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INTEGER LINEAR PROGRAMMING (IP)

IP is the name given to LP problems which have the additional constraint that some or all the  variables
have to be .integer

1. CLASSICAL INTEGER PROGRAMMING PROBLEMS

EXAMPLE 1: CAPITAL BUDGETING

A firm has n projects that it would like to undertake but because of budget limitations not all can be
selected.  In particular project j is expected to produce a revenue of c  but requires an investment of a  in the timej ij
period i for i 1,...m.  The capital available in time period i is b .  The problem of maximising revenue subject toœ i
the  budget constraints can be formulated as follows: let x   0 or 1 correspond to not proceeding orj œ
respectively proceeding with project j then we have to

max               c x!
j 1

n
j j

œ

subject to      a  x   b ;  i  1, ... , m!
j 1

n
ij j i

œ

Ÿ œ

               0  x   1    x  integer    j 1, ..., nŸ Ÿ œj j

EXAMPLE 2: DEPOT LOCATION

We consider here a simple problem of this type: a company has selected m possible sites for distribution
of its products in a certain area.  There are n customers in the area and the transport cost of supplying the whole
of customer j's requirements over the given planning period from potential site i is c .  Should site i be developedij
it will cost f  to construct a depot there.  Which sites should be selected to minimise the total construction plusi
transport cost?

To do this we introduce m variables y ,...y  which can only take values 0 and 1 and correspond to a1 m
particular site being not developed or developed respectively.  We next define x  to be the fraction of customerij
j's requirements supplied from depot i in a given solution.  The problem can then  be expressed.

min               c  x     f  y! ! !
i 1 j 1 i 1

m n m
ij ij i i

œ œ œ



subject to                 x   1  ;   x   y      i 1, ..., m ;     j  1, ..., n (1)!
i 1

m
ij ij i

œ

œ Ÿ œ œ

x 0 ;   0  y   1 ;   y   integer ;  i  1, ..., m ;  j  1, ..., nij i i    Ÿ Ÿ œ œ

Note that if y   0 then  f  y   0  and there is no contribution to the total cost.  Also x   y  impliesi i i ij iœ œ Ÿ
x   0 for j 1,...n and so no goods are distributed from site i.  This corresponds exactly to no depot at site i.ij œ œ

On the other hand, if y   1 then f y   f  which is the cost of constructing depot i.  Also x   yi i i i ij iœ œ Ÿ
becomes x   1 which holds anyway from the constraints (1).ij Ÿ

THE SET COVERING PROBLEM AND INTEGER PROGRAMMING FORMULATION

Let S , ..., S  be a family of subsets of a set S  1,2, ..., m .  A covering of S is a subfamily S  for j1 n jœ Ö ×
− œ  I such that S   S .  Assume that each subset S  has a cost c   0 associated with it.  We define the cost-

j I
j j j

−

of a cover to be the sum of the costs of the subsets included in the cover.

The problem of finding a cover of minimum cost is of particular practical significance.  As an integer
program it can be specified as follows:  define the m n matrix A  a  by‚ œ ² ²ij
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a   1 if i  Sij jœ −

   0 otherwiseœ

Let x  be 0  1 variables with x   1 0  to mean set S  is included respectively not included  in the cover.j j j œ Ð Ñ Ð Ñ
The problem is to

Minimise       c  x!
j 1

n
j j

œ

subject to    a  x   1           i 1,...m (2)!
j 1

n
ij j

œ

  œ

                 x   0 or 1j œ

The m inequality constraints have the following significance: since x   0 or 1 and the coefficients aj ijœ

are also 0 or 1 we see that  a  x  can be zero only if x  0 for all j such that a   1.  In other words only if!
j 1

n
ij j j ij

œ

œ œ

no set S  is  chosen such that i  S .  The inequalities are put in to avoidj j−
this.

EXAMPLE 3: SET COVERING  - AIRLINE CREW SCHEDULING  

Consider the following simplified airline crew scheduling problem.  An airline has m scheduled flight-
legs per week in its current service.  A flight-leg being a single flight flown by a single crew e.g. London - Paris
leaving Heathrow at 10.30 am.  Let S , j 1,...n be the collection of all possible weekly sets of flight-legs thatj œ
can be flown by a single crew.  Such a subset must take account of restrictions like a crew arriving in Paris at
11.30 am. cannot take a flight out of New York at 12.00 pm. and so if c  is the cost of set S  of flight-legs thenj j
the problem of minimising cost subject to covering all flight-legs is a set covering problem.  Note that if crews
are not allowed to be passengers on a flight i.e. so that they can be flown to their next flight, then we have to
make 2  an equality  the set partitioning problem.Ð Ñ 

EXAMPLE 4: SET COVERING  - BUILDING FIRE STATIONS 

There are six cities in region R.  The region must determine where to build fire stations.  The region
wants to build the minimum number of fire stations and ensure that at least one fire station is near 15 minutes of
each city.  The times (in minutes) required to drive between cities are:

 From       To  

  1 2 3 4 5 6
 
 1 0 10 20 30 30 20
 2 10 0 25 35 20 10
 3 20 25 0 15 30 20
 4 30 35 15 0 15 25
 5 20 20 30 15 0 14
 6 20 10 20 25 14 0

x  = i

1 if a fire station is built in city i

0 otherwise


Objective function:  Total number of fire stations to be built

x  = x  +  x  +  x  +  x  +  x  +  x0 1 2 3 4 5 6

Constraints:  A fire station within 15 mins of each city.

The locations that can reach each city in 15 minutes:

 City 1 1, 2  x  + x   1  (City 1 constraint)Ê  1 2
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 City 2 1, 2, 6  x  + x  + x   1  (City 2 constraint)Ê  1 2 6
 City 3 3, 4
 City 4 3, 4, 5
 City 5 4, 5, 6
 City 6 2, 5, 6

IP: min  x  =  x   +   x   +   x   +   x   +  x   + x0 1 2 3 4 5 6
subject to  x  + x           1 (City 1)1 2  
  x  + x        + x   1 (City 2)1 2 6  
      x  + x       1 (City 3)3 4  
      x  + x  + x    1 (City 4)3 4 5  
        x  + x  + x   1 (City 5)4 5 6  
    x      + x  + x   1 (City 6)2 5 6  
     x  = 1 or 0; i = 1, ..., 6.i

Optimal solution: x  = 2; x  = x  = 1, x  = x  = x  = x  = 0.0 2 4 1 3 5 6

In a set covering problem each member of a given set (Set 1) must be “covered" by another member of
some set (e.g. Set 2).  The objective is to minimize the number of elements in Set 2 that are required to cover Set
1.

2. GENERAL TERMINOLOGY FOR INTEGER PROGRAMMING

The most general problem called the  can be specified asmixed integer programming problem

min               x   c x0
Tœ

subject to       A x  bœ

                                  x   0           j 1, ..., nj   œ

                        x  integer for j  INj −

where IN is some subset of N   0,1,...n .0 œ Ö ×

When IN N  we have what is called a   For such a problem,œ 0 pure integer programming problem.
one generally has all given quantities c , a , b  integer.  One has to be careful here.  Consider for examplej ij i

min             x     x    x0 1 2œ  " "
$ #

subject to                 x    x   # " %
$ $ $1 2 Ÿ

                               x    x   " $ #
# # $1 2 Ÿ

                              x , x , x   0 and integer0 1 2  

As defined this is  a pure problem.  For a start x  will not necessarily be integer and neither will thenot 0
slack variables. If we want to use an algorithm for solving pure problems we must scale the objective and
constraints to give:

min             x   2x   3x0 1 2œ  

subject to              2x   x   x          41 2 3  œ

                            3x   9x         x   41 2 4  œ

                              x ,...x   0  and integer.1 4  

A final class of problems is the pure 0 1 programming problem

max             x   c  x0
Tœ

subject to              A x  bŸ

                        x   0 or 1     for j  1, ..., n.j œ œ

3. FURTHER  USES OF INTEGER VARIABLES

1.   If a variable  we can replace x by the expression x can only take a finite number of values p ,....p1 m
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p  w   ...  p  w1 1 m m 

where       w   ...  w   1              and          w   0 or 1;     1  1, ...m1 m i  œ œ œ

For example, x might be the output of a plant which can be small p , medium p  or large p .  The cost1 2 3
c x  of the plant could be represented byÐ Ñ

c  w    c  w    c  w1 1 2 2 3 3 

where c  is the cost of a small plant etc.1

2.   In LP, one generally considers all constraints to be holding simultaneously.  It is possible that the
variables might have to satisfy one or other of a set of constraints, e.g.

 a  0  x  MÐ Ñ Ÿ Ÿ
 0  x  1  or  x  2Ÿ Ÿ  
can be expressed

 x  1  M  1Ÿ  Ð  Ñ$
 x  2  M   1   Ð  Ñ$
 x  0       0 or 1  œ$

x  M  is a notional upper bound to make this approach possible.Ÿ

 b  x   x   4Ð Ñ  Ÿ1 2
 x   1 or x   1  but not both  11 2     
 x  , x   01 2  
can be expressed
 x   x   41 2 Ÿ
 x           1   $
         x   1  2    $
 x           1   4 1 Ÿ Ð  Ñ $ $
         x           4 12 Ÿ  Ð  Ñ$ $
                0 or 1$ œ

Integer programming problems generally take much longer to solve than the corresponding linear
program obtained by ignoring integrality.  It is wise therefore to consider the possibility of solving as a straight
forward LP and then rounding e.g. in the trim loss problem.  This is not always possible for example if x  is a 1
0 1 variable such that x   0 means do not build a plant and x   1 means build a plant rounding x   1/2 œ œ œ1 1 1
is not very satisfactory.

4. CUTTING PLANE ALGORITHM FOR PURE INTEGER PROGRAMMING

The rationale behind this approach is :
1. Solve the .continuous problem as an LP i.e. ignore integrality
2. If by chance the optimal basic variables are all integer then the optimum solution has been found.

Otherwise:
3. i.e. a constraint which is satisfied by all integer solutions to the problem but not by theGenerate a  cut

current L.P. solution.
4.  and go to 1 .Add this new constraint Ð Ñ

It is straight forward to show that if at any stage the current L.P. solution x is integer it is the optimal integer
solution.  This is because x is optimal over a region containing all feasible integer solutions.  The problem is to
define cuts that ensure the convergence of the algorithm in a finite number of steps.  The first finite algorithm
was devised by . Gomory

The algorithm is based on the following construction of a 'cutting plane':  let

a  x   ...  a  x   b (3)1 1 n n  œ
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be an equation which is to be satisfied by non-negative integers x , ... x  and let S be the set of possible1 n
solutions.

For a real number  we define . Thus, ,   0    1.0 0 0 % %Ú Û Ÿ0 0  to be the largest integer  œ Ú Û  Ÿ 

Ú Û œ Ú Û œ Ú  Û œ 6   6;    3   3;      4    5" "
# #

Now let a   a   f  and b  b   f in 3  then we havej j jœ Ú Û  œ Ú Û  Ð Ñ

!
j 1

n
j j j

œ

  a   f  x   b   fÐÚ Û  Ñ œ Ú Û 

and hence
! !
j 1 j 1

n n
j j j j

œ œ

  f  x   f  b     a  x (4) œ Ú Û  Ú Û

Now for x  S the right hand side of 4  is clearly integer and so    f  x   f is integer for− Ð Ñ œ 0 D j j
x  S.  Since x  0 for x  S we also have    f   1 and since  is integer we deduce that   0−   −       0 0 0
and that

!
j 1

n
j j

œ

  f  x   f              for x  S  −

Suppose now that one has solved the continuous problem in step 1 of our cutting plane algorithm and
the solution is not integer.  Therefore there is a basic variable x  withi

x    b  x   b where b  is not integer.i ij j i0 i0
j I

 œ!
Â

Putting f   b   b  and f  b   b  and we deduce thatj ij ij i0 i0œ  Ú Û œ  Ú Û

!
j I

j j
Â

  f  x   f (5) 

for all integer solutions to our problem.

Now f  0 since b  is not integer and so 5  is not satisfied by the current LP solution since x   0 Ð Ñ œi0 j
for j  I and so 5  is a cut.Â Ð Ñ

STATEMENT OF THE CUTTING PLANE ALGORITHM

The initial continuous problem solved by the algorithm is the LP problem obtained by ignoring
integrality.

Step 1 Solve current continuous problem.

Step 2 If the solution is integral it is the optimal integer solution, otherwise

Step 3 Choose a basic variable x  which is currently non-integer.  Construct the corresponding constraint (5)i
and add it to the problem.  Go to step 1. We note that the tableau obtained after adding the cut isÐ
dual feasible and so the dual simplex algorithm is used to re-optimise. Nevertheless, we shall not
discuss the dual simplex algorithm and confine ourselves to the phase 1 and phase 2 simplex
algorithm.Ñ

The basic approach is illustrated in FIGURE 1  below.
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EXAMPLE 5:

            max  3x   4x1 2

subject to  x    x   32
5 1 2 Ÿ

  x  x   12 2
5 51 2 Ÿ

 x , x   0  and integer1 2  

to ensure slacks are integer as well, we eliminate the noninteger coefficients

            max  3x   4x1 2

subject to  2x   5x   151 2 Ÿ
  2x  2x   51 2 Ÿ
 x , x   0  and integer1 2  

or,  subject to  2x   5x   + x             = 151 2 3
  2x  2x              + x  =  51 2 4
 x , x , x , x   0  and integer1 2 3 4  

  BV   x  x  x  x  x  x  x  RHS1 2 3 4 5 6 7
_____________________________________________________
 x  3 4      00  
 x  2 5  1     153
 x  2  -2  1    54
  'continuous relaxation'Æ
_____________________________________________________
 x  -        120

7 4
5 5

 x   1      32
2 1
5 5

 x     1    114
14 2
5 5

  'continuous relaxation' & first continuous optimumÆ
_____________________________________________________
     1     x0

1 35
2 2

 x   1  -     2
1 1 10
7 7 7

 x  1        1
1 5 55
7 14 14

 cut based on x  row1
  x  + x    , or1 5 13

7 14 143 4  

  (15-2x -5x ) + (5-2x +2x )  1 5 13
7 14 141 2 1 2  

     x   3Ê Ÿ1
 x  = -  +  x  + x  = 3 - x5 3 4 1

13 1 5
14 7 14

  add first cut and solve the feasibility problem
_____________________________________________________
     1     x0

1 35
2 2

 x   1  -     2
1 1 10
7 7 7

 x  1        1
1 5 55
7 14 14

      1   0 1 5 13
7 14 14

                     Current solution infeasible, solve - phase 1 problem.Å
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  BV   x  x  x  x  x  x  x  RHS1 2 3 4 5 6 7
_____________________________________________________
          x0

4 7 81
5 5 5

 x   1   -    2
1 2 9
5 5 5

 x  1    1   3 1
 x     1 -    4

2 14 13
5 5 5

 continuous optimum attained with cut
 second cut based on x  row2

 x  + x     , or1 3 4
5 5 53 5  

  (15-2x -5x ) + (3-x )  1 3 4
5 5 51 2 1  

   x  + x   4Ê Ÿ1 2
 x  = x  + x     = 4 x   x6 3 5 1 2

1 3 4
5 5 5  

_____________________________________________________
          x0

4 7 81
5 5 5

 x   1   -    2
1 2 9
5 5 5

 x  1    1   3 1
 x     1 -    4

2 14 13
5 5 5

       -1  0 1 3 4
5 5 5

                     Current solution infeasible, solve - phase 1 problem.Å
_____________________________________________________
          x0

1 7 43
3 3 3

 x   1    -   2
1 2 7
3 3 3

 x  1  -       1
1 5 5
3 3 3

 x     1  -   4
4 14 19
3 3 3

 x      1 -   5
1 5 4
3 3 3

 continuous optimum attained with cut
 third cut based on x  row2

 x  + x     , or1 1 1
3 3 33 6  

  (15-2x -5x ) + (4 x   x )  1 1 1
3 3 31 2 1 2   

  x  + 2 x   6Ê Ÿ1 2
 x  = x  + x     = 6  x   2 x7 3 6 1 2

1 1 1
3 3 3  
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  BV   x  x  x  x  x  x  x  RHS1 2 3 4 5 6 7
_____________________________________________________

          x0
1 7 43
3 3 3

 x   1    -   2
1 2 7
3 3 3

 x  1  -       1
1 5 5
3 3 3

 x     1  -   4
4 14 19
3 3 3

 x      1 -   5
1 5 4
3 3 3

        -1 0 1 1 1
3 3 3

_____________________________________________________

        2 1 14x0
 x   1    -1 1 22
 x  1     2 -1 2 1
 x     1  -6 4 54
 x      1 -2 1 15
 x    1   1 -3 13

EXAMPLE 6:

            max    x   4x (6)1 2

subject to
  2x   4x   71 2 Ÿ

 10x   3x   141 2 Ÿ

 x , x   01 2  
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 BV    x  x  x  x  x  x       RHS1 2 3 4 5 6

___________________________________________________
 x  1 4     00  
 x  2 4  1    73
 x  10  3  1   144

  'continuous relaxation' solved by one pivot, solution noninteger: add a cut.Æ

_____________________________________________________
 x  1  1    70

 x   1     2
*" " (

# % %

 x     1   4
"( $ $&
# % %

      1  0Ð Ñ " " $
# % %

Ð Ña b


   current solution infeasible, solve a phase 1 problem.Å

_____________________________________________________        
 x  1    4  40 
 x   1     1  12
 x  10    1 3  114 
 x  2  1  4  33 

_____________________________________________________
   2  'continuous' problem solved, but noninteger, add a cut.Æ nd

 x        0
" $( &"
"! "! "!

 x   1   1  12
 x  1           1

" $ ""
"! "! "!

 x    1            3  " "( %
& & &

       1 0Ð Ñ " ( "
"! "! "!

c 

           Current solution infeasible, solve - phase 1 problem.Å

_____________________________________________________
 x      3  50

 x   1   1  12
 x  1          1 1 11 
 x    1        1      2 13  
 x     1 7     10 14 

(a) Cut generated is  x    x     or  x    x   x   . Adding artificial  to this, in order to get" " $ " " $
# % % # % %1 3 1 3 5     œ 0

basic feasible solution to a augmented set of equations, gives      x    x   x     ." " $
# % %1 3 5   œ0

Ð Ñ Ð Ñb  Choose a pivot that will reduce  pivoting in column 1 is allowable, but the arithmetic is worse .0
Ð Ñ   œc   Cut generated is   x    x   x   ." ( "

"! "! "!4 5 6

It is useful to see what has happened graphically.  We first express the cuts in terms of x , x .1 2

Cut No.1.
" " $
# % % x    x   1 3  

since

x   7  2x   4x   this becomes   x   1.3 1 2 2œ   Ÿ

Cut No.2.

After re-arranging, this becomes   x   x   2.1 2 Ÿ

The constraints and cuts are illustrated in FIGURE 2  below where
A is the optimal solution ignoring integrality.
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B is the optimal solution after adding cut 1.
C is the optimal integer solution found after adding cut 2.

One can show that the cuts  f  x   f when expressed in terms of the original non-basicGomory D j j 
variables have the form  w  x   W where the w , W are integers and the value of  w  x  after solving theD Dj j j j jŸ
current continuous problem is w   where 0    1 assuming the current solution non-integer.  Thus the  % %
cut is obtained by moving a hyperplane parallel to itself to an extent which cannot exclude an integer solution.  It
is worth noting that the plane can usually be moved further without excluding integer points thus generating
deeper cuts.  For a discussion on how this can be done refer to specialist books on integer programming.

 Further Remarks

1. [As the dual simplex algorithm is not covered in this course, you may choose to ignore this remark.]
After adding a cut and carrying out one iteration of the dual simplex algorithm the slack variable corresponding
to this cut becomes nonbasic.  If during a succeeding iteration this slack variable becomes basic then it may be
discarded along with its current row without affecting termination.  This means that the tableau never has more
than m 1 rows or m n columns. 

2. A valid cut can be generated from any row containing a non-integral variable.  One strategy is to choose
the variable with the largest fractional part as this helps to produce a 'large' change in the objective  value. It is
interesting that finiteness of the algorithm has not been proved for this strategy although finiteness has been
proved for the strategy of always choosing the 'topmost' row of the tableau with a non-integer variable.

3. The behaviour of this algorithm has been erratic.  For example, it has worked well on set covering
problems but in other cases the algorithm has to be terminated because of excessive use of computer time.  This
raises an important point; if the algorithm is stopped prematurely then one does not have a good sub-optimal
solution to use.  Thus in some sense the algorithm is unreliable.

5. BRANCH AND BOUND ALGORITHM FOR INTEGER PROGRAMMING

The method to be described in this section constitutes the most successful method applied to date. The
idea is quite general and has been applied to many other discrete optimisation problems (e.g. travelling salesman,
job shop scheduling).

Let us assume we are trying to solve the mixed integer problem.  Let us call this problem P .  The first0
step is to solve the 'continuous' LP problem obtained by ignoring the integrality constraints.  If in the optimal
solution, one or more of the integer variables turn out  to be non-integer, we choose one such variable and use it
to split the given problem P  into  two 'sub-problems' P  and P .  Suppose the variable chosen is y  and it takes0 1 2 j
the non-integral value  in the continuous optimum."j
Then  P  and P  are defined as follows:1 2

P   P  with the added constraint y   1 0 j j´ Ÿ Ú Û"

      P   P  with the added constraint y     12 0 j j´   Ú Û "
Now any solution to P  is either a solution of P  or P  and so P  can be solved by solving P  and P . We0 1 2 0 1 2
continue by solving the LP problems associated with P  and P . We then choose one of the1 2
problems and if necessary split it into two sub-problems as was done with P . The principle of branch and bound0
is illustrared in FIGURE 3  below.



 



IP 3 11Ð#!! Ñ

This process can be viewed as the construction of a binary tree of sub-problems whose terminal pendant  nodesÐ Ñ
correspond to the problems that remain to be solved.

In an actual computation one keeps a list of the unsolved problems into which the main problem has
been split.  One also keeps a note of the objective value MIN of the best integer solution found so far.

Step 0: Initially the list consists of the initial problem P .  Put MIN equal to either the value of some known0
integer solution, or if one is not given equal to some upper bound calculable from initial data, if
neither possibility is possible put MIN  .œ _

Solve the L.P. problem associated with P .  If the solution has integer values for all integer variables0
terminate, otherwise

Step 1: Remove a problem P from the list whose optimal continuous objective function value x  is greater0
than MIN.  If there are no such problems terminate.  The best integer solution found so far is optimal.
If none have been found the problem is infeasible.

Step 2: Amongst the integer variables in problem P with non-integer values in the optimal continuous
solution for P select one for branching.  Let this variable be y  and let its value in the continuousp
solution be ."

Step 3: Create two new problems P' and P'' by adding the extra restrictions y    and y     1p pŸ Ú Û   Ú Û " "
respectively.  Solve the LP problems associated with P' and P'' and add these problems to the list.  If a
new and improved integer solution is found store it and update MIN.  The new LP problems do not
have to be solved from scratch but can be re-optimised using the dual algorithm (or parametrically
altering the bound on y .  If during the re-optimisation of either LP problem the value of thepÑ
objective function exceeds MIN this problem may be abandoned.  Go to step 1.

If one assumes that each integer variable in P  has a finite upper bound equal to some large number for0 Ð
notionally unbounded variable  then the algorithm must terminate eventually, because as one proceeds furtherÑ
down the tree of problems the bounds on the variables become tighter and tighter, and these would eventually
become exact if the LP solutions were never integer.

EXAMPLE 7:

As an example we show a possible tree for solving

Minimise  20  3x   4x 1 2

Subject to

  x   x   3#
& 1 2 Ÿ

  x    x   1# #
& &1 2 Ÿ

 x , x   0 and x , x  integer1 2 1 2 

The application of branch and bound to this problem is described in FIGURE 4  below.



 


