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This is a version of a Wikipedia-style report submitted as part of COS 423 under Robert Tarjan in
Spring 2007. My intention in posting this to the web is to benefit future students by offering a
comprehensive discussion, selected in-depth examples accessible to students without prior knowledge
of particular data structures, and a review of applications relevant to an algorithms course.
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Introduction

Overview

Amortized analysis is a technique for analyzing an algorithm's running time. It is often appropriate
when one is interested in understanding asymptotic behavior over sequences of operations. For
example, one might be interested in reasoning about the running time for an arbitrary operation to insert
an item into a binary. search tree structure. In cases such as this, it might be straightforward to come up
with an upper bound by, say, finding the worst-possible time required for any operation, then
multiplying this by the number of operations in the sequence. However, many real data structures, such

case time, so this approach can result in a horribly pessimistic bound! With a bit of clever reasoning
about properties of the problem and data structures involved, amortized analysis allows a tighter bound
that better reflects performance.

Key ideas
e Amortized analysis is an upper bound: it's the average performance of each operation in the
worst case.

e Amortized analysis is concerned with the overall cost of a sequence of operations. It does not
say anything about the cost of a specific operation in that sequence. For example, it is invalid to
reason, “The amortized cost of insertion into a splay tree with n items is O(log n), so when |
insert '45" into this tree, the cost will be O(log n).” In fact, inserting '45' might require O(n)
operations! It is only appropriate to say, “When I insert m items into a tree, the average time for
each operation will be O(log n).”

e Amortized analysis is concerned with the overall cost of arbitrary sequences. An amortized
bound will hold regardless of the specific sequence; for example, if the amortized cost of
insertion is O(log n), it is so regardless of whether you insert the sequence '10,' '160,' 2' or the
sequence 2, '160', '10,' '399', etc.
when choosing an algorithm to use in practice. Because an amortized bound says nothing about
the cost of individual operations, it may be possible that one operation in the sequence requires
a huge cost. Practical systems in which it is important that all operations have low and/or
comparable costs may require an algorithm with a worse amortized cost but a better worst-case
per-operation bound.

e Amortized analysis can be understood to take advantage of the fact that some expensive
operations may “pay” for future operations by somehow limiting the number or cost of
expensive operations that can happen in the near future.

e If good amortized cost is a goal, an algorithm may be designed to explicitly perform this “clean-
up” during expensive operations!

e The key to performing amortized analysis is picking a good “credit” or “potential” function that
captures how operations with different actual costs affect a data structure and allows the desired
bounds to be shown.

History
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concept of the potential method. Aggregate analysis is an older method (Aho et al. 1974) that can now
be understood as a form of amortized analysis.

(Sleator and Tarjan 1985a), self-adjusting and balanced binary trees (Tarjan 1985, Sleator and Tarjan
1985b), and path compression heuristics for the disjoint set union problem (Tarjan 1983, 1985).
Amortization plays an important role in the analysis of many other standard algorithms and data
structures, including maximum flow, Fibonacci heaps, and dynamic arrays. All these applications of
amortized analysis are discussed below. Amortized analysis has recently been used in diverse
applications including security (Mao et al. 2006), databases (Agarwal et al. 2006), and distributed
computing (Fomitchev and Ruppert 2004), and it continues to be important to theoretical work on
algorithms and data structures (e.g., Mendelson et al. 2006; Georgiadis et al. 2006).

Comparison to other analysis techniques
As mentioned above, worst-case analysis can give overly pessimistic bounds for sequences of
operations, because such analysis ignores interactions among different operations on the same data
structure (Tarjan 1985). Amortized analysis may lead to a more realistic worst-case bound by taking
these interactions into account. Note that the bound offered by amortized analysis is, in fact, a worst-
case bound on the average time per operation; a single operation in a sequence may have cost worse
than this bound, but the average cost over all operations in any valid sequence will always perform
within the bound.
averaged over a sequence of operations. However, average-case analysis relies on probabilistic
assumptions about the data structures and operations in order to compute an expected running time of
an algorithm. Its applicability is therefore dependent on certain assumptions about probability
distributions on algorithm inputs, which means the analysis is invalid if these assumptions do not hold
(or that probabilistic analysis cannot be used at all, if input distributions cannot be described!) (Cormen
et al. 2001, 92-3). Amortized analysis needs no such assumptions. Also, it offers an upper-bound on the
worst case running time of a sequence of operations, and this bound will always hold. An average-case
bound, on the other hand, does not preclude the possibility that one will get “unlucky” and encounter an
input that requires much more than the expected computation time, even if the assumptions on the
distribution of inputs are valid. These differences between probabilistic and amortized analysis
therefore have important consequences for the interpretation and relevance of the resulting bounds.
Amortized analysis is closely related to competitive analysis, which involves comparing the

the same data. Amortization is useful because competitive analysis's performance bounds must hold
regardless of the particular input, which by definition is seen by the online algorithm in sequence rather
than at the beginning of processing. Sleator and Tarjan (1985a) offer an example of using amortized
analysis to perform competitive analysis.

The basics

The three approaches to amortized analysis

There exist three main approaches to amortized analysis: aggregate analysis, the accounting method,
and the potential method (Cormen et al. 2001, p.405). Aggregate analysis is a simple method that
involves computing a bound on a sequence of operations, then dividing by the number of operations to
obtain the amortized cost. All operations are assigned the same amortized cost, even if they are of
different types (e.g., adding one item to a stack or popping multiple items from a stack) (p. 406—10).
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The other two methods are somewhat more interesting and powerful, and by reasoning about particular
local or global properties of the data structures, they allow for assigning different amortized costs to
different types of operations in the same sequence.

The accounting method

Overview

The accounting method, or the “banker's view,” assigns charges to operations as if the computer were
coin-operated. One can think of each operation always being accompanied by inserting one or more
coins into the computer to pay for the operation, according to a pre-determined charge for that operation
another charge). The charge does not necessarily correspond to the actual time required for the
particular operation; it is possible that the operation will complete in less time than the time charged, in
which case some positive accumulation of credit is left after the time required for the operation to finish
is subtracted from the operation payment. Or, it is possible that the operation will need more time than
the time charged, in which case the operation can be paid for by previously accumulated credit.

In the accounting method, the amount charged for each operation type is the amortized cost
for that type. As long as the charges are set so that it is impossible to go into debt (i.e., one can show
that there will never be an operation whose actual cost is greater than the sum of its charge plus the
previously accumulated credit), the amortized cost will be an upper bound on the actual cost for any
sequence of operations. Therefore, the trick to successful amortized analysis with the accounting
method is to pick appropriate charges and show that these charges are sufficient to allow payment for
any sequence of operations.

More formally, denote the actual cost of the i operation by c¢; and the amortized cost (charge)
of the i operation by ¢, .If ¢;>c; , the i™ operation leaves some positive amount of credit,

credit,=¢,—c, that can be used up by future operations. And as long as

2.6=D ¢, . (D)
i=1 i=1

the total available credit will always be non-negative, and the sum of amortized costs will be an upper
bound on the actual cost (Cormen et al. 2001, p. 410).

It is common to keep track of stored credit by assigning it to a particular location in the data
structure, for example some part of the structure that will be altered later by some expensive operation
that was (partially) made possible by the operation that provided the credit. This location could be a
node in a tree, a position in a stack, or something else. Different types of operations that provide credit
might store their credit in different structures, but a single operation type will have a single, well-
defined location to store its credit. Reasoning about when credit is produced, where it is stored, and
how it is used up is key to showing that Equation 1 holds for all operation sequences. Finally, remember
that amortization is an analytical device only! The credits “stored” in the data structure are imaginary
tools we use to reason about the behavior of an algorithm or data structure, not something that is
explicit or accessible in a data structure abstraction or its implementation code.

Example

This first example supplies a trivial illustration of the accounting method, adapted from Tarjan (1985)
and Cormen et al. (2001, p.410). Suppose you have a simple stack of items, where you can push an item
onto the stack or pop an item from the stack in constant time. The stack is constrained to naturally
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contain 0 or more items at all times. Suppose there is only one operation type defined for this stack,
called OP, which involves applying zero or more pops followed by one push:

OP(n) {
//requires at least n items are on the stack
pop n items from stack
push 1 item onto stack

Ne—v

Figure 1: OP (3) applied to a stack

Also suppose that m such operations have been performed. The worst-case running time for an OP
operation in the sequence is O(m), which occurs if operations 1 through m — 1 have each been OP (0)
(each popping no items and pushing one), and the m™ operation is OP (m—1) (popping all items from
the stack, then pushing one). A simple worst-case analysis would consider m operations with a worst-
case per-operation cost of O(m) to have an upper bound of O(m?).

It should be intuitively obvious that not every single OP operation can have a cost of m, since
previous operations have to push items onto the stack before they can be popped! Amortized analysis
captures this intuition. Consider assigning each OP a charge of 2. The first OP must be OP (0), popping
nothing from the empty stack and pushing one item. The actual cost of this operation is 1, and the
amortized cost is 2, so the credit remaining is 2 — 1 = 1. This credit of 1 is stored with the new item in
the stack. If this item is popped from the stack in the future, the pop will be paid for by this stored 1
credit. In this way, any sequence of OPs maintains the invariant that there is one credit stored per
stacked item. The algorithm will never run out of credit, because each pop is already pre-paid, and each
push only uses up 1 of the two credits paid the OP. The amortized cost of each OP is 2, so the amortized
cost of any sequence of m OPs is 2m, which is O(m). This is quite an improvement over the O(m?)
analysis!
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Figure 2: In the accounting method, one credit is stored with each stack
item. OP (3) pays for 3 pops using the popped items' credits, pays for
the push with one of OP's own 2 payments, and stores the other of its 2
payments as a credit tied to the new item.



If a data structure possesses little or no stored credit, this is an indication that the “badness”
resulting from a subsequent particular operation having actual cost that exceeds its amortized cost is
limited, as the stored credit cannot fall below 0. On the other hand, if a data structure possesses much
stored credit, it might be possible that a subsequent operation may have actual cost that far outweighs
its amortized cost, as it may eat up the prepayments of the previous operations.

The potential method

Overview

The potential method, or “physicist's view,” defines a function that maps a data structure onto a real-
valued, non-negative “potential” (Tarjan 1985; Cormen et al. 2001, p.412). The potential stored in the
data structure may be released to pay for future operations. In this way, the potential is similar to
considering the total credit stored throughout a data structure using the accounting method. However,
the potential method has a few other conceptual differences from the accounting method, as discussed
below.

Let us refer to the data structure at time i (or alternatively, just after operation i), as D,. The
potential function ®(D;) maps D; onto a real value. Again, denote the actual cost of operation i as c¢;
In the potential method, the amortized cost of operation i is equal to the actual cost plus the
increase in potential due to the operation:

¢=c,+®(D,)-®(D,_,) (2)

That is, in performing analysis, the amortized cost and potential function must be defined so that this
equivalence always holds. This equivalence implies that an operation whose actual cost is less than its
amortized cost results in an overall increase in potential, and an operation whose actual cost is greater
than its amortized cost requires a decrease in potential. A decrease in potential therefore “pays for”
particularly expensive operations, just as a decrease in credits did for the accounting method.

Just as in the accounting method, we must enforce an additional condition to ensure that the
total amortized cost of a sequence is always an upper bound on the total actual cost. By equation 2, we
can derive a relationship between the total amortized and actual costs:

n

=D e+ B(D)-B(D_) ©)

i=1
Note that all ®(D,) terms except ®(D,) and ®(D,) cancel out, leaving:

n
Zci:
i=1

n
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+&(D,)-2(D,) (4

To ensure that the total amortized cost is an upper bound on the total actual cost, for a sequence of any
length, we merely must ensure that @ (D,)=®(D,) for all i. Typically, ®(D,) is defined to be 0, and
the potential is defined so that it is always non-negative (Cormen et al. 2001, p.413).

Example

Consider again the simple stack example introduced above. A natural potential function is ®(D;)=the
number of items in the stack after operation i. Consider performing OP (k) as operation i, which
performs k pops and one push. OP (k) has an actual cost of ¢ = k + 1. If the stack originally contained
n items, the potential before the operation is ®(D,;) = n, and the potential after the operation is ®(D)) =
(n—k+ 1). The amortized cost of OP (k) is therefore:



é=c,+®(D,)—®(D,_,)=(k+1)+(n—k+1)—(n)=2 . Furthermore, it is clear that the potential
defined this way is never negative. Therefore, we can conclude that the amortized cost of OP is 2
(O(1)), and the total amortized cost for any sequence of OP operations is an upper bound on the actual
cost of the sequence.

In practice, potential functions are often, unsurprisingly, a bit more complicated. For example,
one might wish to define the potential based on more complicated property of the data structure. Also,
it may be necessary to enumerate all the possible outcomes of an operation to show that equation 2
holds for each of them. Such slightly more complicated applications of the potential method appear in
the in-depth examples below.

Comparing the accounting and potential methods

The accounting method charges each operation a certain amount according to its type (e.g., insert or
delete), putting the focus on each operation's “prepayment” to offset future expensive operations. The
potential method instead puts the focus on the effect of a particular operation at a particular point in
time, based on the effects of the operation on the data structure and the corresponding change in
possibility for future operations to incur expense. The accounting method “stores” credit in particular
areas of a data structure, such as nodes of a tree or items in a stack, whereas the potential method
generally considers properties of the entire data structure (such as how many nodes are in a tree, or how
many items are in the stack) to compute the potential.

The accounting method and potential method are equivalent in terms of their applicability to
particular problems and the bounds they provide (Tarjan 1985). However, one or the other may be easier
to apply to a given problem. Tarjan suggests that the potential method may be more natural when
fractional amounts of time must be considered, while the accounting method is less abstract.

In-depth examples

In this section, we take a step-by-step look at applying amortized analysis to some real problems. The
reader is also encouraged to read Chapter 17 of Cormen et al. (2001), which provides additional simple
examples.

Move-to-front
and updating, adapted from Tarjan 1985 and Sleator and Tarjan 1985a (the reader is referred to the
original sources for more information on the background of this problem, and a very detailed analysis
and discussion of the algorithm). Aspects of this example are also drawn from the COS 423 Spring
2000 handout (Tarjan 2000).
To access the item in the i position requires time i. Also, any two contiguous items can be swapped in
constant time (not including the time to access them in the list). The goal is to allow access to a
sequence of n items in a minimal amount of time (one item may be accessed many times within a
sequence), starting from some set initial list configuration. If the sequence of accesses is known in
advance, one can design an optimal algorithm for swapping items to rearrange the list according to how
often items are accessed, and when. However, if the sequence is not known in advance, a heuristic
method for swapping items may be desirable. This problem is one formulation of the standard
“dictionary problem” (Sleator and Tarjan 1985a, p.203).

The MTF is a heuristic that takes advantage of the fact that, for real problems such as paging, if
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performed via successive swaps from position i all the way down to position 1. Therefore, when the ith
item is accessed, the cost is i to access the item, plus i — 1 to move the item to the first position, for a
total cost of 2i — 1 (Figure 3).
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Figure 3: Move-to-front: To access 'c' in the
original list (left), walk down from 'a’, then move
'c" to front by swapping with 'b' then 'a’ (right)

Amortized analysis can be used to show that MTF always performs within a factor of 4 of any
algorithm — even an optimal algorithm that knows the access sequence in advance, and even without
making assumptions about locality of reference. Here, to analyze with respect to an arbitrary (perhaps
optimal) algorithm A, define the potential of MTF at time ¢ as the two times number of pairs of items
whose order in the MTF's list differs from their order in A's list at time 7. For example, if MTF's list is
ordered (a, b, c, e, d) and A's list is ordered (a, b, ¢, d, e), then the potential for MTF will be equal to 2,
because one pair of items (d and e) differ in their ordering between A's list and MTF's list. The potential
at =0 is 0, as both algorithms begin with the same list by definition. Also, it is impossible for the
potential to be negative. Therefore, the total amortized cost is an upper bound on the total actual cost of
any access sequence.

Now, consider the analysis of accessing a single item, x. Let x be at position k in MTF's list and
at position 7 in A's list. The cost to MTF of accessing x and moving it to the front is 2(k — 1). The cost
for A to access x is i. Note that moving x to the front of the list reverses the ordering of all pairs
including x and an item originally in location 1 to k — 1 (i.e., k — 1 pairs in total). The relative positions
of all other pairs are unchanged by the move. In A's list, there are i — 1 items ahead of x; all of these will
be behind x in MTF's list once x is moved to the front. Therefore, there are at most min{k—1,i— 1}
pair inversions (i.e., disagreements in pair order between MTF and A) that are added by the move to
front of x. All other ordering reversals (at least k — 1 — min{k — 1, i — 1}) must result in pair inversion
removals (i.e., the pair orderings now agree between MTF and A).

Therefore, the potential change incurred in this single access and move to front is bounded
above by 2(min{k—1,i—1} —(k— 1 —min{k—1,i—1})) =4min{k—1,i— 1} —2(k— 1). By equation
2, the amortized cost of this single access is bounded above as:

¢ = c+AP < 2(k—1)+4min{k-1,i—1}-2(k—-1) < 4min{k—1,i—1} < 4i

So, the amortized cost of a single access and move-to-front by MTF is bounded above by four times the
cost of the access by A.

One additional consideration is that A might independently perform swaps in response to a new
access request, and this is not taken into account above. Say A does swap two items. This incurs no
additional actual cost on the part of MTF, but it will increase or decrease the new potential by 2, and it
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will increase the cost of access for A by 1. The bound on MTF's amortized cost still holds, since the
amortized cost is increased by at most 2, but the bound is increased by 4. This is true no matter how
many swap operations A performs.

Splay trees

The next example applies amortized analysis to splay. trees. This presentation of the example assumes
no prior knowledge about splay trees, as they are quite straightforward structures whose essential
behavior is explained below. The reader should have a basic understanding of binary. search trees,

is a modification to some subtree of the search tree, which preserves the binary search tree order
property but has the effect of moving some nodes towards the root and some nodes away from the root
by 1. A single rotation can be performed in constant time using a standard binary tree implementation.)

Splay trees are a self-adjusting binary search tree introduced by Sleator and Tarjan (1985b). The
values of the nodes are ordered symmetrically, meaning that the left subtree of node x contains nodes
whose key values are strictly less than x, and the right subtree contains nodes whose values are greater
than x. Splay trees are not balanced trees like red-black trees; their structure may be arbitrarily “bad,”
(e.g., Figure 7), meaning that an access on a tree with n nodes may require n operations. However,
much like the move-to-front heuristic described above, splay trees move an element to the root of the
tree through a series of “splay” steps (rotations). This move has the effect of local “clean-up” along the
path from the accessed node to the root, which tends to reduce the depth of the tree, and it is what
makes splay trees ‘“self-adjusting.” Splay trees have some nice properties in comparison to balanced
trees such as red-black trees, for example simpler implementation and analysis. Using amortized
analysis, it is possible to show that splay trees are just as efficient as balanced trees for the standard
operations such as access, insert, and delete (Sleator and Tarjan 1985b). The following example shows
this in a step-by-step analysis, which is compiled from Sleator and Tarjan (1985b) and Tarjan (1985), as
well as course materials available online by Wayne (2001), Tarjan and Mulzer (2007), and Karger and
Zhang (2005) The reader is encouraged to consult these sources for additional discussion and
clarification.

First, let us introduce the SPLAY (x, S) operation on some element x and a splay tree, S. This
operation has the effect of rotating x up to the root of S if x is in S, or else rotating the next biggest or
next smallest element to x up to the root (depending on the implementation). SPLAY works by
repeatedly performing rotations. At each iteration of the while loop, two rotations (cases 2a-d) are
performed to replace x's grandparent with x, or one rotation (cases la-b) is performed to put x at the
root, if x's parent is the root. Figures 4 through 6 illustrate the rotations for cases 2a, 2c, and 1a; cases
2b, 2d, and 1b are symmetric.

SPLAY (%, S) {
while x is not root of S {
if x's parent is root {
if x is a left child, do a right rotation (case Ia)
else x is a left child, so do a left rotation (case 2a)
//x is now root
} else {
if x is a left child and its parent, y, is a left child, do 2 right rotations (case 2a)
else if x is a right child and y is a right child, do 2 left rotations (case 2b)
else x is a right child and y is a left child, so do 1 left then 1 right rotation (case 2c)
else if x is a left child and y is a right child, do 1 right then 1 left rotation (case 2d)
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SPLAY moves x up one level in the tree each time a rotation is done. This could result in a total
of O rotations, in the case where x is already the root, or it could be n — 1 rotations, when the tree
contains n nodes in a single chain and x is the lowest in the chain (e.g., item 1 in Figure 7). Therefore, a
worst-case bound on the SPLAY operation is O(n) for n nodes.

Figure 7 shows the sequence of tree configurations that occur over the while-loop in
SPLAY (1, S). Indeed, 9 rotations are performed on the tree with 10 nodes. However, notice that the
tree is shallower after this access and splay; there is no way to do another access that will result in
SPLAY taking 9 operations. In fact, consider the operation SPLAY (2, S) on this new tree (Figure 8).
This splay only required 5 rotations, and it left the tree even more balanced. Amortized analysis is
useful for reasoning about the fact that performing a very expensive operation, such as SPLAY (1, S)
on the original tree in Figure 7, performs some sort of clean-up that limits the expense of future
operations.
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Figure 7: SPLAY (1, S) on a "bad" tree (from Wayne 2001 )
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Figure 8: SPLAY (1, S) on tree from
Figure 7

The SPLAY operation is called once for each Insert, Delete, Join, and Find operation. To Find
element x in tree S, for example, we first call SPLAY (x, S), to make x the root of § if x is in the tree.
The cost of the SPLAY operation is therefore crucial to analyzing all other operations.

Now, we define a potential function in order to perform amortized analysis. Let S;,(x) denote the
subtree of S rooted at node x at time i (specifically, after the i iteration of the SPLAY while-loop, for
example), and ISi(x)| denote the number of nodes in that subtree at that time. Define the “rank” function
tobe r;(x)=[log|S,(x)|| .Let r(x) indicate the “local” potential of node x in the tree S at time i.

Finally, let our overall potential function at time i be P,= Z ri(x)

X Elree

It can be shown that the amortized cost of any splay step on node x is O(log n). To provide this
bound, we can enumerate all the possible changes to the tree that a single iteration of the SPLAY while-
loop might cause. Then, for each case, we compute the potential for the entire tree before and after the
loop iteration, and the actual cost required to perform the iteration. This gives us a bound on the
amortized cost of a single loop iteration, which we can then sum over all iterations of the loop to obtain
a bound on the amortized cost of the entire SPLAY operation.

Choose case 2a from SPLAY to start with. Figure 4 shows the configuration before and after the
two right rotations. The total actual cost of the 2 rotations is 2. The change in potential introduced by
these two rotations is the sum of the changes in potential at each node:

?—-b,_,= Z ri(x)— Z iy (x)= Z ri(x)—r_(x)

XEtree XEtree XEtree
Note that case 2a only changes the potential of nodes x, y, and z: the sizes of all other nodes' subtrees
remain unchanged. Furthermore, observe that r,(x)=r,_,(z) , r,._,(y)=r,_,(x) ,and

r.(y)<r,x) .By equation 2, the amortized cost of this single case is:

6 = AP~ = 2+4r,(x)=r_ (x)+r,(y)—r_ (y)+r(2)—r_,(2)

= 2+(ri(x)_ri71(Z))+ri(y)+ri(z)_rifl<x)_ri71(y)
< 240+r,(x)+r(z)—r,_(x)=r_,(x) = 2+4r,(x)+r,(z)=2r_,(x) . (5

We would like to get the dependence on z out of this expression somehow. We can accomplish this by
taking advantage of the following property of logarithms:
a+b

loga+logh
———<1
2 o8

So,



ri—l(x)""”,»(z) = IOgSi_l(x)—i-logSi(z) < 2log M

Using the property that S,_,(x)+S,(z)<S,(x) ,
S;(x)
2

r_(x)+r,(z) < 2log = 2log(S,(x))—2log2 < 2r,(x)-2

Substituting this back into equation 5, we see that

¢ < 2+ri(x)+2ri(x)_ri—1(x)_z_zr(i—l)(x) = 3r,(x)=3r,_,(x) = 3(r,(x)=r,_,(x)) (6).
The analysis of cases 2b, 2c, and 2d are nearly identical. For cases 1a and 1b, the reasoning is similar,
but the actual cost ¢; is only 1, not 2, so the bound is ¢; < 3(r;(x)—r,_,(x))+1

Now, we have an upper bound on the amortized cost for any individual iteration of the while-

loop of SPLAY. The total amortized cost of an entire SPLAY operation is ¢= Z ¢, if the while-loop
i=1

executes m times. Using equation 6, and taking advantage of the telescoping property and the fact that

either case 1a or 1b will only be executed once, we get:

m

¢ = iéi < Z(3(r,.(x)—ri_l(x)))+1=3(rm(x)—r0(x))+1

i=1
Note that r,,(x) = n because, at time m, x is the root, so all n nodes are in its subtree. Note again that
ro(x) may be as small as 1, if x is at a leaf. Therefore, our amortized bound for one SPLAY operation,
¢ ,1is O(log n).

Finally, this bound on SPLAY can be used to easily show amortized bound on all operations of
splay trees. Trivially, the Find(x) operation requires one SPLAY, so its cost is also O(log n). Other
operations are slightly more involved; the reader is directed to Karger and Zhang (2005), Sleator and
Tarjan (1985b), or Tarjan (1983, p.53—6) for more details.

More examples

The examples above require little background knowledge of the data structures or problem area. This
section provides brief outlines of the use of amortized analysis in several other algorithms and data
structures that are somewhat more involved. This section is provided so that readers familiar with these
topics may appreciate the role amortization has played in their analysis and/or design, and so that
readers comfortable with the examples presented thus far may consult sources for the following topics
in order to learn more.

Red-black trees

the tree either red or black, then re-adjusting the tree after operations such as insert and delete,
according to the colors of the nodes (Cormen et al. 2001, Chapter 13). In simple (unbalanced) binary
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search trees, basic operations such as insert and delete can run in O(n) time on a tree of size n. For red-
black trees, these operations run in O(log n) time. However, there is increased overhead involved in the
structural modifications performed to maintain tree balance. In the worst case, any operation can cause
O(log n) modifications. However, amortized analysis can be used to show that any sequence of m insert
and delete operations causes O(m) structural modifications in the worst case (Cormen et al. p.428). It
can similarly be shown that the total time for m consecutive insertions in a tree of n nodes is O(n + m)
(Tarjan 1985).

Tarjan (1985) uses the accounting method to show this second bound. The analysis shows that
the invariant is maintained that every black node in the tree contains 0, 1, or 2 credits, depending on
whether it has one red child, no red children, or two red children, respectively. Initially, O(n) credits are
added to the tree. The analysis takes the following form: all possible local effects of a rebalancing
operation following an insert operation are enumerated. The invariant is shown to hold for all of these
cases, where the terminating cases require payment of O(1) credits, and nonterminating cases (which
require one or more additional rebalancing operations) use up available credit in the tree to perform
their operations. Because each operation includes only one terminating case by definition, each insert
operation must pay only a constant amount of credit. Therefore, the overall amortized cost of a single
insert operation is O(1), and so the amortized cost of any sequence of m insert operations is O(n (to
insert the initial n credits) + m).

Fibonacci heaps

Fibonacci heaps are a heap data structure represented by a forest of heap-ordered trees (Fredman and
Tarjan 1987). They allow deletion from a heap with # items in O(log n) amortized time and support
other heap operations (insert, find min, meld, decrease key) in O(1) amortized time. Fibonacci heaps

trees and shortest path problems.

Cormen et al. (2001, Chapter 20) employ the potential method to analyze the running time of
Fibonacci heap operations. The potential function usedis @ (H)=t(H)+2m(H) where t is the
number of trees in the root list of heap H and m(H) is the number of marked nodes in H. With this
potential function, it is fairly easy to show O(1) amortized time for each non-delete operation
individually, and O(lg n) time for extract-min and delete (see the book for details).

Disjoint sets

21) and support operations to make a set, joint (union) two sets, and find the set that contains a
particular element. The straightforward union algorithm for a disjoint set forest implementation takes
O(n) time for n elements, using both amortized and worst-case analysis. However, using the union-by-
rank and path compression heuristics, one can show that any sequence of m make, union, and find
performs this analysis using the accounting method (1983, p.24-30), and Cormen et al. (2001, p.513-8)
use a potential function. Both analyses require understanding of the details of path compression that lie
outside the scope of this paper, but the curious reader is directed to the Tarjan and Cormen textbooks
for more detailed treatment.

Maximum flow
The goal of maximum flow problems is to find the maximum flow through a graph, where one node is
a source, one node is a sink, and each edge in the graph has a known capacity (Cormen et al. 2001,
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Chapter 26). This well-studied problem has several solution approaches. One such approach, called
“push-relabel,” includes many of the asymptotically fastest solutions to the maximum flow problem
(Cormen et al., p.609). An analysis of push-relabel hinges on finding a bound on the number of
nonsaturating pushes performed by the algorithm. This is done using a potential function dependent on
the heights of the vertices in the graph (Cormen et al., p.678-9).

Dynamic arrays / hash tables

necessary to design and reason about algorithms for managing table size. Using one simple algorithm
described in Cormen et al. (2001, p.416—24), a sequence of m operations can be shown to take O(m)
amortized time.

Scapegoat trees

Scapegoat trees are another type of balanced binary search tree (Galperin and Rivest 1993). Unlike red-
black trees, they do not store additional information at each node. Amortization using a potential
function based on the sum of local node potentials yields O(log n) insertion and deletion.

Conclusions

Amortized analysis is a useful tool that complements other techniques such as worst-case and
average-case analysis. It has been applied to a variety of problems, and it is also crucial to appreciating
structures such as splay trees that have been designed to have good amortized bounds.

To understand the application of amortized analysis to common problems, it is essential to know
the basics of both the accounting method and the potential method. The resources presented here
supply many examples of both methods applied to real problems.

To perform an amortized analysis, one should choose either the accounting method or the
potential method. The approaches yield equivalent results, but one might be more intuitively
appropriate to the problem under consideration. There is no magic formula for arriving at a potential
function or accounting credit scheme that will always work; the method used depends on the desired
bounds and the desired complexity of the analysis. Some strategies that sometimes work, however,
include enumerating the ways in which an algorithm might operate on a data structure, then performing
an analysis for each case; computing the potential of a data structure as a sum of “local” potentials so
that one can reason about the effects of local changes while ignoring irrelevant and unchanging
components of the structure; designing the potential method around the desired form of the result (e.g.,
relating the potential to the log of the subtree size for splay trees, as the desired outcome is a
logarithmic bound); and reasoning about each type of operation in a sequence individually before
coming up with a bound on an arbitrary sequence of operations.

An understanding of amortized analysis is essential to success in an algorithms course, to
understanding the implication of theoretical bounds on real-world performance, and to thoroughly
appreciating the design and purpose of certain data structures. The reader is therefore again urged to
consult any of the sources mentioned here to improve his or her understanding of amortized analysis
and to explore these algorithms in greater depth.
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