
15.5 Optimal binary search trees 397

15.4-5
Give an O.n2/-time algorithm to find the longest monotonically increasing subse-
quence of a sequence of n numbers.
15.4-6 ?

Give anO.n lg n/-time algorithm to find the longest monotonically increasing sub-
sequence of a sequence of n numbers. (Hint: Observe that the last element of a
candidate subsequence of length i is at least as large as the last element of a can-
didate subsequence of length i � 1. Maintain candidate subsequences by linking
them through the input sequence.)

15.5 Optimal binary search trees

Suppose that we are designing a program to translate text from English to French.
For each occurrence of each English word in the text, we need to look up its French
equivalent. We could perform these lookup operations by building a binary search
tree with n English words as keys and their French equivalents as satellite data.
Because we will search the tree for each individual word in the text, we want the
total time spent searching to be as low as possible. We could ensure an O.lg n/

search time per occurrence by using a red-black tree or any other balanced binary
search tree. Words appear with different frequencies, however, and a frequently
used word such as the may appear far from the root while a rarely used word such
as machicolation appears near the root. Such an organization would slow down the
translation, since the number of nodes visited when searching for a key in a binary
search tree equals one plus the depth of the node containing the key. We want
words that occur frequently in the text to be placed nearer the root.6 Moreover,
some words in the text might have no French translation,7 and such words would
not appear in the binary search tree at all. How do we organize a binary search tree
so as to minimize the number of nodes visited in all searches, given that we know
how often each word occurs?
What we need is known as an optimal binary search tree. Formally, we are

given a sequence K D hk1; k2; : : : ; kni of n distinct keys in sorted order (so that
k1 < k2 < � � � < kn), and we wish to build a binary search tree from these keys.
For each key ki , we have a probability pi that a search will be for ki . Some
searches may be for values not in K, and so we also have n C 1 “dummy keys”

6If the subject of the text is castle architecture, we might want machicolation to appear near the root.
7Yes, machicolation has a French counterpart: mâchicoulis.



398 Chapter 15 Dynamic Programming

k2

k1 k4

k3 k5d0 d1

d2 d3 d4 d5

(a)

k2

k1

k4

k3

k5

d0 d1

d2 d3

d4

d5

(b)

Figure 15.9 Two binary search trees for a set of n D 5 keys with the following probabilities:
i 0 1 2 3 4 5

pi 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10
(a)A binary search tree with expected search cost 2.80. (b)A binary search tree with expected search
cost 2.75. This tree is optimal.

d0; d1; d2; : : : ; dn representing values not in K. In particular, d0 represents all val-
ues less than k1, dn represents all values greater than kn, and for i D 1; 2; : : : ; n�1,
the dummy key di represents all values between ki and kiC1. For each dummy
key di , we have a probability qi that a search will correspond to di . Figure 15.9
shows two binary search trees for a set of n D 5 keys. Each key ki is an internal
node, and each dummy key di is a leaf. Every search is either successful (finding
some key ki ) or unsuccessful (finding some dummy key di ), and so we have

nX

iD1

pi C
nX

iD0

qi D 1 : (15.10)

Because we have probabilities of searches for each key and each dummy key,
we can determine the expected cost of a search in a given binary search tree T . Let
us assume that the actual cost of a search equals the number of nodes examined,
i.e., the depth of the node found by the search in T , plus 1. Then the expected cost
of a search in T is

E Œsearch cost in T � D
nX

iD1

.depthT .ki / C 1/ � pi C
nX

iD0

.depthT .di / C 1/ � qi

D 1 C
nX

iD1

depthT .ki / � pi C
nX

iD0

depthT .di/ � qi ; (15.11)



15.5 Optimal binary search trees 399

where depthT denotes a node’s depth in the tree T . The last equality follows from
equation (15.10). In Figure 15.9(a), we can calculate the expected search cost node
by node:
node depth probability contribution
k1 1 0.15 0.30
k2 0 0.10 0.10
k3 2 0.05 0.15
k4 1 0.10 0.20
k5 2 0.20 0.60
d0 2 0.05 0.15
d1 2 0.10 0.30
d2 3 0.05 0.20
d3 3 0.05 0.20
d4 3 0.05 0.20
d5 3 0.10 0.40
Total 2.80

For a given set of probabilities, we wish to construct a binary search tree whose
expected search cost is smallest. We call such a tree an optimal binary search tree.
Figure 15.9(b) shows an optimal binary search tree for the probabilities given in
the figure caption; its expected cost is 2.75. This example shows that an optimal
binary search tree is not necessarily a tree whose overall height is smallest. Nor
can we necessarily construct an optimal binary search tree by always putting the
key with the greatest probability at the root. Here, key k5 has the greatest search
probability of any key, yet the root of the optimal binary search tree shown is k2.
(The lowest expected cost of any binary search tree with k5 at the root is 2.85.)
As with matrix-chain multiplication, exhaustive checking of all possibilities fails

to yield an efficient algorithm. We can label the nodes of any n-node binary tree
with the keys k1; k2; : : : ; kn to construct a binary search tree, and then add in the
dummy keys as leaves. In Problem 12-4, we saw that the number of binary trees
with n nodes is �.4n=n3=2/, and so we would have to examine an exponential
number of binary search trees in an exhaustive search. Not surprisingly, we shall
solve this problem with dynamic programming.

Step 1: The structure of an optimal binary search tree
To characterize the optimal substructure of optimal binary search trees, we start
with an observation about subtrees. Consider any subtree of a binary search tree.
It must contain keys in a contiguous range ki ; : : : ; kj , for some 1 � i � j � n.
In addition, a subtree that contains keys ki ; : : : ; kj must also have as its leaves the
dummy keys di�1; : : : ; dj .
Now we can state the optimal substructure: if an optimal binary search tree T

has a subtree T 0 containing keys ki ; : : : ; kj , then this subtree T 0 must be optimal as



400 Chapter 15 Dynamic Programming

well for the subproblem with keys ki ; : : : ; kj and dummy keys di�1; : : : ; dj . The
usual cut-and-paste argument applies. If there were a subtree T 00 whose expected
cost is lower than that of T 0, then we could cut T 0 out of T and paste in T 00,
resulting in a binary search tree of lower expected cost than T , thus contradicting
the optimality of T .
We need to use the optimal substructure to show that we can construct an opti-

mal solution to the problem from optimal solutions to subproblems. Given keys
ki ; : : : ; kj , one of these keys, say kr (i � r � j ), is the root of an optimal
subtree containing these keys. The left subtree of the root kr contains the keys
ki ; : : : ; kr�1 (and dummy keys di�1; : : : ; dr�1), and the right subtree contains the
keys krC1; : : : ; kj (and dummy keys dr ; : : : ; dj ). As long as we examine all candi-
date roots kr , where i � r � j , and we determine all optimal binary search trees
containing ki ; : : : ; kr�1 and those containing krC1; : : : ; kj , we are guaranteed that
we will find an optimal binary search tree.
There is one detail worth noting about “empty” subtrees. Suppose that in a

subtree with keys ki ; : : : ; kj , we select ki as the root. By the above argument, ki ’s
left subtree contains the keys ki ; : : : ; ki�1. We interpret this sequence as containing
no keys. Bear in mind, however, that subtrees also contain dummy keys. We adopt
the convention that a subtree containing keys ki ; : : : ; ki�1 has no actual keys but
does contain the single dummy key di�1. Symmetrically, if we select kj as the root,
then kj ’s right subtree contains the keys kj C1; : : : ; kj ; this right subtree contains
no actual keys, but it does contain the dummy key dj .

Step 2: A recursive solution
We are ready to define the value of an optimal solution recursively. We pick our
subproblem domain as finding an optimal binary search tree containing the keys
ki ; : : : ; kj , where i � 1, j � n, and j � i � 1. (When j D i � 1, there
are no actual keys; we have just the dummy key di�1.) Let us define eŒi; j � as
the expected cost of searching an optimal binary search tree containing the keys
ki ; : : : ; kj . Ultimately, we wish to compute eŒ1; n�.
The easy case occurs when j D i � 1. Then we have just the dummy key di�1.

The expected search cost is eŒi; i � 1� D qi�1.
When j � i , we need to select a root kr from among ki ; : : : ; kj and then make an

optimal binary search tree with keys ki ; : : : ; kr�1 as its left subtree and an optimal
binary search tree with keys krC1; : : : ; kj as its right subtree. What happens to the
expected search cost of a subtree when it becomes a subtree of a node? The depth
of each node in the subtree increases by 1. By equation (15.11), the expected search
cost of this subtree increases by the sum of all the probabilities in the subtree. For
a subtree with keys ki ; : : : ; kj , let us denote this sum of probabilities as



15.5 Optimal binary search trees 401

w.i; j / D
jX

lDi

pl C
jX

lDi�1

ql : (15.12)

Thus, if kr is the root of an optimal subtree containing keys ki ; : : : ; kj , we have
eŒi; j � D pr C .eŒi; r � 1� C w.i; r � 1// C .eŒr C 1; j � C w.r C 1; j // :

Noting that
w.i; j / D w.i; r � 1/ C pr C w.r C 1; j / ;

we rewrite eŒi; j � as
eŒi; j � D eŒi; r � 1� C eŒr C 1; j � C w.i; j / : (15.13)
The recursive equation (15.13) assumes that we know which node kr to use as

the root. We choose the root that gives the lowest expected search cost, giving us
our final recursive formulation:

eŒi; j � D
(

qi�1 if j D i � 1 ;

min
i�r�j

feŒi; r � 1� C eŒr C 1; j � C w.i; j /g if i � j :
(15.14)

The eŒi; j � values give the expected search costs in optimal binary search trees.
To help us keep track of the structure of optimal binary search trees, we define
rootŒi; j �, for 1 � i � j � n, to be the index r for which kr is the root of an
optimal binary search tree containing keys ki ; : : : ; kj . Although we will see how
to compute the values of rootŒi; j �, we leave the construction of an optimal binary
search tree from these values as Exercise 15.5-1.

Step 3: Computing the expected search cost of an optimal binary search tree
At this point, you may have noticed some similarities between our characterizations
of optimal binary search trees and matrix-chain multiplication. For both problem
domains, our subproblems consist of contiguous index subranges. A direct, recur-
sive implementation of equation (15.14) would be as inefficient as a direct, recur-
sive matrix-chain multiplication algorithm. Instead, we store the eŒi; j � values in a
table eŒ1 : : nC1; 0 : : n�. The first index needs to run to nC1 rather than n because
in order to have a subtree containing only the dummy key dn, we need to compute
and store eŒn C 1; n�. The second index needs to start from 0 because in order to
have a subtree containing only the dummy key d0, we need to compute and store
eŒ1; 0�. We use only the entries eŒi; j � for which j � i � 1. We also use a table
rootŒi; j �, for recording the root of the subtree containing keys ki ; : : : ; kj . This
table uses only the entries for which 1 � i � j � n.
We will need one other table for efficiency. Rather than compute the value

of w.i; j / from scratch every time we are computing eŒi; j �—which would take



402 Chapter 15 Dynamic Programming

‚.j � i/ additions—we store these values in a table wŒ1 : : n C 1; 0 : : n�. For the
base case, we compute wŒi; i � 1� D qi�1 for 1 � i � n C 1. For j � i , we
compute
wŒi; j � D wŒi; j � 1� C pj C qj : (15.15)
Thus, we can compute the ‚.n2/ values of wŒi; j � in ‚.1/ time each.
The pseudocode that follows takes as inputs the probabilities p1; : : : ; pn and

q0; : : : ; qn and the size n, and it returns the tables e and root.

OPTIMAL-BST.p; q; n/

1 let eŒ1 : : n C 1; 0 : : n�, wŒ1 : : n C 1; 0 : : n�,
and rootŒ1 : : n; 1 : : n� be new tables

2 for i D 1 to n C 1

3 eŒi; i � 1� D qi�1

4 wŒi; i � 1� D qi�1

5 for l D 1 to n

6 for i D 1 to n � l C 1

7 j D i C l � 1

8 eŒi; j � D 1
9 wŒi; j � D wŒi; j � 1� C pj C qj

10 for r D i to j

11 t D eŒi; r � 1� C eŒr C 1; j � C wŒi; j �

12 if t < eŒi; j �

13 eŒi; j � D t

14 rootŒi; j � D r

15 return e and root

From the description above and the similarity to the MATRIX-CHAIN-ORDER pro-
cedure in Section 15.2, you should find the operation of this procedure to be fairly
straightforward. The for loop of lines 2–4 initializes the values of eŒi; i � 1�

and wŒi; i � 1�. The for loop of lines 5–14 then uses the recurrences (15.14)
and (15.15) to compute eŒi; j � and wŒi; j � for all 1 � i � j � n. In the first itera-
tion, when l D 1, the loop computes eŒi; i � andwŒi; i � for i D 1; 2; : : : ; n. The sec-
ond iteration, with l D 2, computes eŒi; iC1� andwŒi; iC1� for i D 1; 2; : : : ; n�1,
and so forth. The innermost for loop, in lines 10–14, tries each candidate index r

to determine which key kr to use as the root of an optimal binary search tree con-
taining keys ki ; : : : ; kj . This for loop saves the current value of the index r in
rootŒi; j � whenever it finds a better key to use as the root.
Figure 15.10 shows the tables eŒi; j �, wŒi; j �, and rootŒi; j � computed by the

procedure OPTIMAL-BST on the key distribution shown in Figure 15.9. As in the
matrix-chain multiplication example of Figure 15.5, the tables are rotated to make



15.5 Optimal binary search trees 403

2.75
1.75

1.25
0.90

0.45
0.05

2.00
1.20

0.70
0.40

0.10

1.30
0.60

0.25
0.05

0.90
0.30

0.05
0.50

0.05 0.10

e

0
1

2
3

4
5

6
5

4
3

2
1

j i 1.00
0.70

0.55
0.45

0.30
0.05

0.80
0.50

0.35
0.25

0.10

0.60
0.30

0.15
0.05

0.50
0.20

0.05
0.35

0.05 0.10

w

0
1

2
3

4
5

6
5

4
3

2
1

j i

2
2

2
1

1

4
2

2
2

5
4

3
5

4 5

root

1
2

3
4

5

5
4

3
2

1
j i

Figure 15.10 The tables eŒi; j �, wŒi; j �, and rootŒi; j � computed by OPTIMAL-BST on the key
distribution shown in Figure 15.9. The tables are rotated so that the diagonals run horizontally.

the diagonals run horizontally. OPTIMAL-BST computes the rows from bottom to
top and from left to right within each row.
The OPTIMAL-BST procedure takes ‚.n3/ time, just like MATRIX-CHAIN-

ORDER. We can easily see that its running time is O.n3/, since its for loops are
nested three deep and each loop index takes on at most n values. The loop indices in
OPTIMAL-BST do not have exactly the same bounds as those in MATRIX-CHAIN-
ORDER, but they are within at most 1 in all directions. Thus, like MATRIX-CHAIN-
ORDER, the OPTIMAL-BST procedure takes �.n3/ time.

Exercises
15.5-1
Write pseudocode for the procedure CONSTRUCT-OPTIMAL-BST.root/ which,
given the table root, outputs the structure of an optimal binary search tree. For the
example in Figure 15.10, your procedure should print out the structure



404 Chapter 15 Dynamic Programming

k2 is the root
k1 is the left child of k2

d0 is the left child of k1

d1 is the right child of k1

k5 is the right child of k2

k4 is the left child of k5

k3 is the left child of k4

d2 is the left child of k3

d3 is the right child of k3

d4 is the right child of k4

d5 is the right child of k5

corresponding to the optimal binary search tree shown in Figure 15.9(b).
15.5-2
Determine the cost and structure of an optimal binary search tree for a set of n D 7

keys with the following probabilities:
i 0 1 2 3 4 5 6 7

pi 0.04 0.06 0.08 0.02 0.10 0.12 0.14
qi 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05

15.5-3
Suppose that instead of maintaining the table wŒi; j �, we computed the value
of w.i; j / directly from equation (15.12) in line 9 of OPTIMAL-BST and used this
computed value in line 11. How would this change affect the asymptotic running
time of OPTIMAL-BST?
15.5-4 ?

Knuth [212] has shown that there are always roots of optimal subtrees such that
rootŒi; j � 1� � rootŒi; j � � rootŒi C 1; j � for all 1 � i < j � n. Use this fact to
modify the OPTIMAL-BST procedure to run in ‚.n2/ time.

Problems

15-1 Longest simple path in a directed acyclic graph
Suppose that we are given a directed acyclic graph G D .V; E/ with real-
valued edge weights and two distinguished vertices s and t . Describe a dynamic-
programming approach for finding a longest weighted simple path from s to t .
What does the subproblem graph look like? What is the efficiency of your algo-
rithm?


