
3/3/2007 1Alperovich Alexander

MotivationMotivation

 Find a maximal flow over a directed
graph

 Source and sink vertices are given

3/3/2007 2

Some definitions (just a Some definitions (just a
reminder)reminder)
 A flow network  G = (V,E) a directed

graph
 Two vertices {s, t} the source and the

sink
 Each edge (u,v) E has some positive

capacity c(u,v), if (u,v) E c(u,v) =0.
 The flow function f maps a value for each

edge where:
 f(u,v) ≤ c(u,v)
 f(v,u) = - f(u,v) (skew symmetry)

 Saturated edge (u,v)  c(u,v) = f(u,v)

3/3/2007 3

Some definitions, contd.Some definitions, contd.

 r(u, v) = c(u,v) – f(u,v)
 Residual graph R(V, E`) where E` is

all the edges (u,v) where r(u,v) ≥0
 Augmenting path p is a path from to

the source to the sink over the
residual graph

 f is a maxflow  there is no
augmenting path

3/3/2007 4

Just as Dinic but…Just as Dinic but…

 We use the residual network
 We don’t look for augmenting paths
 Instead we saturate all outgoing

edges of the source and strive to
make this “preflow” reach the sink

 Otherwise we’ll have to flow it back.

3/3/2007 5

PreflowPreflow

 Flow constrains:

3/3/2007 6

 Every vertex v may keep some
“excess” flow e(v) inside the vertex

Excess handelingExcess handeling

 We strive to push this excess toward
the sink

 If the sink is not reachable on the
residual network the algorithm
pushes the excess toward the source

 When no vertices with e(v) >0 are
left the algorithm halts, and the
resulting flow (!) is the max –flow

3/3/2007 7

Valid distance labelingValid distance labeling

 A mapping function d(v)  N + { ∞ }
 d(s) = n, d(t) = 0
 r(u,v) > 0  d(u) ≤ d(v)+1
 d(v) < n  d(v) is the lower bound on the

distance from v to the sink (residual
graph)
 Let p= v, v1 ,v2 , v3…. vk ,t be the s.p vt
 d(v) ≤ d(v1) + 1 ≤ d(v2) + 2 ≤ d(t) + k = k

 Same way d(v) ≥ n  d(v) -n is the lower
bound on the distance from v to the
source

3/3/2007 8

Active vertexActive vertex

 Active vertex:
 v є V-{s,t} is active if

 d(v) < ∞
 e(v) > 0
 Eventually, I’ll show that d(v) is always

finite and therefore only the e(v) > 0 part
is relevant

3/3/2007 9

Basic operationsBasic operations

 Applied on active vertices only

 Push (u,v)
 Requires: r(u,v) >0, d(u)=d(v)+1
 Action:

 δ = min(e(v) , r(u,v))
 f(u,v) += δ, f(v,u) -= δ
 e(u) -= δ , e(v) += δ

3/3/2007 10

Basic operations , contd. Basic operations , contd.

 Relabel (u)
 Requires: (u,v) є V r(u,v) >0  d(u) ≤ d(v)
 Action:

 d(u) = min { d(v) +1 | r(u,v) >0 }

 One of the basic operations is
applicable on a active vertex:
 PUSH: Any residual edge (u,v) with d(u) =

d(v) +1
 Otherwise: d(u) ≤ d(v) for all residual

edges, allows relabel

3/3/2007 11

The algorithmThe algorithm

 Initialize: d(s) = n, v є V-{s} d(v) =0
 Saturate the outgoing edges of s
 While there are active vertices apply

one of the basic actions on the
vertex

 Simple, isn’t it?
 Let’s see an example

3/3/2007 12

ExamplExampl
ee

3/3/2007 13

0

4

1

2

2
2 T

0

S 0

04

2

- - Saturate all source Saturate all source
edgesedges

2

4

Example – contd.Example – contd.

0

4,4

1

2

2,2
2 T

4

S 2

04

2

0

4

1

2

2
2 0

0

6 0

04

2

Relabel

Example – contd.Example – contd.

0

4,4

1

2

2,2
2 T

4

S 2

04

2

0

4

1

2

2
2 0

0

6 1

04

2

Push

Example – contd.Example – contd.

0

4,4

1

2

2,2
2 T

6

S 0

04

0

4

1

2

2
2 0

0

6 1

04

2

Relabel

2,2

Example – contd.Example – contd.

0

4,4

1

2

2,2
2 T

6

S 0

04

0

4

1

2

2
2 0

1

6 1

04

2

Push (twice)

2,2

Example – contd.Example – contd.

2

4,4

1
2,2

T

2

S 0

04

0

4

1

2

2
2 0

1

6 1

04

2

Relabel

2,2

2,2

2,2

Example – contd.Example – contd.

2

4,4

1
2,2

T

2

S 0

04

1

4

1

2

2
2 0

2

6 1

04

2

Push

2,2

2,2

2,2

Example – contd.Example – contd.

2

4,4

1
2,2

T

0

S 2

04

1

4

1

2

2
2 0

2

6 1

04

2

0,2

2,2

2,2

Relabel, Push

Example – contd.Example – contd.

2

4,4

1
2,2

T

2

S 0

04

1

4

1

2

2
2 0

2

6 3

04

2

Relabel, Push

2,2

2,2

2,2

Example – contd.Example – contd.

2

4,4

1
2,2

T

0

S 2

04

1

4

1

2

2
2 0

4

6 3

04

2

0,2

2,2

2,2

Relabel, Push

Example – contd.Example – contd.

2

4,4

1
2,2

T

2

S 0

04

1

4

1

2

2
2 0

4

6 5

04

2

Relabel, Push

2,2

2,2

2,2

Example – contd.Example – contd.

2

4,4

1
2,2

T

0

S 2

04

1

4

1

2

2
2 0

6

6 5

04

2

0,2

2,2

2,2

Relabel, Push

Example – contd.Example – contd.

2

4,4

1
2,2

T

2

S 0

04

1

4

1

2

2
2 0

6

6 7

04

2

Relabel, Push

2,2

2,2

2,2

Example – contd.Example – contd.

2

2,4

1
2,2

T

0

S 0

04

1

2,2

1

2

2
2 0

7

6 7

04

2

Push

2,2

2,2

2,2

Example – contd.Example – contd.

0

2,4

1
2,2

T

0

S 0

22,4

1

2,2

1

2

2
2 0

7

6 7

02,2

2

Relabel

2,2

2,2

2,2

Example – contd.Example – contd.

0

2,4

1
2,2

T

0

S 0

22,4

1

2,2

1

2

2
2 0

7

6 7

12,2

2

Push

2,2

2,2

2,2

Example – contd.Example – contd.

0

2,4

1,1
2,2

T

0

S 0

12,4

1

2,2

1

2

2
2 0

7

6 7

12,2

2

Relabel, Push

2,2

2,2

2,2

Example – contd.Example – contd.

1

2,4

1,1
2,2

T

0

S 0

01,4

1

2,2

1

2

2
2 0

7

6 7

23,1

2

Relabel, Push

2,2

2,2

2,2

Example – contd.Example – contd.

0

2,4

1,1
2,2

T

0

S 0

12,4

3

2,2

1

2

2
2 0

7

6 7

22,2

2

Relabel, Push

2,2

2,2

2,2

Example – contd.Example – contd.

1

2,4

1,1
2,2

T

0

S 0

01,4

3

2,2

1

2

2
2 0

7

6 7

43,1

2

Relabel, Push

2,2

2,2

2,2

Example – contd.Example – contd.

0

2,4

1,1
2,2

T

0

S 0

12,4

5

2,2

1

2

2
2 0

7

6 7

42,2

2

Relabel, Push

2,2

2,2

2,2

Example – contd.Example – contd.

1

2,4

1,1
2,2

T

0

S 0

01,4

5

2,2

1

2

2
2 0

7

6 7

63,1

2

Relabel, Push

2,2

2,2

2,2

Example – contd.Example – contd.

0

2,4

1,1
2,2

T

0

S 0

12,4

7

2,2

1

2

2
2 0

7

6 7

62,2

2

Relabel, Push

2,2

2,2

2,2

Example – contd.Example – contd.

1

2,4

1,1
2,2

T

0

S 0

01,4

7

2,2

1

2

2
2 0

7

6 7

83,1

2

Relabel, Push

2,2

2,2

2,2

Example – contd.Example – contd.

0

2,4

1,1
2,2

T

1

S 0

01,4

8

2,2

1

2

2
1,1 0

7

6 7

83,1

2

Push

2,2

2,2

1,2

Example – contd.Example – contd.

8

3,1

1

2

2
1,1 0

7

6 7

83,1

2

0

1,4

1,1
2,2

T

0

S 0

01,4

2,2

2,2

1,2

CorrectnessCorrectness

 For an active vertex v, there must be
a residual path v…s
 Otherwise, no flow enters v, and it is

clearly not active
 So, every active vertex v has an

outgoing edge
 And this means, that if the distance

labels are valid, v can be either relabled
or pushed

Correctness of d(v)Correctness of d(v)

 r(u,v) > 0  d(u) ≤ d(v)+1
 By induction on the basic operations
 We begin with a valid labeling
 Relabel keeps the invariant

 By definition for the outgoing edges
 Only grows, so holds for all the incoming

ones
 Push

 Can only introduce (v,u) – back edge, but
since d(u) = d(v)+1 the correctness is kept

Correctness of d(v) – Correctness of d(v) –
contd.contd.
 For any active vertex v, d(v) < 2n

 Let p= v, v1 ,v2 , v3…. vk ,s be a path vs
 d(v) ≤ d(v1) + 1 ≤ d(v2) + 2 ≤ d(s) + k

= n+k
 The length of the path is ≤ n-1, so k ≤ n-1
  d(v) ≤ 2n-1

 For a non active, it is kept when the
vertex is active, or it is 0.

  d(v) is finite for any v during the run
of the algorithm

Correctness contd.Correctness contd.

 At the end, for all the vertices besides
{s,t} no excess is left in the vertices
  Our preflow is a flow

 The sink is not reachable from the
source on the augmenting graph
 Let p= s, v1 ,v2 , v3…. vk ,t be a path st
 Notice k ≤ n-2
 n = d(s) ≤ d(v1) + 1 ≤ d(v2) + 2 ... ≤ d(t) +

k+1 = k+1
 Implies that n ≤ k+1 in contradiction to above

Complexity analysisComplexity analysis

3/3/2007 43

 d(v) ≤ 2n-1, and can only grow
during the execution, and only by
relabel operation

 n-2 vertices are relabeled
  At most (n-2)(2n-1) < 2n2 = O(n2)

relabels.

Complexity analysis – Complexity analysis –
Saturating pushSaturating push

 First saturating push 1 ≤ d(u) + d(v)
 Last saturating push d(u) + d(v) ≤ 4n

-3
 Must grow by 2 between 2 adjutant

pushes
  2n-1 saturating pushes on (u,v) [or

(v,u)].
 m(2n-1) = O(nm) saturating

pushes at all

Complexity analysis –Complexity analysis –
Non Saturating pushNon Saturating push

 Φ = ∑d(v) | v is active
 Φ is 0 in the beginning and in the end

 A saturating push increases Φ by ≤ 2n-1
 All saturating pushes worth O(mn2)

 All relabelings increase Φ by ≤ (2n-1)(n-
2)

 Each non saturating push decreases Φ
by at least 1

 There are up to O(mn2) non saturating
pushes

Complexity analysisComplexity analysis

 Any reasonable sequential
implementation will provide us a
polynomial algorithm
 How much a relabel operation cost?
 How much a push operation cost?
 How much cost to hold the active

vertices?
 How will we improve this?

ImplementationImplementation

 For an edge in {e = (u,v) | (u,v) єE or
(v,u) єE } hold a struct of 3 values:
 c(u,v) & c(v,u)
 f(u,v)

 For a vertex v єV we hold a list of all
incident edges in some fixed order
 Each edge appears in two lists.

 We also hold an “current edge”
pointer for each vertex

3/3/2007 47

Implementation – contd.Implementation – contd.

 Push/relabel operation:
 If the current edge is admissible perform

push on the current edge and return
 If the current edge is the last one, relabel

the node and set the current edge to the
first one in the list

 Otherwise, just advance the current edge to
the next one in line

3/3/2007 48

u

Current edge

Admissible arc in
the residual graph

d(u) = d(v) + 1

Is this correct?Is this correct?

 When we relabel a node we’ll have
no admissible edges:
 Any of the other edges (u,v) wasn’t

admissible before and d(v) can only
grow

 If it had r(u,v) =0 before and now it is
positive we had d(u) = d(v) + 1, and so
d(v) < d(u)

 Hold a list of all active nodes – O(1)
extra cost per push/relabel operation

3/3/2007 49

And it costsAnd it costs

 Number of relabelings – 2n-1 per vertex
 Each relabeling causes a pass over all

the edges of the vertex – m for all the
vertices

 Besides that we have o(1) per push
performed (recall O(mn2) non saturating
pushes).

 Total – O(mn + mn2) = O(n2m)

3/3/2007 50

Use FIFO orderingUse FIFO ordering

 discharge(v) = perform push/relabel(v)
until e(v) = 0 or the vertex is relabled

 Hold two queues – one is the active,
the other is for the next iteration

 Iteration:
 While the active queue is not empty

 Discharge the vertex in the front
 Any vertex that becomes active is inserted

to the other queue

3/3/2007 51

Use FIFO ordering - Use FIFO ordering -
complexitycomplexity
 Φ = max d(v) | v is active

 Φ is 0 in the beginning and in the end
 A relabel during an iteration can

increase Φ by the delta of the
relabel or keep Φ.

 No relabel during an iteration will
cause Φ to decrease by at least 1.

 There are up to 2n2 relabels during
the run - 2n2 iteration of the first
kind.

3/3/2007 52

Use FIFO ordering - Use FIFO ordering -
complexitycomplexity
 As each node can add up to 2n-1 to Φ, Φ

grows by up to (2n-1)(n-2) during the
entire run

 O(2n2) iteration of the second kind as well
 2n2 + 2n2 iterations  O(n2) iterations
 Each iteration will have up to 1 non

saturating push per vertex
 O(n3) non saturating pushes at all
 O(n3) total run time

3/3/2007 53

Dynamic tree operationsDynamic tree operations

 FindRoot(v)
 FindSize(v)
 FindValue(v)
 FindMin(v)
 ChangeValue(v, delta)
 Link(v,w) – v becomes the child of w,

must be a root before that.
 Cut(v) – cuts the link between v and

its’ parent
3/3/2007 54

The algorithm using The algorithm using
dynamic treesdynamic trees
 All that said before holds, but we also

add dynamic trees
 Initially every vertex is a one node

dynamic tree.
 The edges (u,v) that are eligible to be

in the trees are those that hold
 d(u) = d(v)+1 (admissible)
 r(u,v) > 0
 (u,v) is the “current edge” of the vertex u

3/3/2007 55

The algorithm using The algorithm using
dynamic treesdynamic trees
 Yet, not all eligible edges are tree

edges
 If an edge (u,v) is in the tree v= p(u)

and value(v) = r(u,v)
 For the roots of the trees value(v) =

∞

3/3/2007 56

The Send operationThe Send operation

 Requires: u is active
 Action:

 while FindRoot(u) != u && e(u) > 0
 δ = min(e(u) , FindValue(FindMin(u)))
 ChangeValue(u, -δ)
 while FindValue(FindMin(u)) == 0

 v = FindMin(u)
 Cut(v)
 ChangeValue(v, ∞)

3/3/2007 57

Add the maximal
possible flow on

the path to the path
to the root

Remove all the
edges saturated

by the addition

The Send operation – The Send operation –
contd.contd.
 The send operation will either cause

e(v) become 0, or it will make it the
root

 This implies v will not be active
unless it is a root of a tree

3/3/2007 58

And the algorithm is…And the algorithm is…

 As before – two queues etc.
 Discharge the vertex in the front

 Use tree-Push/ Relabel instead of Push/
Relabel

 We’ll set some constant – k – to be
the upper limit of the size of a tree
during the algorithm execution

3/3/2007 59

Tree-Push/Relabel Tree-Push/Relabel
operationoperation
 Applied on an active vertex u
 If the current edge (u,v) is addmissible

 If (FindSize(u) + FindSize(v) ≤ k)
 Link (u,v), Send (u)

 Else
 Push (u,v), Send (v)

 Else
 Advance the current edge
 If (u,v) was the last one cut all the children

of u & Relabel(u)

3/3/2007 60

Tree-Push/Relabel Tree-Push/Relabel
operation – contd.operation – contd.
 The operation insures that all vertices with

positive excess are the roots of some tree

3/3/2007 61

u

v

Why is this correct?Why is this correct?

 Since inside the tree the d values
strictly growing no linking inside the
tree can occur

 A vertex v will not have positive
excess unless it is a root of a tree
 Link operation is valid if required

 The rest is just as before

3/3/2007 62

Complexity Complexity
Tree-Push/RelabelTree-Push/Relabel
 Each dynamic tree operation is

O(log(k))
 Each Tree-Push/Relabel operation

takes
 O(1) opearions
 O(1) tree opearions
 Relabeling time
 O(1) tree operations per cut performed

3/3/2007 63

Complexity – contd.Complexity – contd.

 The total relabeling time is O(mn)
 Total number of cut operations O(mn):

 Due to relabeling – O(mn)
 Due to saturating push – O(mn)

 Total number of link operations <
Number of cut operations + n  O(mn)

 So we reach O(mn) tree operations +
O(1) tree operations per vertex entering
Q.

3/3/2007 64

How many times will a How many times will a
vertex become active?vertex become active?
 Due to increase of d(v) – O(n2)
 Due to Send operation, e(v) grows from

0
 Any cut performed – total (mn)
 One more per send operation

 Link case – O(mn)
 Push case - Need to split to saturating and not

 There can be up to O(mn) such saturating
pushes

3/3/2007 65

Non saturating push Non saturating push
analysisanalysis
 For a non saturating push (u,v) either

Tu or Tv must be large - contain
more than k/2 vertices

 For a single iteration, only 1 such
push is possible per vertex

 Charge it to the link or cut creating
the large tree if it did not exist at the
beginning of the phase – O(mn)

 Otherwise charge it to the tree itself

3/3/2007 66

Non saturating push Non saturating push
analysis – contd.analysis – contd.
 There are up to 2n/k large trees at

the beginning of the iteration
 Total of O(n3/k) for all O(n2) iterations

  A vertex enters the Queue O(mn
+ n3/k) times due to a non saturating
push

3/3/2007 67

Total complexityTotal complexity

 Total of O(mn + n3/k) tree operations
with tree size of k.

 We reach total of O(log(k) (mn +
n3/k)) runtime complexity

 Choose k = n2/m

 We reach O(log(n2/m) (mn)) runtime
complexity

3/3/2007 68

ConclusionConclusion

 We’ve seen an algorithm that finds a
max flow over a network with
O(log(n2/m) (mn)) runtime complexity

 The algorithm uses a different
approach – a preflow instead of flow

 While providing same asymptotical
result as Dinic, has better coefficients
and therefore often used in time
demanding applications

3/3/2007 69

Questions?Questions?

 Thank you for listening

3/3/2007 70

	Maximum flow: The preflow/push method
	Motivation
	Some definitions (just a reminder)
	Some definitions, contd.
	Just as Dinic but…
	Preflow
	Excess handeling
	Valid distance labeling
	Active vertex
	Basic operations
	Basic operations , contd.
	The algorithm
	Example
	Example – contd.
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Correctness
	Correctness of d(v)
	Correctness of d(v) – contd.
	Correctness contd.
	Complexity analysis
	Complexity analysis – Saturating push
	Complexity analysis – Non Saturating push
	Slide 46
	Implementation
	Implementation – contd.
	Is this correct?
	And it costs
	Use FIFO ordering
	Use FIFO ordering - complexity
	Slide 53
	Dynamic tree operations
	The algorithm using dynamic trees
	Slide 56
	The Send operation
	The Send operation – contd.
	And the algorithm is…
	Tree-Push/Relabel operation
	Tree-Push/Relabel operation – contd.
	Why is this correct?
	Complexity Tree-Push/Relabel
	Complexity – contd.
	How many times will a vertex become active?
	Non saturating push analysis
	Non saturating push analysis – contd.
	Total complexity
	Conclusion
	Questions?

