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MotivationMotivation

 Find a maximal flow over a directed 
graph

 Source and sink vertices are given
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Some definitions (just a Some definitions (just a 
reminder)reminder)
 A flow network  G = (V,E) a directed 

graph
 Two vertices {s, t} the source and the 

sink
 Each edge (u,v) E has some positive 

capacity c(u,v), if (u,v) E c(u,v) =0.
 The flow function f maps a value for each 

edge where:
 f(u,v) ≤ c(u,v)
 f(v,u) = - f(u,v) ( skew symmetry )

 Saturated edge (u,v)  c(u,v) = f(u,v)
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Some definitions, contd.Some definitions, contd.

 r(u, v) = c(u,v) – f(u,v)
 Residual graph R(V, E`) where E` is 

all the edges (u,v) where r(u,v) ≥0
 Augmenting path p is a path from to 

the source to the sink over the 
residual graph 

 f is a maxflow  there is no 
augmenting path 
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Just as Dinic but…Just as Dinic but…

 We use the residual network
 We don’t look for augmenting paths
 Instead we saturate all outgoing 

edges of the source and strive to 
make this “preflow” reach the sink

 Otherwise we’ll have to flow it back.
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PreflowPreflow

 Flow constrains:
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 Every vertex v may keep some 
“excess” flow e(v) inside the vertex 



Excess handelingExcess handeling

 We strive to push this excess toward 
the sink

 If the sink is not reachable on the 
residual network the algorithm 
pushes the excess toward the source

 When no vertices with e(v) >0 are 
left the algorithm halts, and the 
resulting flow (!) is the max –flow
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Valid distance labelingValid distance labeling

 A mapping function d(v)  N + { ∞ }
 d(s) = n, d(t) = 0
 r(u,v) > 0  d(u) ≤ d(v)+1
 d(v) < n  d(v) is the lower bound on the 

distance from v to the sink (residual 
graph)
 Let p= v, v1 ,v2 , v3…. vk ,t be the s.p vt
 d(v) ≤ d(v1) + 1 ≤ d(v2) + 2 ..... ≤ d(t) + k = k

 Same way d(v) ≥ n  d(v) -n is the lower 
bound on the distance from v to the 
source
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Active vertexActive vertex

 Active vertex:
 v є V-{s,t} is active if

 d(v) < ∞
 e(v) > 0
 Eventually, I’ll show that d(v) is always 

finite and therefore only the e(v) > 0 part 
is relevant
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Basic operationsBasic operations

 Applied on active vertices only

 Push (u,v)
 Requires: r(u,v) >0, d(u)=d(v)+1
 Action:

 δ = min( e(v) , r(u,v) )
 f(u,v) += δ, f(v,u) -= δ
 e(u) -= δ , e(v) += δ 
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Basic operations , contd. Basic operations , contd. 

 Relabel (u)
 Requires: (u,v) є V r(u,v) >0  d(u) ≤ d(v)
 Action:

 d(u) = min { d(v) +1 | r(u,v) >0 }

 One of the basic operations is 
applicable on a active vertex:
 PUSH: Any residual edge (u,v) with d(u) = 

d(v) +1 
 Otherwise: d(u) ≤ d(v) for all residual 

edges, allows relabel
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The algorithmThe algorithm

 Initialize: d(s) = n, v є V-{s} d(v) =0
 Saturate the outgoing edges of s
 While there are active vertices apply 

one of the basic actions on the 
vertex

 Simple, isn’t it?
 Let’s see an example
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ExamplExampl
ee
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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Example – contd.Example – contd.
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CorrectnessCorrectness

 For an active vertex v, there must be 
a residual path v…s
 Otherwise, no flow enters v, and it is 

clearly not active
 So, every active vertex v has an 

outgoing edge
 And this means, that if the distance 

labels are valid, v can be either relabled 
or pushed



Correctness of d(v)Correctness of d(v)

 r(u,v) > 0  d(u) ≤ d(v)+1
 By induction on the basic operations
 We begin with a valid labeling
 Relabel keeps the invariant

 By definition for the outgoing edges
 Only grows, so holds for all the incoming 

ones
 Push

 Can only introduce (v,u) – back edge, but 
since d(u) = d(v)+1 the correctness is kept



Correctness of d(v) – Correctness of d(v) – 
contd.contd.
 For any active vertex v, d(v) < 2n

 Let p= v, v1 ,v2 , v3…. vk ,s be a path vs
 d(v) ≤ d(v1) + 1 ≤ d(v2) + 2 ..... ≤ d(s) + k 

= n+k
 The length of the path is ≤ n-1, so k ≤ n-1
  d(v) ≤ 2n-1 

 For a non active, it is kept when the 
vertex is active, or it is 0.

  d(v) is finite for any v during the run 
of the algorithm



Correctness contd.Correctness contd.

 At the end, for all the vertices besides 
{s,t} no excess is left in the vertices
  Our preflow is a flow

 The sink is not reachable from the 
source on the augmenting graph
 Let p= s, v1 ,v2 , v3…. vk ,t be a path st
 Notice k ≤ n-2
 n = d(s) ≤ d(v1) + 1 ≤ d(v2) + 2 ... ≤ d(t) + 

k+1 = k+1
 Implies that n ≤ k+1 in contradiction to above



Complexity analysisComplexity analysis
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 d(v) ≤ 2n-1, and can only grow 
during the execution, and only by 
relabel operation

 n-2 vertices are relabeled 
  At most (n-2)(2n-1) < 2n2 = O(n2) 

relabels.



Complexity analysis – Complexity analysis – 
Saturating pushSaturating push

 First saturating push 1 ≤ d(u) + d(v)
 Last saturating push d(u) + d(v) ≤ 4n 

-3
 Must grow by 2 between 2 adjutant 

pushes
  2n-1 saturating pushes on (u,v) [or 

(v,u)].
 m(2n-1) = O(nm) saturating 

pushes at all



Complexity analysis –Complexity analysis –
Non Saturating pushNon Saturating push

 Φ = ∑d(v) | v is active
 Φ is 0 in the beginning and in the end

 A saturating push increases Φ by ≤  2n-1
 All saturating pushes worth O(mn2)

 All relabelings increase Φ by  ≤ (2n-1)(n-
2)

 Each non saturating push decreases Φ 
by at least 1

 There are up to O(mn2) non saturating 
pushes



Complexity analysisComplexity analysis

 Any reasonable sequential 
implementation will provide us a 
polynomial algorithm
 How much a relabel operation cost?
 How much a push operation cost?
 How much cost to hold the active 

vertices?
 How will we improve this?



ImplementationImplementation

 For an edge in {e = (u,v) | (u,v) єE or 
(v,u) єE } hold a struct of 3 values:
 c(u,v) & c(v,u)
 f(u,v)

 For a vertex v єV we hold a list of all 
incident edges in some fixed order
 Each edge appears in two lists.

 We also hold an “current edge” 
pointer for each vertex

3/3/2007 47



Implementation – contd.Implementation – contd.

 Push/relabel operation:
 If the current edge is admissible perform 

push on the current edge and return
 If the current edge is the last one, relabel 

the node and set the current edge to the 
first one in the list

 Otherwise, just advance the current edge to 
the next one in line
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u

Current edge

Admissible arc in 
the residual graph

d(u) = d(v) + 1



Is this correct?Is this correct?

 When we relabel a node we’ll have 
no admissible edges:
 Any of the other edges (u,v) wasn’t 

admissible before and d(v) can only 
grow

 If it had r(u,v) =0 before and now it is 
positive we had d(u) = d(v) + 1, and so 
d(v) < d(u)

 Hold a list of all active nodes – O(1) 
extra cost per push/relabel operation
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And it costsAnd it costs

 Number of relabelings – 2n-1 per vertex
 Each relabeling causes a pass over all 

the edges of the vertex – m for all the 
vertices

 Besides that we have o(1) per push 
performed (recall O(mn2) non saturating 
pushes).

 Total – O(mn + mn2) = O(n2m) 
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Use FIFO orderingUse FIFO ordering

 discharge(v) = perform push/relabel(v) 
until e(v) = 0 or the vertex is relabled

 Hold two queues – one is the active, 
the other is for the next iteration

 Iteration:
 While the active queue is not empty

 Discharge the vertex in the front
 Any vertex that becomes active is inserted 

to the other queue
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Use FIFO ordering - Use FIFO ordering - 
complexitycomplexity
 Φ = max d(v) | v is active

 Φ is 0 in the beginning and in the end
 A relabel during an iteration can 

increase Φ by the delta of the 
relabel or keep Φ.

 No relabel during an iteration will 
cause Φ to decrease by at least 1.

 There are up to 2n2 relabels during 
the run - 2n2 iteration of the first 
kind.
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Use FIFO ordering - Use FIFO ordering - 
complexitycomplexity
 As each node can add up to 2n-1 to Φ, Φ 

grows by up to (2n-1)(n-2) during the 
entire run

 O(2n2) iteration of the second kind as well
 2n2 + 2n2   iterations  O(n2) iterations
 Each iteration will have up to 1 non 

saturating push per vertex
 O(n3) non saturating pushes at all
 O(n3) total run time
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Dynamic tree operationsDynamic tree operations

 FindRoot(v)
 FindSize(v)
 FindValue(v)
 FindMin(v)
 ChangeValue(v, delta)
 Link(v,w) – v becomes the child of w, 

must be a root before that.
 Cut(v) – cuts the link between v and 

its’ parent
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The algorithm using The algorithm using 
dynamic treesdynamic trees
 All that said before holds, but we also 

add dynamic trees
 Initially every vertex is a one node 

dynamic tree.
 The edges (u,v) that are eligible to be 

in the trees are those that hold
 d(u) = d(v)+1 (admissible)
 r(u,v) > 0
 (u,v) is the “current edge” of the vertex u
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The algorithm using The algorithm using 
dynamic treesdynamic trees
 Yet, not all eligible edges are tree 

edges
 If an edge (u,v) is in the tree v= p(u) 

and value(v) = r(u,v)
 For the roots of the trees value(v) = 

∞
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The Send operationThe Send operation

 Requires: u is active
 Action:

 while FindRoot(u) != u && e(u) > 0
 δ = min( e(u) , FindValue(FindMin(u)) ) 
 ChangeValue(u, -δ)
 while FindValue(FindMin(u)) == 0

 v = FindMin(u)
 Cut(v)
 ChangeValue(v, ∞)
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Add the maximal 
possible flow on 

the path to the path
to the root

Remove all the 
edges saturated

by the addition



The Send operation – The Send operation – 
contd.contd.
 The send operation will either cause 

e(v) become 0, or it will make it the 
root

 This implies v will not be active 
unless it is a root of a tree
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And the algorithm is…And the algorithm is…

 As before – two queues etc.
 Discharge the vertex in the front 

 Use tree-Push/ Relabel instead of Push/ 
Relabel

 We’ll set some constant – k – to be 
the upper limit of the size of a tree 
during the algorithm  execution
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Tree-Push/Relabel Tree-Push/Relabel 
operationoperation
 Applied on an active vertex u
 If the current edge (u,v) is addmissible

 If (FindSize(u) + FindSize(v) ≤ k)
 Link (u,v), Send (u)

 Else
 Push (u,v), Send (v)

 Else
 Advance the current edge
 If (u,v) was the last one cut all the children 

of u & Relabel(u)
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Tree-Push/Relabel Tree-Push/Relabel 
operation – contd.operation – contd.
 The operation insures that all vertices with 

positive excess are the roots of some tree
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Why is this correct?Why is this correct?

 Since inside the tree the d values 
strictly growing no linking inside the 
tree can occur

 A vertex v will not have positive 
excess unless it is a root of a tree
 Link operation is valid if required

 The rest is just as before
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Complexity Complexity 
Tree-Push/RelabelTree-Push/Relabel
 Each dynamic tree operation is 

O(log(k))
 Each Tree-Push/Relabel operation 

takes
 O(1) opearions
 O(1) tree opearions
 Relabeling time
 O(1) tree operations per cut performed
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Complexity – contd.Complexity – contd.

 The total relabeling time is O(mn)
 Total number of cut operations O(mn):

 Due to relabeling – O(mn)
 Due to saturating push – O(mn)

 Total number of link operations < 
Number of cut operations  + n  O(mn)

 So we reach O(mn) tree operations + 
O(1) tree operations per vertex entering 
Q.
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How many times will a How many times will a 
vertex become active?vertex become active?
 Due to increase of d(v) – O(n2)
 Due to Send operation, e(v) grows from 

0
 Any cut performed – total (mn)
 One more per send operation

 Link case – O(mn)
 Push case - Need to split to saturating and not

 There can be up to O(mn) such saturating 
pushes
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Non saturating push Non saturating push 
analysisanalysis
 For a non saturating push (u,v) either 

Tu or Tv must be large - contain 
more than k/2 vertices

 For a single iteration, only 1 such 
push is possible per vertex

 Charge it to the link or cut creating 
the large tree if it did not exist at the 
beginning of the phase – O(mn)

 Otherwise charge it to the tree itself
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Non saturating push Non saturating push 
analysis – contd.analysis – contd.
 There are up to 2n/k large trees at 

the beginning of the iteration
 Total of O(n3/k) for all O(n2) iterations

  A vertex enters the Queue O(mn 
+ n3/k) times due to a non saturating 
push 
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Total complexityTotal complexity

 Total of O(mn + n3/k) tree operations 
with tree size of k.

 We reach total of O(log(k) (mn + 
n3/k)) runtime complexity

 Choose k = n2/m

 We reach O(log(n2/m) (mn)) runtime 
complexity

3/3/2007 68



ConclusionConclusion

 We’ve seen an algorithm that finds a 
max flow over a network with 
O(log(n2/m) (mn)) runtime complexity

 The algorithm uses a different 
approach – a preflow instead of flow

 While providing same asymptotical 
result as Dinic, has better coefficients 
and therefore often used in time 
demanding applications  
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Questions?Questions?

 Thank you for listening
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