
CSE 160 
Lecture 13 

 

Sorting 



Announcements 
•  No Lab in APM this Friday 
•  Quiz return 
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Today’s Lecture 
•  Parallel Sorting (II) 

 Bucket Sort 
 Sample Sort 
 Bitonic Sort 
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Parallel sorting 
•  We’ll consider in-memory sorting of integer 

keys 
 Bucket sort 
 Sample sort 
 Bitonic sort 

•  In practice, we sort on external media, i.e. 
disk 
 See: http://sortbenchmark.org 
 TritonSort (UCSD):  0.725 x 1012 bytes/minute 
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Rank Sorting 
•  Compute the rank of each input value 
•  Move each value in sorted position according 

to its rank 
•  Makes idealizing assumptions 

 An ideal parallel computer with no memory 
contention and an infinite number of processors 

 The forall loops parallelize perfectly 
 

 forall  i=0:n-1, j=0:n-1  
         if ( x[i] > x[j] ) then rank[i] += 1 end if 
 forall  i=0:n-1 
      y[rank[i]] = x[i] 
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In search of a fast and practical sort 

•  Rank sorting is impractical on real hardware 
•  Let’s borrow the concept: compute the thread 

owner for each key 
•  Shuffle data in sorted order in one step 
•  But how do we know which thread should be 

the owner? 
•  Subdivide the key space 
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1st attempt: bucket sort 
•  Divide the range of keys into equal subranges and 

associate a bucket with each range 
•  Each processor maintains p local  buckets 

 Assigns each key to a bucket:    ⎣ p × key/(Kmax-1) ⎦ 
 Routes the buckets to the correct owner 

 (each local bucket has ~ n/p2 elements) 
 Sort all incoming data into a single bucket 

Wikipedia 
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Running time 

•  Assume that the keys are distributed 
uniformly over 0 to Kmax-1 

•  Local bucket assignment: O(n/p) 
•  Route each local bucket to the correct owner 

O(n) 
•  Local sorting (using radix sort) : O(n/p)) 

www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Radix 
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Worst case behavior 
•  The assignment of keys to threads is based solely on the 

knowledge of Kmax 

•  If the keys are integers in the range [0,Q-1] …. 
… thread k has keys in the range 
 
 

•  E.g. for Q=230, P=64, each thread gets 224 = 16 M elements 
•  For a non-uniform distribution, we need more information 

to balance keys (and communication) over the processors 
•  In the worst case, all the keys could go to one processor 
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Improving on bucket sort  
•  Sample sort 
•  Uses a heuristic to estimate the distribution of the 

global  key range over the p threads 
•  Each processor gets about the same number of keys 
•  Sample the keys to determine a set of p-1 splitters 

that partition the key space into p disjoint regions 
(buckets) 
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Sample selection 

Introduction to Parallel Computing, 2nd Ed,, A.Grama, A.l Gupta, G. Karypis, and V. Kumar, Addison-Wesley, 2003. 
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Splitter selection: regular sampling 

•  Shi and Schaeffer [1992] 
•  Each processor sorts its local keys, then selects s 

evenly spaced samples   
•  These candidate splitters are collected by one thread 

►  Sorted 
►  Sampled at uniform positions to generate a p-1 element 

splitter list 
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Performance 
•  Assuming n ≥ p3  … 
•  TP = O((n/p) lg n) 
•  If s= p, each processor will will merge not more than  

   2n/p + n/s – p elements 
•  If s >  p, each processor will will merge not more than  

                        (3/2)(n/p) - (n/(ps)) + 1 + d elements 
•  Duplicates d  do not impact performance unless d =  O(n/p) 
•  Tradeoff: increasing s …  

  Spreads the final distribution more evenly over the processors   
  Increases the cost of determining the splitters 

•  For some inputs, communication patterns can be highly 
irregular with some pairs of processors communicating more 
heavily than others, lowering performance   
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Radix sort 

•  We need a stable sorting algorithm to do the 
local sorts: the output preserves the order of 
inputs having the same associated key 

•  radix sort meets our needs: sort the keys  in 
passes, choosing an r-bit block at a time, O(n) 
running time 

•  Explanation with a demo 
www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/
Radix/ 
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A simple example 

•  Following an example in the NIST 
 Dictionary of Algorithms and Data Structures  
http://www.nist.gov/dads/ 

•  Uses buckets to sort the keys in passes 
•  Running time is O(cn),  c depends on size of 

the keys and the number of buckets 
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Radix sort in action 
•  Consider the input keys 

34, 12, 42, 32, 44, 41, 34, 11, 32, and 23 
•  Use 4 buckets 
•  Sort on each digit in succession, least significant to most 

significant 
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Radix sort in action 
•  Consider the input keys 

34, 12, 42, 32, 44, 41, 34, 11, 32, and 23 
•  Use 4 buckets 
•  Sort on each digit in succession, least significant to 

most significant 
•  After pass 1 

  41 11    12 42 32 32    23    34 44 34 
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Radix sort in action 

•  Consider the input keys 
34, 12, 42, 32, 44, 41, 34, 11, 32, and 23 

•  Use 4 buckets 
•  Sort on each digit in succession, least significant to most 

significant 
•  After pass 1 

  41 11    12 42 32 32    23    34 44 34 
•  After pass 2 

      11 12     23                    32    32 34 34 41 42 44  



Today’s Lecture 
•  Parallel Sorting (II) 

 Bucket Sort 
 Sample sort 
 Bitonic Sort 
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Bitonic sort 
•  Classic parallel sorting algorithm: O(log2n) on n processors  
•  Also used in fast sorting on a GPU 
•  Definition: A bitonic sequence is a sequence of numbers a0, 

a1...an-1 with at most 1 local maximum and  1 local minimum
(Endpoints  wrap around ) 
  There exists an index i where 

a0 ≤ a1 ≤ a1 … ≤ ai and ai ≥ ai+1 ≥ ai+1 … ≥ an-1 

  We may cyclically shift the ak while maintaining this relationship 

•  Merge property: We may merge two bitonic sequences in 
much the same way as we merge two monotonic sequences 

1,2,4,7,6,0 7,6,0,1,2,4 
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 3  5  8  9  7  4  2   1 
  3        1   a7 

   5        2   a6  
  8        4   a5  
  9        7   a4 

 

Splitting property of bitonic sequences 
•  We can split a bitonic sequence y into two bitonic sequences 

 L(y) and R(y) 

 L(y) = 〈min{a0,an/2}, min{a1,an/2+1},…, min{an/2+1,an-1}〉 

 R(y) = 〈max{a0,an/2}, max{a1,an/2+1},…,max{an/2+1,an-1}〉 
•  See the notes for a proof 

All values in L(y) < R(y) 
 
L(y):  3  4  2  1  

R(y):  7  5  8   9 
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Sorting a bitonic sequence is easy 

•  Split the bitonic sequence y into two bitonic subsequences 
L(y) and  R(y) 

•  Sort L(y) and R(y) recursively 
•  Merge the two sorted lists 

  Since all values in L(y) are smaller than all values in R(y) we don’t 
need to exchange values in L(y) and R(y) 

•  When |L(.)| < 3, sorting is trivial  
•  We designate S(n) to be  sort on of an n-element bitonic 

sequence 
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Bitonic sort algorithm 

•  Create a bitonic sequence y from an 
unsorted list  

•  Apply the previous algorithm to sort the 
bitonic sequence 

•  We need an algorithm to create the bitonic 
sequence y 
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Additional properties of bitonic sequences 

•  Any 2 element sequence is a bitonic sequence 
•  We can trivially construct a bitonic sequence from 

two monotonic sequences, one sorted in increasing 
order, the other in decreasing order 

+ = 
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Inductive construction of the initial bitonic 
sequence 

•  Form  matched pairs of 2-element bitonic sequences, 
pointing up and down  [B(2)] 

•  Trivially merge these into 4-element bitonic sequences 
•  Now form matched pairs of 4-element sequences [B(4)] 
•  Apply S(4) to each sequence, sorting the first upward, the 

second downward 
•  Trivially merge into an 8-element bitonic sequence 
•  Continue until there is just one sequence 
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Implementing the bitonic sort algorithm 

•  Create a bitonic sequence y from an 
unsorted list, B(n) 

•  Apply the previous algorithm to sort the 
bitonic sequence, S(n) 

•  We use comparators to re-order data 
•  We use a shuffle exchange network to form 

L(y) and R(y) 
  This network shuffles an n-element sequence by 

interleaving x0, xn/2, x1, xn/2+1, … 



©2013  Scott B. Baden / CSE 160 / Winter 2013 27 

Comparators 

•  Given two values x & y, 
produce two outputs 
 

•  For an increasing comparator, 
the output is 

 min[x,y], max[x,y] 
 

•  For a decreasing comparator, 
the output is 

 max[x,y], min[x,y] 
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Bitonic merging network 

•  Converts a bitonic sequence into a sorted sequence 

From Introduction to Parallel Computing, V. Kumar et al, Benjamin Cummings, 1994 

S(16) 2 x S(8) 

L

R

4 x S(4) 8 x S(2) 

L

L

R

R
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Bitonic conversion network 
 Converts an unordered sequence into a bitonic sequence 

From Introduction to Parallel Computing, V. Kumar et al, Benjamin Cummings, 2003 

8xB(2) 4 x B(4) 2 x B(8) B(4) =  S(4) + S(2) 



Fin 


