1 Ford-Fulkerson Method

ot really an algorithm but a class of algorithms.

e Suppose we started with some flow and wanted to determine whether it was the max-

imum. How would we do it?
e Look for a path from s to ¢ that can admit more flow and then increase the flow along
that path (this is called an augmenting path).

Algorithm 1.0: Ford-Fulkerson(G, s, t).

1. initialize flow f to 0.

9. while there exists an augmenting path p
3. do augment flow f along p

4. return f.

What do we need to show to prove that Ford-Fulkerson is correct if it terminates?

e if there is no augmenting path then f is a max flow. x

%'

\f

<

Residual networks

<7 So how do we find an augmenting path?
e Let’s just create a graph showing the excess capacity we have at each edge.

e The excess capacity of an edge (u,v) is called the residual capacity of (u,v):

/ ¢, v) = e, v) — £(u,)

—

e The graph is called the residual network of G induced by f denoted by Gy = (V, Ey)
{ where

Ef = {(u,v) : cs(u,v) > 0}
e Bach edge in Ey is called a residual edge.

Draw the residual network for graph previously shown:

e Can we have (u,v) € Ey if (u,v) € E?

e Yes! notice edge (vy, s) in the residual graph drawn.

But (u,v) € Ey if and only if at least one of (u,v) or (v,u) are in E.

p
[]

|Ey| < 2|E)|

Definition 1.1 Define (f1 + f2)(u,v) = fi(u,v) + fo(u,)

Lemma 1.2 (CLR Lemma 27.2)

o Let G be flow network with source s and sink t.
o Let f be a flowin G.

o Let Gy be the residual network induced by f.

o Let f' be a flow in Gj.

Then:
e f+ f'isa flow.
o [F+fI=1fl+1F

that f + f’ is a flow!

Proof. Need to ver@metry, capacity contraints and flow conservation to show
g L —
(See CLR.)

IF+F = X (F+)s,v)

= Zv[f(s’ U) ~+ fl(sa U)]
= va(s’v)_"z‘:/f,(s’v)
= |fl+|f]

) sM _:,
'w’——_" /_-

1.0.1 Augmenting paths

A Definition 1.3 Given a flow network G and a flow f, an augmenting path is a simple path
¥ | _ augmenting path
from s to t in the residual network Gy.

/
Y((Definition 1.4 The residual caggc_z’t_y of a path p in a residual network Gy 1is:
¢5(p) = min {es(u,v) : (u,v) € p})
Lemma 1.5 (CLR Lemma 27.3) Let
e G be a flow network.
e f be a flow.

e and p be an augmenting path in Gy.

ci(p) if (u,v) Ep N

Define fy(u,v) = { —cs(p) if (v,u) €p W ;ﬁﬁo*u;#iiﬁ Gy and |fp| = cs(p) > 0.

0 otherwise — -
Proof. Exercise 27.2-7. / |

Corollary 1.6 (CLR Cor 27.4) Let f'=f+f, - te. Yuv, £lav) = S Felu)

)

o Then f' is a flow in G with value |f| + |fp| > |f].

- Proof. Immediate from previous two lemmas—=—" 1
Suyoe st pbh
Q. hon thiu g e wowe oo patha, e g;,ww,?

Cuts of flow networks

Definition 1.7 A cut (S,T) of a flow network G = (V, E) is a partition of V into S and
T=V —S8 such that s€ S andt € T.

e The net flow across a cut (S,7T) is f(S,T). = Za ues Ha)

e The capacity of a cut (S,T) is ¢(S,T) = Luesper (¢, v)-

Show example using network already drawn and a cut down the middle.

()

172

2/3

13 1/1

172
172

3/3

-

(S,T)=3

c(S,T)=5
Eg Lemma 1.8 (CLR Lemma 27.5) Let (S,T) be & tut in G. Then

f(8,T) =]
Proof. Intuitively, we are counting the flow that moves from one side to the other. There
is no place for the flow to go once it reaches the ¢ side except to .

f(S,T) f(S,v —-5)

V) - £(S,9) by Lemma 27.1

V) since f(S,5) =0

5,V)+ f(S—s,V) by Lemma 27.1
V)

sincet ¢ S — {s}

b

1
= f(S,
f(s
T

V2

Y

= f(
= |f]

éCorollary 1.9 (CLR Cor 27.6) Let (S,T) be any cut. then
= |f|f§C(S,Tj

/

/ Proof.

Ifl = £(5T) By Lemma 27.5

> > fu)

u€S veT

Z Z c(u,v)

ueS veT

= ¢(8,T)

IN

Theorem 1.10 (Max-flow Min-cut Theorem) Let f be a flow in G. The following con-
ditions are equivalent.

1. f is a mazimum flow in G.

E&& 2. Gy contains no augmenting paths.

3. |f| = ¢(S,T) for some cut (S,T) of G.

Proof.
D = @ (72541)

- e Let f be a max flow and suppose G has an augmenting path.
e by Cor CLR 274, |f + fo| > |fl-
e contradiction.
2) =
e Suppose G contains no path from s to .
e Define S = {v € V : there is a path froms — v in Gy} and T =V — S.
« e ® lgowim) ;5 +€T Since T S~»t gobhia 6
=, o (S,7) is a cut gnee vhere-isnapathAram st
e For each u € S and v € T, f(u,v) = ¢(u,v) since otherwise (u,v) € Ey which implies
veES.
e Soc(S,T)=f(S,T) = |fl.
3 = O
e By Cor CLR 27.6, |f| < ¢(S, T) for all cuts (S, T).
e So |f| = ¢(S,T) for some cut implies f is a max flow.
- 1

Ford-Fulkerson Algorithm

Algorithm 1.0: Ford-Fulk(G, s,t).
1. for each (u,v) € E
6\\"- (2. do flu,v] < 0
3. flv,u] < 0
p=6\®) 4. while there is a path p from s to ¢ in Gy
do ¢;(p) = min{es(u,v) : (u,v) € p} _
fgr each (u,v) é p h@MhMG?
do flu,v] < flu,v] + cs(p) AL
do flv,u] = —fu,v] Floo
return f. oo V9 b

o(‘i\

© % N oo

Do bad example of running time from the book:

O, o
°

Running Time Suppose all capacities are integers.

e Find a path using DFS or BFS in O(E) time (since connected).

e At most |f*| iterations since value increases by at least 1 each time
o So O(E|f*|) time where f* is a max flow.

e Problem: What if max flow is huge.

Draw long example:

~ - ‘ca‘\
;A}gﬂi_-) U(b k o dpagriiabo’s e

atey 0L - - LM

T g o . G e (peduced €0

@ l ’(ﬁ (, :.‘../\Al O (E L\QE\\ M \JF*‘,“ C 5’;‘6:“" - ‘ ‘
L e B2 o b42)

A S
&)
\‘ X W_\'.d-(; Tege
a \ DS

LN““Q) F'S. rf"’-";\‘,’ (o}"«“‘i&\)

LAl m Comguitd ol

P :E Wath Ehw‘» .
@ Tk ron tohirtl Copacities, (o s i Jei

1+ er
sy o i B BPALAY

>0 _?flv C(gﬂ)
ol otue Crdy WY

