CSE 160
Lecture 13

Sorting

Announcements
 No Lab in APM this Friday

e Quiz return

Today’s Lecture
 Parallel Sorting (II)

» Bucket Sort
» Sample Sort

» Bitonic Sort

Parallel sorting
* We’ll consider in-memory sorting of integer
keys
» Bucket sort
» Sample sort
» Bitonic sort

 In practice, we sort on external media, 1.e.
disk
» See: http://sortbenchmark.org
» TritonSort (UCSD): 0.725 x 10'? bytes/minute

Rank Sorting
* Compute the rank of each input value

* Move each value 1n sorted position according
to 1ts rank

* Makes 1dealizing assumptions

» An 1deal parallel computer with no memory
contention and an infinite number of processors

» The forall loops parallelize perfectly
forall i=0:n-1, j=0:n-1

if (x[i] > x[j]) then rank[i] += 1 end if

forall i=0:n-1
ylrank[i]] = x]i]

©2013 Scott B. Baden / CSE 160 / Winter 2013

In search of a fast and practical sort

Rank sorting 1s impractical on real hardware

Let’'s borrow the concept: compute the thread
owner for each key

Shuffle data 1n sorted order 1n one step

But how do we know which thread should be
the owner?

Subdivide the key space

1stattempt: bucket sort

* Divide the range of keys into equal subranges and
associate a bucket with each range

* Each processor maintains p local buckets
» Assigns each key to a bucket: | p x key/(K_ . -1) |

» Routes the buckets to the correct owner
(each local bucket has ~ n/p? elements)

» Sort all incoming data into a single bucket

29 25 3 49 9 37 21 43 10-19 20-29 30-39 40-49
43
92 37 49 49
21 43
10-19 20-29 30-39 40-49 37 43 49
Wikipedia

©2013 Scott B. Baden / CSE 160 / Winter 2013

Running time

Assume that the keys are distributed
uniformly over O to K -1

Local bucket assignment: O(n/p)
Route each local bucket to the correct owner
O(n)

Local sorting (using radix sort) : O(n/p))
www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Radix

Worst case behavior

The assignment of keys to threads 1s based solely on the
knowledge of K.,

If the keys are integers 1n the range [0,Q-1]
... thread k has keys 1n the range
lk Q (k+1) %]

Fa
E.g. for Q=23Y, P=64, each thread gets 2?*= 16 M elements

For a non-uniform distribution, we need more information
to balance keys (and communication) over the processors

In the worst case, all the keys could go to one processor

Improving on bucket sort

Sample sort

Uses a heuristic to estimate the distribution of the
global key range over the p threads

Each processor gets about the same number of keys

Samp!

e the keys to determine a set of p-1 splitters

that partition the key space into p disjoint regions
(buckets)

10

Sample selection

: Py : P : P, :
22| 7 [13l1s] 2 [17] 1 [14l20] 6 [10]24]15] 9 |21 3 [16]19]23] 4 [11]12] 5 | 8
: Py Py : Py
1217 130al17018]2203 69 [10{15]20(21]24) 4|58 |11]12]16]19]23
7117] 9 |20] 8 | 16
2| 8] 9 |16]17]20
: Py : Py P,
tl213lalslel7]s]|oliolin]12]13]14]15]16]17]18]19]20]21]22]23]24

Initial element
distribution

Local sort &
sample selection

Sample combining

Global splitter
selection

Final element
assignment

Introduction to Parallel Computing, 2" Ed,, A.Grama, A.l Gupta, G. Karypis, and V. Kumar, Addison-Wesley, 2003.

©2013 Scott B. Baden / CSE 160 / Winter 2013

11

Splitter selection: regular sampling

« Shi and Schaeffer [1992]

« Each processor sorts 1ts local keys, then selects s
evenly spaced samples
* These candidate splitters are collected by one thread

» Sorted

» Sampled at uniform positions to generate a p-/ element
splitter list

12

Performance

Assuming n = p’ ...

T, =O0((n/p) Ig n)

If s= p, each processor will will merge not more than
2n/p + n/s — p elements

If s > p, each processor will will merge not more than
(3/2)(n/p) - (n/(ps)) + 1 + d elements

Duplicates d do not impact performance unless d = O(n/p)

Tradeoff: increasing s ...

» Spreads the final distribution more evenly over the processors
» Increases the cost of determining the splitters

For some inputs, communication patterns can be highly
irregular with some pairs of processors communicating more
heavily than others, lowering performance

©2013 Scott B. Baden / CSE 160 / Winter 2013 13

Radix sort

 We need a stable sorting algorithm to do the
local sorts: the output preserves the order of
inputs having the same associated key

* radix sort meets our needs: sort the keys 1n
passes, choosing an r-bit block at a time, O(n)
running time

» Explanation with a demo

www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/
Radix/

14

A simple example

* Following an example in the NIST
Dictionary of Algorithms and Data Structures
http://www.nist.gov/dads/

» Uses buckets to sort the keys in passes

* Running time i1s O(cn), ¢ depends on size of
the keys and the number of buckets

15

Radix sort in action

Consider the input keys
34,12,42,32,44,41,34, 11, 32, and 23

Use 4 buckets

Sort on each digit in succession, least significant to most
significant

16

Radix sort in action

Consider the mput keys
34,12,42,32,44, 41, 34, 11, 32, and 23

Use 4 buckets

Sort on each digit in succession, least significant to
most significant

After pass 1
4111 12423232 23 344434

17

Radix sort in action

Consider the input keys
34,12,42,32,44,41,34, 11, 32, and 23

Use 4 buckets

Sort on each digit in succession, least significant to most
significant

After pass 1
41 11 12423232 23 344434

After pass 2
1112 23 32 323434414244

©2013 Scott B. Baden / CSE 160 / Winter 2013

18

Today’s Lecture
 Parallel Sorting (II)

» Bitonic Sort

©2013 Scott B. Baden / CSE 160 / Winter 2013

19

Bitonic sort

Classic parallel sorting algorithm: O(log?n) on n processors
Also used in fast sorting on a GPU

Definition: A bifonic sequence 1s a sequence of numbers a,,
a,...a,_; with at most 1 local maximum and 1 local minimum
(Endpoints wrap around)

» There exists an index i where
y=a;=a;..=aanda=a, =a, ...=za,,

» We may cyclically shift the a, while maintaining this relationship

Merge property: We may merge two bitonic sequences in
much the same way as we merge two monotonic sequences

1,2.4,7,6,0 /\ \/ 7.6,0,1,2.4

20

Splitting property of bitonic sequences

We can split a bitonic sequence y into two bitonic sequences
L(y) and R(y)

L(y) = (min{ao,an/z}, mini{a;,a, ».;f,..., min{an/z+1aan-1}>

R(y) = (max{ao,an/z}, maxia;,a ;.. '3maX{an/2+19an—1}>

See the notes for a proof

3589742 1

3 1 a, All values in L(y) < R(y)
5 2 ag

8/ 4 a. L(y): 3421

I’ T R(y): 758 9

©2013 Scott B. Baden / CSE 160 / Winter 2013 21

Sorting a bitonic sequence is easy

Split the bitonic sequence y into two bitonic subsequences

L(y) and R(y)
Sort L(y) and R(y) recursively

Merge the two sorted lists

» Since all values in L(y) are smaller than all values in R(y) we don’ t
need to exchange values in L(y) and R(y)

When |L(.)| < 3, sorting 1s trivial
We designate S(n) to be sort on of an n-element bitonic
sequence

22

Bitonic sort algorithm

Create a bitonic sequence y from an
unsorted list

Apply the previous algorithm to sort the
bitonic sequence

We need an algorithm to create the bitonic
sequence)

23

Additional properties of bitonic sequences

Any 2 element sequence 1s a bitonic sequence

We can trivially construct a bitonic sequence from
two monotonic sequences, one sorted in increasing
order, the other 1in decreasing order

\+/ =V

24

Inductive construction of the initial bitonic
sequence

Form matched pairs of 2-element bitonic sequences,
pointing up and down [B(2)]

Trivially merge these into 4-element bitonic sequences
Now form matched pairs of 4-clement sequences [B(4)]

Apply S(4) to each sequence, sorting the first upward, the
second downward

Trivially merge into an 8-element bitonic sequence
Continue until there 1s just one sequence

/NN NN
SN N

©2013 Scott B. Baden / CSE 160 / Winter 2013 25

Implementing the bitonic sort algorithm

Create a bitonic sequence y from an
unsorted list, B(n)

Apply the previous algorithm to sort the
bitonic sequence, S(n)

We use comparators to re-order data

We use a shuffle exchange network to form
L(y) and R(y)

» This network shuffles an n-element sequence by
interleaving X, X, 5, X1 Xy11s «--

26

Comparators

Given two values x & v,

produce two outputs X

For an increasing comparator,

the output is y
min[x,y], max|x,y]

o—0

Fan

\J/

o
N

X
For a decreasing comparator,
the output is
: y
max|x,y|, min|x,y]|

©2013 Scott B. Baden / CSE 160 / Winter 2013

Min[x,y]

Max|[x.y]

Max[x,y]

Min[x,y]

27

Bitonic merging network

Converts a bitonic sequence into a sorted sequence

S(16) 2xS@8) 4xS@) 8xS()

Wires

3 3 3 3 0

0000 85 S & &
5 5 5 0 3

0001 & SH & &
8 8 SL 8 5

0010 & P D &
9 9 0 5 8

0011 &b D S5 5
10 l()I 10 10 9

0100 S5 4B S &P
12 12 12 9 10

0101 &P B RO &
14 14 14 14 12

0110 &P 85 B 5
20 T 0 s 9 A 12 A 14

0111 O NP) hu
95 95 35 18 18

1000 5, 5 &P &
i 9o | A 90 . 23 ~l 20 |L| 20

N, N, D N
60 A 60 - 1 BPN 38 ol 98

1010 N¥; A\ o)
o 40 A 40 | B0 -

N¥; R N¥ \NwJ N
i 35 ol 35 AL i - 60 || 40

N5 N v N
23 Pany 23 T 90 T 40 Fany 60

1101 N, D N o
i I8 n 18 "X 60 L 95 || %

N7 T SFy o
111 0 al 20 Al 40 Al w8 L] e

\\ Nw) N \u7;

From Introduction to Parallel Computing, V. Kumar et al, Benjamin Cummings, 1994

©2013 Scott B. Baden / CSE 160 / Winter 2013

Bitonic conversion network

Converts an unordered sequence into a bitonic sequence

Bd)= S@)+SQ2) .. SxB(2) 4xB(4) 2 x B(8)

5

10 T T T
0000 s> \) D——P SY —PD——D
' ' '
20 | 20, Pa L2 9 Py O 2 NI N
0001 A\ h T A% D A
5 9 1 10 ' 1
0010 & D—+——PD P——D+—D
: o |L] \s/ - 0 L
Wires 0011 O\ S O+—D—+
0000 — — — — — 1 1 1
oo — DBM2] | | | | - 3 1m m ~ Y 14\ |~ " "
oo | @ BM[4] [] — 0100 AN \ } T T I AN —y —y
m AOBH HewwH [oo —ot—Y oot H-or oo
0 6 gy [- = - 12 A | L] g : :
0101 S BM[4 o ' o Fany [IanY [IanY
o 5 vz (4] [| L 0110 A] O (N
on o B HeswalE e [L] W) T4 T \s I D
1000 —1 — — — — \ oO—=C OO
_| & BM[2]] n || L m H p .
o0 — S sz [@ BMM4) — L < B e | S e —O—O
_— AN - - -] L 1
O = & ket R = b B S P 1 S B A
1or — = — — — ! 1 [
— | © BM[4) [— — 60 60 ' 60 ' J\T ;
T e M) [N — — 1010 i O+ O UJ\ : i
40 ! 90 1]
1011 A\ % S, : D © oo
no =24l 2l 1o+ o P\ o Lo o
ss [L1 N/ [T & Ll sV LI i T+ 8
1101 o — L T T
EAN AN ﬁ rJ\T — 23 L rl\\ll MY
1110 N : (O R ;
AV ENED{AY Lol
1111 \ et O O \ ¥ 4 = OO

From Introduction to Parallel Computing, V. Kumar et al, Benjamin Cummings, 2003

©2013 Scott B. Baden / CSE 160 / Winter 2013

Fin

