CSE 160 Lecture 13

Sorting

Announcements

- No Lab in APM this Friday
- Quiz return

Today's Lecture

- Parallel Sorting (II)
 - Bucket Sort
 - Sample Sort
 - Bitonic Sort

Parallel sorting

- We'll consider in-memory sorting of integer keys
 - Bucket sort
 - Sample sort
 - Bitonic sort
- In practice, we sort on external media, i.e. disk
 - See: http://sortbenchmark.org
 - ▶ TritonSort (UCSD): 0.725 x 10¹² bytes/minute

Rank Sorting

- Compute the rank of each input value
- Move each value in sorted position according to its rank
- Makes idealizing assumptions
 - An ideal parallel computer with no memory contention and an infinite number of processors
 - ▶ The forall loops parallelize perfectly

```
forall i=0:n-1, j=0:n-1
    if ( x[i] > x[j] ) then rank[i] += 1 end if
forall i=0:n-1
    y[rank[i]] = x[i]
```

In search of a fast and practical sort

- Rank sorting is impractical on real hardware
- Let's borrow the concept: compute the thread owner for each key
- Shuffle data in sorted order in one step
- But how do we know which thread should be the owner?
- Subdivide the key space

1st attempt: bucket sort

- Divide the range of keys into equal subranges and associate a *bucket* with each range
- Each processor maintains p local buckets
 - Assigns each key to a bucket: $[p \times \frac{key}{(K_{max}-1)}]$
 - Noutes the buckets to the correct owner (each local bucket has $\sim n/p^2$ elements)
 - Sort all incoming data into a single bucket

Wikipedia

Running time

- Assume that the keys are distributed uniformly over 0 to K_{max} -1
- Local bucket assignment: O(n/p)
- Route each local bucket to the correct owner O(n)
- Local sorting (using radix sort) : O(n/p)) www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Radix

Worst case behavior

- The assignment of keys to threads is based solely on the knowledge of K_{max}
- If the keys are integers in the range [0,Q-1] thread k has keys in the range

$$\left[k\frac{Q}{P},(k+1)\frac{Q}{P}\right]$$

- E.g. for $Q=2^{30}$, P=64, each thread gets $2^{24}=16$ M elements
- For a non-uniform distribution, we need more information to balance keys (and communication) over the processors
- In the worst case, all the keys could go to one processor

Improving on bucket sort

- Sample sort
- Uses a heuristic to estimate the distribution of the global key range over the p threads
- Each processor gets about the same number of keys
- Sample the keys to determine a set of p-1 *splitters* that partition the key space into p disjoint regions (buckets)

Sample selection

Introduction to Parallel Computing, 2nd Ed,, A.Grama, A.I Gupta, G. Karypis, and V. Kumar, Addison-Wesley, 2003.

Splitter selection: regular sampling

- Shi and Schaeffer [1992]
- Each processor sorts its local keys, then selects *s* evenly spaced samples
- These candidate splitters are collected by one thread
 - Sorted
 - ► Sampled at uniform positions to generate a *p-1* element splitter list

Performance

- Assuming $n \ge p^3$...
- $T_p = O((n/p) \lg n)$
- If s=p, each processor will will merge not more than 2n/p + n/s p elements
- If s > p, each processor will will merge not more than (3/2)(n/p) (n/(ps)) + 1 + d elements
- Duplicates d do not impact performance unless d = O(n/p)
- Tradeoff: increasing s ...
 - Spreads the final distribution more evenly over the processors
 - Increases the cost of determining the splitters
- For some inputs, communication patterns can be highly irregular with some pairs of processors communicating more heavily than others, lowering performance

Radix sort

- We need a **stable** sorting algorithm to do the local sorts: the output preserves the order of inputs having the same associated key
- *radix sort* meets our needs: sort the keys in passes, choosing an r-bit block at a time, O(n) running time
- Explanation with a demo www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Radix/

A simple example

- Following an example in the NIST Dictionary of Algorithms and Data Structures http://www.nist.gov/dads/
- Uses buckets to sort the keys in passes
- Running time is O(cn), c depends on size of the keys and the number of buckets

Radix sort in action

- Consider the input keys 34, 12, 42, 32, 44, 41, 34, 11, 32, and 23
- Use 4 buckets
- Sort on each digit in succession, least significant to most significant

Radix sort in action

- Consider the input keys 34, 12, 42, 32, 44, 41, 34, 11, 32, and 23
- Use 4 buckets
- Sort on each digit in succession, least significant to most significant
- After pass 1 41 11 12 42 32 32 23 34 44 34

Radix sort in action

- Consider the input keys 34, 12, 42, 32, 44, 41, 34, 11, 32, and 23
- Use 4 buckets
- Sort on each digit in succession, least significant to most significant
- After pass 1
 41 11 12 42 32 32 23 34 44 34
- After pass 2
 11 12 23 32 34 34 41 42 44

Today's Lecture

- Parallel Sorting (II)
 - Bucket Sort
 - Sample sort
 - Bitonic Sort

Bitonic sort

- Classic parallel sorting algorithm: O(log²n) on n processors
- Also used in fast sorting on a GPU
- **Definition:** A bitonic sequence is a sequence of numbers a_0 , $a_1...a_{n-1}$ with at most 1 local maximum and 1 local minimum (Endpoints wrap around)
 - There exists an index i where $a_0 \le a_1 \le a_1 \dots \le a_i$ and $a_i \ge a_{i+1} \ge a_{i+1} \dots \ge a_{n-1}$
 - ightharpoonup We may cyclically shift the a_k while maintaining this relationship
- Merge property: We may merge two bitonic sequences in much the same way as we merge two *monotonic* sequences

Splitting property of bitonic sequences

We can split a bitonic sequence y into two bitonic sequences
 L(y) and R(y)

$$L(y) = \langle \min\{a_0, a_{n/2}\}, \min\{a_1, a_{n/2+1}\}, \dots, \min\{a_{n/2+1}, a_{n-1}\} \rangle$$

$$R(y) = \langle \max\{a_0, a_{n/2}\}, \max\{a_1, a_{n/2+1}\}, \dots, \max\{a_{n/2+1}, a_{n-1}\} \rangle$$

• See the notes for a proof

3 5 8 9 7 4 2 1
3 1
$$a_7$$
 All values in $L(y) < R(y)$
5 2 a_6
8 4 a_5
9 7 a_4 $L(y)$: 3 4 2 1
 $R(y)$: 7 5 8 9

Sorting a bitonic sequence is easy

- Split the bitonic sequence y into two bitonic subsequences
 L(y) and R(y)
- Sort L(y) and R(y) recursively
- Merge the two sorted lists
 - Since all values in L(y) are smaller than all values in R(y) we don't need to exchange values in L(y) and R(y)
- When |L(.)| < 3, sorting is trivial
- We designate **S(n)** to be sort on of an n-element bitonic sequence

Bitonic sort algorithm

- Create a bitonic sequence y from an unsorted list
- Apply the previous algorithm to sort the bitonic sequence
- We need an algorithm to create the bitonic sequence *y*

Additional properties of bitonic sequences

- Any 2 element sequence is a bitonic sequence
- We can trivially construct a bitonic sequence from two monotonic sequences, one sorted in increasing order, the other in decreasing order

Inductive construction of the initial bitonic sequence

- Form matched pairs of 2-element bitonic sequences, pointing up and down [B(2)]
- Trivially merge these into 4-element bitonic sequences
- Now form matched pairs of 4-element sequences [B(4)]
- Apply S(4) to each sequence, sorting the first upward, the second downward
- Trivially merge into an 8-element bitonic sequence
- Continue until there is just one sequence

Implementing the bitonic sort algorithm

- Create a bitonic sequence y from an unsorted list, B(n)
- Apply the previous algorithm to sort the bitonic sequence, S(n)
- We use comparators to re-order data
- We use a shuffle exchange network to form L(y) and R(y)
 - This network shuffles an n-element sequence by interleaving x_0 , $x_{n/2}$, x_1 , $x_{n/2+1}$, ...

Comparators

- Given two values x & y, produce two outputs
- For an increasing comparator, the output is min[x,y], max[x,y]
- For a decreasing comparator, the output is max[x,y], min[x,y]

Bitonic merging network

• Converts a bitonic sequence into a sorted sequence

From Introduction to Parallel Computing, V. Kumar et al, Benjamin Cummings, 1994

Bitonic conversion network

Converts an unordered sequence into a bitonic sequence

From Introduction to Parallel Computing, V. Kumar et al, Benjamin Cummings, 2003

Fin