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Theorem.  Starting from empty Fibonacci heap, any sequence of 

a1 insert, a2 delete-min, and a3 decrease-key operations takes 

O(a1 + a2 log n + a3) time. 
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Priority Queues Performance Cost Summary 

†  amortized n = number of elements in priority queue 

Fibonacci Heaps 

History.   [Fredman and Tarjan, 1986] 
  Ingenious data structure and analysis. 

  Original motivation:  improve Dijkstra's shortest path algorithm 

  Repeat: extract-min 

               for all neighbors 

                     if new value lower then decrease key 

  Complexity reduced from O(E log V ) to O(E + V log V ). 

V insert, V delete-min, E decrease-key 

Our pictures vs. the detailed implementation	
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Fibonacci Heaps:  Structure 

Fibonacci heap. 
  Set of heap-ordered trees. 

  Maintain pointer to minimum element. 

  Set of marked nodes. 

roots heap-ordered tree 

each parent smaller than its children 
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Fibonacci Heaps:  Structure 

Fibonacci heap. 
  Set of heap-ordered trees. 

  Maintain pointer to minimum element. 

  Set of marked nodes. 

min 

find-min takes O(1) time 
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Fibonacci Heaps:  Structure 

Fibonacci heap. 
  Set of heap-ordered trees. 

  Maintain pointer to minimum element. 

  Set of marked nodes. 

min 

marked 

Part I: intuition: insert, extract-min, decrease-key 

First we go through some ideas for the operations and from there 
for the potential function 

 

Cost will turn out to depend on rank and we will make sure via extra 

operations that rank is bounded 

Insert 

Fibonacci Heaps:  Insert 

Insert. 
  Create a new singleton tree. 

  Add to root list; update min pointer (if necessary). 

7 23 

30 

17 

35 

26 46 

24 

39 

41 18 52 

3 

44 

21 

insert 21 

min 

Heap H 

Fibonacci Heaps:  Insert 

Insert. 
  Create a new singleton tree. 

  Add to root list; update min pointer (if necessary). 
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Delete Min 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  But now we have to find the new min element and this may be 

expensive à plan to pay for this step using potential function 

  à potential proportional to length of root list 
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Decrease Key 

24 

46 

17 

30 

23 

7 

88 

26 

21 

52 

39 

18 

41 

38 

72 

Fibonacci Heaps:  Decrease Key 
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Case 2a.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 
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decrease-key of x from 29 to 15 
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Case 2a.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 

35 
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decrease-key of x from 29 to 15 

p 

x 

Case 2a.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 
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Fibonacci Heaps:  Decrease Key 
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Case 2a.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  New Problem: node with high rank but few descendants; this will 

interfere with our wish to maintain low rank 

  Fix: restructure more (and use marked nodes in potential 

function)  
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Fibonacci Heaps:  Decrease Key 
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Fibonacci Heaps:  Notation 

Notation. 
  n             = number of nodes in heap. 

  rank(x)    = number of children of node x. 

  rank(H)    = max rank of any node in heap H. 

  trees(H)   = number of trees in heap H. 

  marks(H) = number of marked nodes in heap H. 

7 23 

30 

17 

35 

26 46 

24 

39 

41 18 52 

3 

44 

rank = 3     min 

Heap H 

trees(H) = 5 marks(H) = 3 
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n = 14 

Fibonacci Heaps:  Potential Function 

7 23 

30 

17 

35 

26 46 

24 

Φ(H) = 5 + 2⋅3 = 11 

39 

41 18 52 

3 

44 

min 

Heap H 

 Φ(H)  = trees(H) + 2 ⋅ marks(H) 

potential of heap H 

trees(H) = 5 marks(H) = 3 

marked 

Insert 
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Fibonacci Heaps:  Insert 

Insert. 
  Create a new singleton tree. 

  Add to root list; update min pointer (if necessary). 
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Fibonacci Heaps:  Insert 

Insert. 
  Create a new singleton tree. 

  Add to root list; update min pointer (if necessary). 
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Fibonacci Heaps:  Insert Analysis 

Actual cost.  O(1) 

Change in potential.  +1 

Amortized cost.  O(1) 
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 Φ(H)  = trees(H) + 2 ⋅ marks(H) 

potential of heap H 

Delete Min 

Linking Operation 

Linking operation.  Make larger root be a child of smaller root. 
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tree T' 

smaller root larger root still heap-ordered 

Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 

39 

41 18 52 

3 

44 

17 23 

30 

7 

35 

26 46 

24 

min 



4/9/13 

6 

Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min 

Delete min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same rank. 
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Fibonacci Heaps:  Delete Min Analysis 

Delete min. 
 

 

 

Actual cost.   O(rank(H))  + O(trees(H))  

  O(rank(H)) to meld min's children into root list. 

  O(rank(H)) + O(trees(H)) to update min. 

  O(rank(H)) + O(trees(H)) to consolidate trees. 

Change in potential.  O(rank(H)) - trees(H) 

  trees(H' )  ≤ rank(H) + 1 since no two trees have same rank. 

  ΔΦ(H) ≤ rank(H) + 1 - trees(H). 

 

Amortized cost.  O(rank(H)) 

 Φ(H)  = trees(H) + 2 ⋅ marks(H) 

potential function 

Decrease Key Intuition for deceasing the key of node x. 
  If heap-order is not violated, just decrease the key of x. 

  Otherwise, cut tree rooted at x and meld into root list. 

  To keep trees flat:  as soon as a node has its second child cut, 

cut it off and meld into root list (and unmark it). 
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Fibonacci Heaps:  Decrease Key 
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Case 1.  [heap order not violated] 
  Decrease key of x. 

  Change heap min pointer (if necessary). 
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Fibonacci Heaps:  Decrease Key 

29 

35 
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x 

decrease-key of x from 46 to 29 

Case 1.  [heap order not violated] 
  Decrease key of x. 

  Change heap min pointer (if necessary). 
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Fibonacci Heaps:  Decrease Key 

35 

min 

x 

decrease-key of x from 46 to 29 

Case 2a.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 
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Case 2a.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 

35 
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decrease-key of x from 29 to 15 

p 
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Case 2a.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Case 2a.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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35 

Case 2b.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 
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Case 2b.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 
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x 

p 

decrease-key of x from 35 to 5 

Fibonacci Heaps:  Decrease Key 
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Case 2b.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 

 

Case 2b.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 
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Case 2b.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 

15 

72 

decrease-key of x from 35 to 5 
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Case 2b.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 
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Case 2b.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 

15 24 

72 

decrease-key of x from 35 to 5 

x p p' 
min 

don't mark 
parent if 
it's a root 

p'' 

Decrease-key. 
 

 

 

Actual cost.  O(c) 

  O(1) time for changing the key. 

  O(1) time for each of c cuts, plus melding into root list. 

Change in potential.  O(1) - c 

  trees(H')   = trees(H) + c. 

  marks(H') ≤  marks(H) - c + 2. 

  ΔΦ  ≤ c  +  2 ⋅ (-c + 2)  =  4 - c. 

Amortized cost.  O(1) 

Fibonacci Heaps:  Decrease Key Analysis 

 Φ(H)  = trees(H) + 2 ⋅ marks(H) 

potential function 

Analysis 

Analysis Summary 

Insert.   O(1) 
Delete-min.  O(rank(H))  † 

Decrease-key.  O(1) † 

 

 

 

Key lemma.  rank(H) = O(log n). 

† amortized 

number of nodes is exponential in rank 

Fibonacci Heaps:  Bounding the Rank 

Lemma.  Fix a point in time. Let x be a node, and let y1, …, yk  denote 
its children in the order in which they were linked to x.  Then: 

 

 

Pf.   

  When yi was linked into x, x had at least i -1 children y1, …, yi-1. 

  Since only trees of equal rank are linked, at that time 

rank(yi) = rank(xi) ≥ i - 1. 

  Since then, yi  has lost at most one child. 

  Thus, right now rank(yi) ≥  i - 2. 

€ 

rank (yi ) ≥
0 if i =1
i−2 if i ≥1

$ 
% 
& 

or yi would have been cut 

x 

y1 y2 yk … 

Fibonacci Heaps:  Bounding the Rank 

Lemma.  Fix a point in time. Let x be a node, and let y1, …, yk  denote 
its children in the order in which they were linked to x.  Then: 

Def.  Let Fk be smallest possible tree of rank k satisfying property.   

F0 F1 F2 F3 F4 F5 

1 2 3 5 8 13 

€ 

rank (yi ) ≥
0 if i =1
i−2 if i ≥1

$ 
% 
& 

x 

y1 y2 yk … 
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Fibonacci Heaps:  Bounding the Rank 

Lemma.  Fix a point in time. Let x be a node, and let y1, …, yk  denote 
its children in the order in which they were linked to x.  Then: 

Def.  Let Fk be smallest possible tree of rank k satisfying property.   

F4 F5 

8 13 

F6 

8 + 13 = 21 
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rank (yi ) ≥
0 if i =1
i−2 if i ≥1
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y1 y2 yk … 

Fibonacci Heaps:  Bounding the Rank 

Lemma.  Fix a point in time. Let x be a node, and let y1, …, yk  denote 
its children in the order in which they were linked to x.  Then: 

Def.  Let Fk be smallest possible tree of rank k satisfying property.   

 

Fibonacci fact.  Fk  ≥  φk, where φ  =  (1 + √5) / 2  ≈ 1.618. 

 

Corollary.  rank(H) ≤ logφ n . golden ratio 

x 

y1 y2 yk … 

€ 

rank (yi ) ≥
0 if i =1
i−2 if i ≥1

$ 
% 
& 

Fibonacci Numbers 

Fibonacci Numbers:  Exponential Growth 

Def.  The Fibonacci sequence is:  1, 2, 3, 5, 8, 13, 21, … 

Lemma.   Fk  ≥  φk, where φ  =  (1 + √5) / 2 ≈ 1.618. 

 

Pf.  [by induction on k] 

  Base cases:  F0 = 1 ≥ 1,  F1 = 2  ≥  φ. 

  Inductive hypotheses:  Fk  ≥  φk  and Fk+1 ≥  φk + 1 

€ 

Fk =

1 if k = 0
2 if k =1
Fk-1 + Fk-2 if k ≥ 2

# 

$ 
% 

& 
% 

slightly non-standard definition 

€ 

Fk+2 = Fk + Fk+1

≥ φ k + φ k+1

= φ k (1 + φ)
= φ k (φ 2 )
= φ k+2

(φ2 = φ + 1) 

(inductive hypothesis) 

(definition) 

(algebra) 

(algebra) 

Union 

Fibonacci Heaps:  Union 

Union.  Combine two Fibonacci heaps. 

Representation.  Root lists are circular, doubly linked lists. 
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7 17 

18 52 

3 

30 

23 

35 

26 46 

24 

44 

21 

min min 

Heap H' Heap H'' 
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Fibonacci Heaps:  Union 

Union.  Combine two Fibonacci heaps. 

Representation.  Root lists are circular, doubly linked lists. 

39 

41 

7 17 

18 52 

3 

30 

23 

35 

26 46 

24 

44 

21 

min 

Heap H 

Fibonacci Heaps:  Union 

Actual cost.  O(1)  

Change in potential.  0 

Amortized cost.  O(1) 

 Φ(H)  = trees(H) + 2 ⋅ marks(H) 

potential function 

39 

41 

7 17 

18 52 

3 

30 

23 

35 

26 46 

24 

44 

21 

min 

Heap H 

Delete Delete node x. 
  decrease-key of x to -∞. 

  delete-min element in heap. 

Amortized cost.  O(rank(H)) 

  O(1) amortized for decrease-key. 

  O(rank(H)) amortized for delete-min. 

Fibonacci Heaps:  Delete 

 Φ(H)  = trees(H) + 2 ⋅ marks(H) 

potential function 

make-heap 

Operation 

insert 

find-min 

delete-min 

union 

decrease-key 

delete 

1 

Binary 
Heap 

log n 

1 

log n 

n 

log n 

log n 

1 

Binomial 
Heap 

log n 

log n 

log n 

log n 

log n 

log n 

1 

Fibonacci 
Heap † 

1 

1 

log n 

1 

1 

log n 

1 

Relaxed 
Heap 

1 

1 

log n 

1 

1 

log n 

1 

Linked 
List 

1 

n 

n 

1 

n 

n 

is-empty 1 1 1 1 1 

Priority Queues Performance Cost Summary 

†  amortized n = number of elements in priority queue 


