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Mixed Integer Linear Programming

A mixed integer linear program (MILP,MIP) is of the form

min cTx

Ax = b

x ≥ 0

xi ∈ Z ∀i ∈ I

If all variables need to be integer,
it is called a (pure) integer linear program (ILP, IP)

If all variables need to be 0 or 1 (binary, boolean),
it is called a 0− 1 linear program
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Applications of MIP

Used in contexts where, e.g.:

it only makes sense to take integral quantities
of certain goods or resources, e.g.:

men (human resources planning)
power stations (facility location)

binary decisions need to be taken

producing a product (production planning)
assigning a task to a worker (assignment problems)
assigning a slot to a course (timetabling)

And many many more...
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Computational Complexity: LP vs. IP

Including integer variables increases enourmously the
modeling power,at the expense of more complexity

LP’s can be solved in polynomial time with interior-point
methods (ellipsoid method, Karmarkar’s algorithm)

Integer Programming is an NP-complete problem. So:

There is no known polynomial-time algorithm
There are little chances that one will ever be found
Even small problems may be hard to solve

What follows is one of the many approaches
(and one of the most successful) for attacking IP’s
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LP Relaxation of a MIP

Given a MIP

(IP )

min cTx

Ax = b

x ≥ 0

xi ∈ Z ∀i ∈ I

its linear relaxation consists in the LP obtained by
dropping the integrality constraints:

(LP )

min cTx

Ax = b

x ≥ 0

Can we solve IP by solving LP? By rounding?
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Branch & Bound (1)

The optimal solution of

max x+ y

−2x+ 2y ≥ 1

−8x+ 10y ≤ 13

x, y ∈ Z

is (x, y) = (1, 2) with objective 3

The optimal solution of its LP relaxation
is (x, y) = (4, 4.5) with objective 9.5

No direct way of getting from (x, y) = (4, 4.5) to
(x, y) = (1, 2) by rounding!

Something more elaborate is needed: branch & bound
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Branch & Bound (2)

(1, 2)

y

x

x ≥ 0

y ≥ 0

maxx + y

(4, 4.5)

−2x + 2y ≥ 1

−8x + 10y ≤ 13
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Branch & Bound (3)

Assume integer variables have lower and upper bounds

Let P0 initial problem, LP(P0) LP relaxation of P0

If in optimal solution of LP(P0) all integer variables take
integer values then it is also an optimal solution to P0

Else

Rounding the solution of LP(P0) may yield to
non-optimal or non-feasible solutions for P0!
Let xj be integer variable whose value βj at optimal
solution of LP(P0) satisfies βj 6∈ Z. Define

P1 := P0 ∧ xj ≤ ⌊βj⌋

P2 := P0 ∧ xj ≥ ⌈βj⌉

Feasible solutions to P0=feasible solutions to P1 or P2
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Branch & Bound (4)

Let xj be integer variable whose value βj at optimal
solution of LP(P0) satisfies βj 6∈ Z.

P1 := P0 ∧ xj ≤ ⌊βj⌋ P2 := P0 ∧ xj ≥ ⌈βj⌉

Pi can be solved recursively

We can build a binary tree of subproblems whose
leaves correspond to pending problems still to be solved

Terminates as integer vars have finite bounds and, at
each split, range of one var becomes strictly smaller

If LP(Pi) has optimal solution where integer variables
take integer values then solution is stored

If LP(Pi) is infeasible then Pi can be discarded
(pruned, fathomed)
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Example (1)

Max obj: x + y

Subject To

c1: -2 x + 2 y >= 1

c2: -8 x + 10 y <= 13

End

====================================================================

Status: OPTIMAL

Objective: obj = 8.5 (MAXimum)

No. Column name St Activity Lower bound Upper bound

------ ------------ -- ------------- ------------- -------------

1 x B 4 0

2 y B 4.5 0
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Example (2)

Max obj: x + y

Subject To

c1: -2 x + 2 y >= 1

c2: -8 x + 10 y <= 13

Bounds

y >= 5

End

====================================================================

GLPSOL: GLPK LP/MIP Solver 4.38

...

PROBLEM HAS NO FEASIBLE SOLUTION
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Example (3)

Max obj: x + y

Subject To

c1: -2 x + 2 y >= 1

c2: -8 x + 10 y <= 13

Bounds

y <= 4

End

====================================================================

Status: OPTIMAL

Objective: obj = 7.5 (MAXimum)

No. Column name St Activity Lower bound Upper bound

------ ------------ -- ------------- ------------- -------------

1 x B 3.5 0

2 y NU 4 0 4
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Example (4)

Max obj: x + y

Subject To

c1: -2 x + 2 y >= 1

c2: -8 x + 10 y <= 13

Bounds

x >= 4

y <= 4

End

====================================================================

GLPSOL: GLPK LP/MIP Solver 4.38

...

PROBLEM HAS NO PRIMAL FEASIBLE SOLUTION
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Example (5)

Max obj: x + y

Subject To

c1: -2 x + 2 y >= 1

c2: -8 x + 10 y <= 13

Bounds

x <= 3

y <= 4

End

====================================================================

Status: OPTIMAL

Objective: obj = 6.7 (MAXimum)

No. Column name St Activity Lower bound Upper bound

------ ------------ -- ------------- ------------- -------------

1 x NU 3 0 3

2 y B 3.7 0 4

Session 6 – p.14/40



Example (6)

Max obj: x + y

Subject To

c1: -2 x + 2 y >= 1

c2: -8 x + 10 y <= 13

Bounds

x <= 3

y = 4

End

====================================================================

GLPSOL: GLPK LP/MIP Solver 4.38

...

PROBLEM HAS NO PRIMAL FEASIBLE SOLUTION
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Example (7)

Max obj: x + y

Subject To

c1: -2 x + 2 y >= 1

c2: -8 x + 10 y <= 13

Bounds

x <= 3

y <= 3

End

====================================================================

Status: OPTIMAL

Objective: obj = 5.5 (MAXimum)

No. Column name St Activity Lower bound Upper bound

------ ------------ -- ------------- ------------- -------------

1 x B 2.5 0 3

2 y NU 3 0 3
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Example (8)

Max obj: x + y

Subject To

c1: -2 x + 2 y >= 1

c2: -8 x + 10 y <= 13

Bounds

x = 3

y <= 3

End

====================================================================

GLPSOL: GLPK LP/MIP Solver 4.38

...

PROBLEM HAS NO PRIMAL FEASIBLE SOLUTION
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Example (9)

Max obj: x + y

Subject To

c1: -2 x + 2 y >= 1

c2: -8 x + 10 y <= 13

Bounds

x <= 2

y <= 3

End

====================================================================

Status: OPTIMAL

Objective: obj = 4.9 (MAXimum)

No. Column name St Activity Lower bound Upper bound

------ ------------ -- ------------- ------------- -------------

1 x NU 2 0 2

2 y B 2.9 0 3
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Example (10)

Max obj: x + y

Subject To

c1: -2 x + 2 y >= 1

c2: -8 x + 10 y <= 13

Bounds

x <= 2

y = 3

End

====================================================================

GLPSOL: GLPK LP/MIP Solver 4.38

...

PROBLEM HAS NO PRIMAL FEASIBLE SOLUTION
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Example (11)

Max obj: x + y

Subject To

c1: -2 x + 2 y >= 1

c2: -8 x + 10 y <= 13

Bounds

x <= 2

y <= 2

End

====================================================================

Status: OPTIMAL

Objective: obj = 3.5 (MAXimum)

No. Column name St Activity Lower bound Upper bound

------ ------------ -- ------------- ------------- -------------

1 x B 1.5 0 2

2 y NU 2 0 2

Session 6 – p.20/40



Example (12)

Max obj: x + y

Subject To

c1: -2 x + 2 y >= 1

c2: -8 x + 10 y <= 13

Bounds

x = 2

y <= 2

End

====================================================================

GLPSOL: GLPK LP/MIP Solver 4.38

...

PROBLEM HAS NO PRIMAL FEASIBLE SOLUTION

Session 6 – p.21/40



Example (13)

Max obj: x + y

Subject To

c1: -2 x + 2 y >= 1

c2: -8 x + 10 y <= 13

Bounds

x <= 1

y <= 2

End

====================================================================

Status: OPTIMAL

Objective: obj = 3 (MAXimum)

No. Column name St Activity Lower bound Upper bound

------ ------------ -- ------------- ------------- -------------

1 x NU 1 0 1

2 y NU 2 0 2
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Pruning in Branch & Bound

We have already seen that if relaxation is infeasible,
the problem can be pruned

Now assume an (integral) solution has been found

If solution has cost Z then any pending problem Pj

whose relaxation has optimal value > Z can be ignored

cost(Pj) ≥ cost(LP(Pj)) > Z

The optimum will not be in any descendant of Pj!

This pruning of the search tree has a huge impact
on the efficiency of Branch & Bound
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Unboundedness in Branch & Bound

We assumed integer variables are bounded

In mixed problems,
we allow non-integer variables to be unbounded

Assume LP(Pi) is unbounded. Then:

If in basic solution integer variables take integer
values then the problem is unbounded
(assuming that problem data are rational numbers)

Else we proceed recursively
as if an optimal solution to LP(Pi) had been found.
What’s different wrt LP(Pi) having optimal solution?
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Unboundedness in Branch & Bound

We assumed integer variables are bounded

In mixed problems,
we allow non-integer variables to be unbounded

Assume LP(Pi) is unbounded. Then:

If in basic solution integer variables take integer
values then the problem is unbounded
(assuming that problem data are rational numbers)

Else we proceed recursively
as if an optimal solution to LP(Pi) had been found.
What’s different wrt LP(Pi) having optimal solution?
If LP(Pi) is unbounded then Pi cannot be pruned:
no need to check this!
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Branch & Bound: Algorithmic Description
S := {P0} /* set of pending problems */

Z := +∞ /* best cost found so far */

while S 6= ∅ do

remove P from S; solve LP(P )

if LP(P ) is feasible then

Let β be basic solution obtained after solving LP(P )

if β satisfies integrality constraints then

if β is optimal for LP(P ) then

if cost(β) < Z then store β; update Z

else return UNBOUNDED

else

if β is optimal for LP(P ) ∧ P can be pruned then continue

Let xj be integer variable such that βj 6∈ Z

S := S ∪ {P ∧ xj ≤ ⌊βj⌋, P ∧ xj ≥ ⌈βj⌉}
return Z
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Heuristics in Branch & Bound

Possible choices in Branch & Bound

Choosing a pending problem

Depth-first search
Breadth-first search
Best-first search (select node with best cost value)

Choosing a branching variable

That closest to halfway two integer values
That with least cost coefficient
That which is important in the model (0-1 variable)
That which is biggest in a variable ordering

No known strategy is best for all problems!
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Remarks on Branch & Bound

If integer variables not bounded, B&B may not terminate

min 0

1 ≤ 3x− 3y ≤ 2

x, y ∈ Z

is infeasible but B&B loops forever looking for solutions!

New problems need not be solved from scratch but
starting from optimal solution of parent problem

Dual Simplex Method can be used:
dual feasibility preserved if change bounds of basic vars

Often Dual Simplex needs few iterations to obtain an
optimal solution to new problem (reoptimization)

Session 6 – p.27/40



Lower Bounding Procedures

Pruning at a node is achieved here by
solving the LP relaxation with dual simplex

But there exist other procedures for giving lower bounds
on best objective value: Lagrangian relaxation

(MIP )

min cTx

Ax ≤ b

ℓ ≤ x ≤ u

xi ∈ Z ∀i ∈ I

⇒ (LG)

min cTx+ µ(Ax− b)

ℓ ≤ x ≤ u

xi ∈ Z ∀i ∈ I

with µ ≥ 0

LG is a relaxation: gives lower bound on MIP

LG can be trivially solved
For good µ, LG is as good as LP relax. but cheaper

Concrete problems have ad-hoc lower bounding procs
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Cutting Planes (1)

Let us consider a MIP of the form

min cTx

x ∈ S
where S =











x ∈ Rn

∣

∣

∣

∣

∣

∣

∣

Ax = b

ℓ ≤ x ≤ u

xi ∈ Z ∀i ∈ I











and its linear relaxation

min cTx

x ∈ P
where P =











x ∈ Rn

∣

∣

∣

∣

∣

Ax = b

ℓ ≤ x ≤ u

}

Let β be such that β ∈ P but β 6∈ S.
A cut for β is a linear inequality âTx ≤ b̂ such that âTβ > b̂

and γ ∈ S implies âTγ ≤ b̂
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Cutting Planes (2)

(1, 2)

y

xy ≥ 0

maxx + y

(4, 4.5)

−2x + 2y ≥ 1

x + y ≥ 6

−8x + 10y ≤ 13

x ≥ 0

(0, 1)
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Using Cuts for Solving MIP

Let âTx ≤ b̂ be a cut. Then the MIP

min cTx

x ∈ S′
where S′ =











x ∈ Rn

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ax = b

âTx ≤ b̂

ℓ ≤ x ≤ u

xi ∈ Z ∀i ∈ I



















has the same set of feasible solutions S but its LP
relaxation is strictly more constrained

Rather than splitting into subproblems as in Branch &
Bound, one can add the cut and solve the relaxation

Used together with Branch & Bound: Branch & Cut
If after adding cuts no solution is found, then branch
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Gomory Cuts (1)

There are several techniques for deriving cuts

Some are problem-specific (e.g, travelling salesman)

Here we will see a generic technique: Gomory cuts

Let us consider a tableau with a row of the form

xi = ωi +
∑

j∈R aijxj (i ∈ B)

Let β be an associated basic solution such that

1. i ∈ I

2. β(xi) 6∈ Z

3. For all j ∈ R we have β(xj) = ℓj or β(xj) = uj

Can think that it is the optimal tableau of the relaxation
Session 6 – p.32/40



Gomory Cuts (2)

Let δ = β(xi)− ⌊β(xi)⌋. Then 0 < δ < 1 (assumption 2)

By assumption 3, no non-basic variable is free

Let R′ = R∩ {j | ℓj < uj} set of non-basic non-fixed vars

Let L = {j ∈ I ∩ R′ | β(xj) = ℓj}

Let U = {j ∈ I ∩ R′ | β(xj) = uj}

Let x ∈ S. Then xi ∈ Z and

xi = ωi +
∑

j∈R aijxj

Since β is basic solution

β(xi) = ωi +
∑

j∈R aijβ(xj)
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Gomory Cuts (3)

xi = ωi +
∑

j∈R aijxj

β(xi) = ωi +
∑

j∈R aijβ(xj)

Subtracting

xi − β(xi) =
∑

j∈R aij(xj − β(xj))

=
∑

j∈L aij(xj − ℓj)−
∑

j∈U aij(uj − xj)

Finally

xi − ⌊β(xi)⌋ = δ +
∑

j∈L aij(xj − ℓj)−
∑

j∈U aij(uj − xj)

Let us define

L+ = {j ∈ L | aij ≥ 0} L− = {j ∈ L | aij < 0}

U+ = {j ∈ U | aij ≥ 0} U− = {j ∈ L | aij < 0}
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Gomory Cuts (4)

xi − ⌊β(xi)⌋ = δ +
∑

j∈L aij(xj − ℓj)−
∑

j∈U aij(uj − xj)

Assume
∑

j∈L aij(xj − ℓj)−
∑

j∈U aij(uj − xj) ≥ 0. Then

δ +
∑

j∈L

aij(xj − ℓj)−
∑

j∈U

aij(uj − xj) ≥ 1

∑

j∈L+

aij(xj − ℓj)−
∑

j∈U−

aij(uj − xj) ≥ 1− δ

∑

j∈L+

aij

1− δ
(xj − ℓj) +

∑

j∈U−

(−aij

1− δ

)

(uj − xj) ≥ 1

Moreover
∑

j∈L−

(

−aij

δ

)

(xj − ℓj) +
∑

j∈U+

aij

δ (uj − xj) ≥ 0
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Gomory Cuts (5)

xi − ⌊β(xi)⌋ = δ +
∑

j∈L aij(xj − ℓj)−
∑

j∈U aij(uj − xj)

Assume
∑

j∈L aij(xj − ℓj)−
∑

j∈U aij(uj − xj) < 0. Then

δ +
∑

j∈L

aij(xj − ℓj)−
∑

j∈U

aij(uj − xj) ≤ 0

−
∑

j∈L−

aij(xj − ℓj) +
∑

j∈U+

aij(uj − xj) ≥ δ

∑

j∈L−

(−aij

δ

)

(xj − ℓj) +
∑

j∈U+

aij

δ
(uj − xj) ≥ 1

Moreover
∑

j∈L+

aij

1−δ (xj − ℓj) +
∑

j∈U−

(

−aij

1−δ

)

(uj − xj) ≥ 0
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Gomory Cuts (6)

In any case
∑

j∈L−

(−aij

δ

)

(xj − ℓj)+

∑

j∈U+

aij

δ
(uj − xj)+

∑

j∈L+

aij

1− δ
(xj − ℓj)+

∑

j∈U−

(−aij

1− δ

)

(uj − xj) ≥ 1

for any x ∈ S.
However, β does not satisfy this inequality
(set xj = ℓj for j ∈ L, and xj = uj j ∈ U)
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Ensuring All Vertices Are Integer (1)

Let us assume A, b have coefficients in Z

Sometimes it is possible to ensure for an IP that
all vertices of the relaxation are integer

For instance, when the matrix A is totally unimodular:
the determinant of every square submatrix is 0 or ±1

Sufficient condition: property K

Each element of A is 0 or ±1

No more than two non-zeros appear in each columm
Rows can be partitioned in two subsets R1 and R2 s.t.

If a column contains two non-zeros of the same
sign, one element is in each of the subsets
If a column contains two non-zeros of different
signs, both elements belong to the same subset
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Assignment Problem

m = # of workers = # of tasks

Each worker must be assigned to exactly one task

Each task is to be performed by exactly one worker

cij = cost when worker i performs task j
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Assignment Problem

m = # of workers = # of tasks

Each worker must be assigned to exactly one task

Each task is to be performed by exactly one worker

cij = cost when worker i performs task j

xij =

{

1 if worker i performs task j

0 otherwise

min
∑n

i=1

∑n

j=1
cijxij

∑n

i=1
xij = 1 ∀j ∈ {1, . . . ,m}

∑n

j=1
xij = 1 ∀i ∈ {1, . . . ,m}

xij ∈ {0, 1} ∀i, j ∈ {1, . . . ,m}

This problem satisfies property K
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Ensuring All Vertices Are Integer (2)

Several kinds of IP’s satisfy property K:

Assignment
Transportation
Maximum flow
Shortest path
...

Usually specialized network algorithms are more
efficient for these problems than simplex techniques

But simplex techniques are general and can be used if
no implementation of network algorithms is available
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