking, however, it is
superlinear. Section 19.4 proves this O(ma(n)) upper bound.

Exercises

19.3-1

Redo Exercise 19.2-2 using a disjoint-set forest with union by rank and
path compression. Show the resulting forest with each node including its
x;j and rank.

19.3-2
Write a nonrecursive version of FIND-SET with path compression.

19.3-3

Give a sequence of m MAKE-SET, UNION, and FIND-SET
operations, n of which are MAKE-SET operations, that takes Q(m 1g n)
time when using only union by rank and not path compression.

19.3-4

Consider the operation PRINT-SET(x), which is given a node x and
prints all the members of x’s set, in any order. Show how to add just a
single attribute to each node in a disjoint-set forest so that PRINT-
SET(x) takes time linear in the number of members of x’s set and the
asymptotic running times of the other operations are unchanged.
Assume that you can print each member of the set in O(1) time.

* 19.3-5
Show that any sequence of m MAKE-SET, FIND-SET, and LINK
operations, where all the LINK operations appear before any of the

FIND-SET operations, takes only O(m) time when using both path
compression and union by rank. You may assume that the arguments to
LINK are roots within the disjoint-set forest. What happens in the same
situation when using only path compression and not union by rank?

% 19.4 Analysis of union by rank with path compression

As noted in Section 19.3, the combined union-by-rank and path-
compression heuristic runs in O(m a(n)) time for m disjoint-set
operations on n elements. In this section, we’ll explore the function a to
see just how slowly it grows. Then we’ll analyze the running time using
the potential method of amortized analysis.

A very quickly growing function and its very slowly growing inverse

For integers j, k > 0, we define the function 4j(j) as

fji+1 ifk =0,

£y | AYG) itk =1,

(19.1)

where the expression A7) uses the functional-iteration notation
defined in equation (3.30) on page 68. Specifically, equation (3.30) gives
A2, = Jjand 421 G) = A (427G for i > 1. We call the parameter
k the level of the function 4.

The function Aj(j) strictly increases with both j and k. To see just

how quickly this function grows, we first obtain closed-form expressions
for A1(j) and A7()).

Lemma 19.2
For any integer j > 1, we have A1(j) = 2j + 1.

Proof We first use induction on i to show that 4o (/) = j+i. For the

(0), - . . 2 . .
base case, Ay (j)=j=j+0, For the inductive step, assume that

A= j+(G—1). Then 4o ()= Ao(43 "G N=G+G=1))+1=j+i

Finally, we note that 41(/) = 47/ " (N =j+ (G + D) =2j + 1,

Lemma 19.3
For any integer j > 1, we have 47 () = 27+1(j +1)-1.

Proof We first use induction on i to show that 4i'(j) = 2'(j + 1) — 1,
For the base case, we have 41 (/) = j = 2°(j + 1) — 1. For the inductive

step, assume that Ay V() =j+G-), Then

AV(G) = A1A77V(G) = A4 G+ D) =) = 227G+ D) =D+ =2 +1)-241 =2/ (j+1)-1
.) AN V5 2) ARy 5 R
. Finally, we note that 42(/) = 4y " () =2""(+ D) -1,

Now we can see how quickly 4j(j) grows by simply examining A (1)
for levels k = 0, 1, 2, 3, 4. From the definition of Ag(j) and the above
lemmas, we have Ag(1) =1+ 1=2, 41(1)=2-1+1=3,and Ax(1) =

21+l (1 +1)—1=7. We also have

A3(1) = 47 (1)
= A(Ax(1))
= A(7)
=28.8-1
=21l
= 2047

and

Aq(1) = 4P)
= A3(43(1))
= A3(2047)

= A7%%(2047)

> A»(2047)

= 220485048 — 1
= 2059 _ 4

> 2056

= (24514

= 16514

> 1080,

which is the estimated number of atoms in the observable universe. (The

symbol “>>” denotes the “much-greater-than” relation.)
We define the inverse of the function Aj(n), for integer n > 0, by

am)=mink : A, (1) = n} . (19.2)

In words, a(n) 1s the lowest level k for which 4(1) 1s at least n. From the
above values of 4j(1), we see that

0 forO0<n<2,
| forn =3,
an)=<(2 ford<n<T7,
3 for8 <n <2047,
4 for2048 <n < A4(1).

It is only for values of n so large that the term “astronomical”
understates them (greater than A4(1), a huge number) that a(n) > 4, and

so a(n) < 4 for all practical purposes.

Properties of ranks

In the remainder of this section, we prove an O(ma(n)) bound on the
running time of the disjoint-set operations with union by rank and path
compression. In order to prove this bound, we first prove some simple
properties of ranks.

Lemma 19.4

For all nodes x, we have x.rank < x.p.rank, with strict inequality if x # x.p
(x 1s not a root). The value of x.rank is initially 0, increases through time
until x # x.p, and from then on, x.rank does not change. The value of
x.p.rank monotonically increases over time.

Proof The proof is a straightforward induction on the number of
operations, using the implementations of MAKE-SET, UNION, and
FIND-SET that appear on page 530, and is left as Exercise 19.4-1.

Corollary 19.5
On the simple path from any node going up toward a root, node ranks
strictly increase.

Lemma 19.6
Every node has rank at most n — 1.

Proof Each node’s rank starts at 0, and it increases only upon LINK
operations. Because there are at most » — 1 UNION operations, there
are also at most n — 1 LINK operations. Because each LINK operation
either leaves all ranks alone or increases some node’s rank by 1, all ranks
are at mostn — 1.

Lemma 19.6 provides a weak bound on ranks. In fact, every node has

rank at most |lg n] (see Exercise 19.4-2). The looser bound of Lemma
19.6 suffices for our purposes, however.

Proving the time bound

In order to prove the O(ma(n)) time bound, we’ll use the potential
method of amortized analysis from Section 16.3. In performing the
amortized analysis, 1t will be convenient to assume that we invoke the
LINK operation rather than the UNION operation. That is, since the
parameters of the LINK procedure are pointers to two roots, we act as
though we perform the appropriate FIND-SET operations separately.
The following lemma shows that even if we count the extra FIND-SET

operations induced by UNION calls, the asymptotic running time
remains unchanged.

Lemma 19.7

Suppose that we convert a sequence S' of m' MAKE-SET, UNION, and
FIND-SET operations into a sequence S of m MAKE-SET, LINK, and
FIND-SET operations by turning each UNION into two FIND-SET
operations followed by one LINK. Then, if sequence S runs in O(ma(n))
time, sequence S’ runs in O(m' a(n)) time.

Proof Since each UNION operation in sequence S’ is converted into
three operations in S, we have m' < m < 3m’, so that m = ®(m’'), Thus, an
O(m a(n)) time bound for the converted sequence S implies an O(m' a(n))
time bound for the original sequence §'.

From now on, we assume that the initial sequence of m' MAKE-SET,
UNION, and FIND-SET operations has been converted to a sequence
of m MAKE-SET, LINK, and FIND-SET operations. We now prove an
O(m a(n)) time bound for the converted sequence and appeal to Lemma
19.7 to prove the O(m' a(n)) running time of the original sequence of m'
operations.

Potential function

The potential function we use assigns a potential ¢q(x) to each node x in
the disjoint-set forest after g operations. For the potential Dy of the

entire forest after g operations, sum the individual node potentials:
®, =), #4(x). Because the forest is empty before the first operation, the
sum is taken over an empty set, and so @y = 0. No potential Dy 1s ever

negative.
The value of d)q(x) depends on whether x is a tree root after the gth
operation. If it is, or if x.rank = 0, then d)q(x) = a(n) * x.rank.

Now suppose that after the gth operation, x is not a root and that
x.rank > 1. We need to define two auxiliary functions on x before we can

define d)q(x). First we define
level(x) = max {k : x.p.rank = Ay (x.rank)} . (19.3)

That 1s, level(x) is the greatest level k& for which Ay, applied to x’s rank, is
no greater than x’s parent’s rank.
We claim that

0 <levellx) < a(n), (19.4)
which we see as follows. We have

x.p.rank > x.rank + 1 (by Lemma 19.4 because x is not a root)
= Ag(x.rank) (by the definition (19.1) of 4(())),

which implies that level(x) > 0, and

Aa(n)(x.rank) > Aa(n)(l) (because Ag(j) is strictly increasing)
> n (by the definition (19.2) of a(n))
> x.p.rank (by Lemma 19.6),

which implies that level(x) < a(n).

For a given nonroot node x, the value of level(x) monotonically
increases over time. Why? Because x is not a root, its rank does not
change. The rank of x.p monotonically increases over time, since if x.p is
not a root then its rank does not change, and if x.p is a root then its rank
can never decrease. Thus, the difference between x.rank and x.p.rank
monotonically increases over time. Therefore, the value of k£ needed for
Aj(x.rank) to overtake x.p.rank monotonically increases over time as

well.
The second auxiliary function applies when x.rank > 1: iter(x) = max

iter(x) = max {i : x.p.rank = (x.rank)} . (19.5)

19\ el(x)

That is, iter(x) is the largest number of times we can iteratively apply
Alevel(x)- applied initially to x’s rank, before exceeding x’s parent’s rank.

We claim that when x.rank > 1, we have
1 < iter(x) < x.rank ., (19.6)

which we see as follows. We have

x.p.rank > Alevel(x)(x-m”k) (by the definition (19.3) of level(x))

= A (x.rank) (by the definition (3.30) of functional
iteration),

which implies that iter(x) > 1. We also have

ACTEEED (e = Alevel(x)+1(x-m”k) (by the definition (19.1) of Ax(j))

“Tlevel(x)

> x.p.rank (by the definition (19.3) of
level(x)),

which implies that iter(x) < x.rank. Note that because x.p.rank
monotonically increases over time, in order for iter(x) to decrease,
level(x) must increase. As long as level(x) remains unchanged, iter(x)
must either increase or remain unchanged.

With these auxiliary functions in place, we are ready to define the
potential of node x after ¢ operations:

| a(n) - x.rank if x 1s aroot or x.rank = 0,
Pq(x) = { (a(n)—level(x)) - x.rank — iter(x) (19.7)
I if x isnotarootand x.rank > 1.

We next investigate some useful properties of node potentials.

Lemma 19.8
For every node x, and for all operation counts g, we have

0< ¢q(x) <a(n) - x.rank.

Proof 1f x is a root or x.rank = 0, then (IJq(x) = a(n) - x.rank by

definition. Now suppose that x is not a root and that x.rank > 1. We can
obtain a lower bound on ¢q(x) by maximizing level(x) and iter(x). The

bounds (19.4) and (19.6) give a(n) — level(x) > 1 and iter(x) < x.rank.
Thus, we have

¢q(x) = (a(n) — level(x)) - x.rank — iter(x)

> x.rank — x.rank
= (.

Similarly, minimizing level(x) and iter(x) provides an upper bound on
¢q(x). By the bound (19.4), level(x) > 0, and by the bound (19.6), iter(x)
> 1. Thus, we have

By) < (aln) = 0) - x.rank = 1
= a(n) - x.rank — 1
< a(n) - x.rank.

Corollary 19.9
If node x is not a root and x.rank > 0, then d)q(x) < a(n) - x.rank.

Potential changes and amortized costs of operations

We are now ready to examine how the disjoint-set operations affect node
potentials. Once we understand how each operation can change the
potential, we can determine the amortized costs.

Lemma 19.10
Let x be a node that is not a root, and suppose that the gth operation is

either a LINK or a FIND-SET. Then after the gth operation, gbq(x) <
¢q_1(x). Moreover, if x.rank > 1 and either level(x) or iter(x) changes
due to the gth operation, then ¢q(x) < d)q_l(x) — 1. That is, x’s potential

cannot increase, and if it has positive rank and either level(x) or iter(x)
changes, then x’s potential drops by at least 1.

Proof Because x 1s not a root, the gth operation does not change x.rank,
and because n does not change after the initial » MAKE-SET
operations, a(n) remains unchanged as well. Hence, these components of
the formula for x’s potential remain the same after the gth operation. If

x.rank = 0, then ¢q(x) = ¢q_1(x) =0.

Now assume that x.rank > 1. Recall that level(x) monotonically
increases over time. If the gth operation leaves level(x) unchanged, then
iter(x) either increases or remains unchanged. If both level(x) and iter(x)

are unchanged, then d)q(x) = qu_l(x). If level(x) is unchanged and

iter(x) increases, then it increases by at least 1, and so ¢q(x) < ¢>q_1(x) —

1.

Finally, if the gth operation increases level(x), it increases by at least
1, so that the value of the term (a(n) — level(x)) - x.rank drops by at least
x.rank. Because level(x) increased, the value of iter(x) might drop, but
according to the bound (19.6), the drop i1s by at most x.rank — 1. Thus,
the increase in potential due to the change in iter(x) is less than the

decrease in potential due to the change in level(x), yielding ¢q(x) <

¢q—l(x) -1

Our final three lemmas show that the amortized cost of each MAKE-
SET, LINK, and FIND-SET operation is O(a(n)). Recall from equation
(16.2) on page 456 that the amortized cost of each operation is its actual
cost plus the change in potential due to the operation.

Lemma 19.11
The amortized cost of each MAKE-SET operation is O(1).

Proof Suppose that the gth operation is MAKE-SET(x). This operation
creates node x with rank 0, so that ¢q(x) = 0. No other ranks or
potentials change, and so Oy =Dy—1. Noting that the actual cost of the

MAKE-SET operation is O(1) completes the proof.
|

Lemma 19.12
The amortized cost of each LINK operation 1s O(a(n)).

Proof Suppose that the gth operation is LINK(x, y). The actual cost of
the LINK operation is O(1). Without loss of generality, suppose that the
LINK makes y the parent of x.

To determine the change in potential due to the LINK, note that the
only nodes whose potentials may change are x, y, and the children of y
just prior to the operation. We’ll show that the only node whose
potential can increase due to the LINK is y, and that its increase is at
most a(n):

« By Lemma 19.10, any node that is y’s child just before the LINK
cannot have its potential increase due to the LINK.

o From the definition (19.7) of ¢q(x), note that, since x was a root
just before the gth operation, (bq_l(x) = a(n) - x.rank at that time.
If x.rank = 0, then d)q(x) = d)q_l(x) = 0. Otherwise,

¢4(x) < a(n) - x.rank (by Corollary 19.9)
- d’q—l(x),

and so x’s potential decreases.

« Because y is a root prior to the LINK, d)q_l(y) = a(n) - y.rank.

After the LINK operation, y remains a root, so that y’s potential
still equals a(n) times its rank after the operation. The LINK
operation either leaves y’s rank alone or increases y’s rank by 1.

Therefore, either @y(y) = @4—1(») or P4(») = Pg—1(») + a(n).

The increase in potential due to the LINK operation, therefore, is at
most a(n). The amortized cost of the LINK operation is O(1) + a(n) =
O(a(n)).

Lemma 19.13
The amortized cost of each FIND-SET operation is O(a(n)).

Proof Suppose that the gth operation is a FIND-SET and that the find
path contains s nodes. The actual cost of the FIND-SET operation is
O(s). We will show that no node’s potential increases due to the FIND-
SET and that at least max {0, s — (a(n) + 2)} nodes on the find path have
their potential decrease by at least 1.

We first show that no node’s potential increases. Lemma 19.10 takes
care of all nodes other than the root. If x is the root, then its potential 1s
a(n) - x.rank, which does not change due to the FIND-SET operation.

Now we show that at least max {0, s — (a(n) + 2)} nodes have their
potential decrease by at least 1. Let x be a node on the find path such
that x.rank > 0 and x is followed somewhere on the find path by another
node y that is not a root, where level(y) = level(x) just before the FIND-
SET operation. (Node y need not immediately follow x on the find path.)
All but at most a(n) + 2 nodes on the find path satisfy these constraints
on x. Those that do not satisfy them are the first node on the find path
(if 1t has rank 0), the last node on the path (i.e., the root), and the last
node w on the path for which level(w) = k, foreach k =0, 1, 2, ... , a(n)
-1.

Consider such a node x. It has positive rank and is followed
somewhere on the find path by nonroot node y such that level(y) =
level(x) before the path compression occurs. We claim that the path
compression decreases x’s potential by at least 1. To prove this claim, let
k = level(x) = level(y) and i = iter(x) before the path compression occurs.
Just prior to the path compression caused by the FIND-SET, we have

x.p.rank 2 A" (x.rank) (by the definition (19.5) of iter(x)),
y.p.rank 2 Aj(y.rank) (by the definition (19.3) of level(y)),

y.rank > x.p.rank (by Corollary 19.5 and because y follows x on the
find path).

Putting these inequalities together gives

y.p.rank > Aj(y.rank)

\V4

Aj(x.p.rank) (because Aj(j) 1s strictly increasing)

(i)

Ak (A

\V4

= A" (x.rank) (by the definition (3.30) of functional iteration).

Because path compression makes x and y have the same parent, after
path compression we have x.p.rank = y.p.rank. The parent of y might
change due to the path compression, but if it does, the rank of y’s new

parent compared with the rank of »’s parent before path compression is
either the same or greater. Since x.rank does not change,
x.p.rank = y.p.rank = .4L"+l'(.\'.7'aizk') after path compression. By the
definition (19.5) of the iter function, the value of iter(x) increases from i
to at least i + 1. By Lemma 19.10, (bq(x) < ¢q_1(x) — 1, so that x’s
potential decreases by at least 1.

The amortized cost of the FIND-SET operation is the actual cost
plus the change in potential. The actual cost is O(s), and we have shown
that the total potential decreases by at least max {0, s — (a(n) + 2)}. The
amortized cost, therefore, is at most O(s) — (s — (a(n) + 2)) = O(s) — s +
O(a(n)) = O(a(n)), since we can scale up the units of potential to
dominate the constant hidden in O(s). (See Exercise 19.4-6.)

Putting the preceding lemmas together yields the following theorem.

Theorem 19.14

A sequence of m MAKE-SET, UNION, and FIND-SET operations, n
of which are MAKE-SET operations, can be performed on a disjoint-set
forest with union by rank and path compression in O(m a(n)) time.

Proof Immediate from Lemmas 19.7, 19.11, 19.12, and 19.13.

Exercises

19.4-1
Prove Lemma 19.4.

19.4-2
Prove that every node has rank at most [1g n].

19.4-3
In light of Exercise 19.4-2, how many bits are necessary to store x.rank
for each node x?

19.4-4

Using Exercise 19.4-2, give a simple proof that operations on a disjoint-
set forest with union by rank but without path compression run in O(m
lg n) time.

19.4-5

Professor Dante reasons that because node ranks increase strictly along
a simple path to the root, node levels must monotonically increase along
the path. In other words, if x.rank > 0 and x.p is not a root, then level(x)
< level(x.p). Is the professor correct?

19.4-6

The proof of Lemma 19.13 ends with scaling the units of potential to
dominate the constant hidden in the O(s) term. To be more precise in the
proof, you need to change the definition (19.7) of the potential function
to multiply each of the two cases by a constant, say ¢, that dominates the
constant in the O(s) term. How must the rest of the analysis change to
accommodate this updated potential function?

* 19.4-7
Consider the function o'(n) = min {k : A}(1) 21g(n + 1)}. Show that o’'(n)

< 3 for all practical values of n and, using Exercise 19.4-2, show how to
modify the potential-function argument to prove that performing a
sequence of m MAKE-SET, UNION, and FIND-SET operations, n of
which are MAKE-SET operations, on a disjoint-set forest with union by
rank and path compression takes O(ma’'(n)) time.

Problems

19-1 Offline minimum

In the offline minimum problem, you maintain a dynamic set 7T of
elements from the domain {1, 2, ... , n} under the operations INSERT
and EXTRACT-MIN. The input is a sequence S of n INSERT and m
EXTRACT-MIN calls, where each key in {1, 2, ... , n} is inserted exactly
once. Your goal is to determine which key is returned by each
EXTRACT-MIN call. Specifically, you must fill in an array extracted|1:
m], where for i = 1, 2, ... , m, extracted[i] is the key returned by the ith

EXTRACT-MIN call. The problem is “offline” in the sense that you are
allowed to process the entire sequence S before determining any of the
returned keys.

a. Consider the following instance of the offline minimum problem, in
which each operation INSERT(i) is represented by the value of i and
each EXTRACT-MIN is represented by the letter E:

4,8,E,3,E,9,2,6,E,E,E, 1,7, E, 5.
Fill in the correct values in the extracted array.

To develop an algorithm for this problem, break the sequence S into
homogeneous subsequences. That is, represent .S by

I1,E, In, E, I3, ..., I;j, E, Ly+1,

where each E represents a single EXTRACT-MIN call and each Ij

represents a (possibly empty) sequence of INSERT calls. For each
subsequence I;, initially place the keys inserted by these operations into a

set Kj, which 1s empty if 1; is empty. Then execute the OFFLINE-
MINIMUM procedure.

OFFLINE-MINIMUM(m, n)

1 fori=1ton

2 determine j such that i € K;

3 ifjErm+1

4 extracted[j] = i

5 let / be the smallest value greater than j for which set Kj exists
6 Kj=K; U K|, destroying K;

7 return extracted

b. Argue that the array extracted returned by OFFLINE-MINIMUM is
correct.

¢. Describe how to implement OFFLINE-MINIMUM efficiently with a
disjoint-set data structure. Give as tight a bound as you can on the
worst-case running time of your implementation.

19-2 Depth determination

In the depth-determination problem, you maintain a forest I = {7} of
rooted trees under three operations:

MAKE-TREE(v) creates a tree whose only node is v.
FIND-DEPTH(v) returns the depth of node v within its tree.

GRAFT(r, v) makes node r, which is assumed to be the root of a tree,
become the child of node v, which is assumed to be in a different tree
from r but may or may not itself be a root.

a. Suppose that you use a tree representation similar to a disjoint-set
forest: v.p is the parent of node v, except that v.p = v if v is a root.
Suppose further that you implement GRAFT(r, v) by setting r.p = v
and FIND-DEPTH(v) by following the find path from v up to the root,
returning a count of all nodes other than v encountered. Show that the
worst-case running time of a sequence of m MAKE-TREE, FIND-

DEPTH, and GRAFT operations is @(mZ).

By using the union-by-rank and path-compression heuristics, you can
reduce the worst-case running time. Use the disjoint-set forest &/'= {5},

where each set S; (which is itself a tree) corresponds to a tree 7; in the

forest J. The tree structure within a set S;, however, does not necessarily
correspond to that of 7j. In fact, the implementation of S; does not

record the exact parent-child relationships but nevertheless allows you to
determine any node’s depth in 77;.

The key idea is to maintain in each node v a “pseudodistance” v.d,
which is defined so that the sum of the pseudodistances along the simple
path from v to the root of its set S; equals the depth of v in 7. That 1s, if

the simple path from v to its root in S; 1s v, v{, ... , Vk, Where vg = v and
Vi 1s S’s root, then the depth of v in 77 is 2j=oVi-d,
b. Give an implementation of MAKE-TREE.

¢. Show how to modify FIND-SET to implement FIND-DEPTH. Your
implementation should perform path compression, and its running

time should be linear in the length of the find path. Make sure that
your implementation updates pseudodistances correctly.

d. Show how to implement GRAFT(r, v), which combines the sets
containing r and v, by modifying the UNION and LINK procedures.
Make sure that your implementation updates pseudodistances
correctly. Note that the root of a set .S; is not necessarily the root of the

corresponding tree 7.

e. Give a tight bound on the worst-case running time of a sequence of m
MAKE-TREE, FIND-DEPTH, and GRAFT operations, n of which
are MAKE-TREE operations.

19-3 Tarjan’s offline lowest-common-ancestors algorithm

The lowest common ancestor of two nodes u and v in a rooted tree 7 is
the node w that is an ancestor of both # and v and that has the greatest
depth in T. In the offline lowest-common-ancestors problem, you are given
a rooted tree 7 and an arbitrary set P = {{u, v}} of unordered pairs of
nodes in 7, and you wish to determine the lowest common ancestor of
each pair in P.

To solve the offline lowest-common-ancestors problem, the LCA
procedure on the following page performs a tree walk of T with the
initial call LCA(T.root). Assume that each node 1s colored WHITE prior
to the walk.

a. Argue that line 10 executes exactly once for each pair {u, v} € P.

b. Argue that at the time of the call LCA(u), the number of sets in the
disjoint-set data structure equals the depth of u in T.

LCA(u)

1 MAKE-SET ()

2 FIND-SET(u).ancestor = u
3for each child vofuin T

4 LCA(®v)

5 UNION(u, v)

6 FIND-SET(u).ancestor = u

7u.color = BLACK

gfor each node v such that {u, v} € P

9 if v.color == BLACK

10 print “The lowest common ancestor of”
u “and” v “1s” FIND-SET(v).ancestor

¢. Prove that LCA correctly prints the lowest common ancestor of # and
v for each pair {u, v} € P.

d. Analyze the running time of LCA, assuming that you use the
implementation of the disjoint-set data structure in Section 19.3.

Chapter notes

Many of the important results for disjoint-set data structures are due at
least in part to R. E. Tarjan. Using aggregate analysis, Tarjan [427, 429]
gave the first tight upper bound in terms of the very slowly growing

inverse @(m.n) of Ackermann’s function. (The function Ax(j) given in

Section 19.4 is similar to Ackermann’s function, and the function a(n) is
similar to @(m.n). Both a(n) and @(m.7) are at most 4 for all conceivable
values of m and n.) An upper bound of O(m Ig* n) was proven earlier by
Hopcroft and Ullman [5, 227]. The treatment in Section 19.4 1s adapted
from a later analysis by Tarjan [431], which is based on an analysis by
Kozen [270]. Harfst and Reingold [209] give a potential-based version of
Tarjan’s earlier bound.

Tarjan and van Leeuwen [432] discuss variants on the path-
compression heuristic, including “one-pass methods,” which sometimes
offer better constant factors in their performance than do two-pass
methods. As with Tarjan’s earlier analyses of the basic path-compression
heuristic, the analyses by Tarjan and van Leeuwen are aggregate. Harfst
and Reingold [209] later showed how to make a small change to the
potential function to adapt their path-compression analysis to these one-
pass variants. Goel et al. [182] prove that linking disjoint-set trees
randomly yields the same asymptotic running time as union by rank.
Gabow and Tarjan [166] show that in certain applications, the disjoint-
set operations can be made to run in O(m) time.

