1 Ford-Fulkerson Method

Not really an algorithm but a class of algorithms.

- Suppose we started with some flow and wanted to determine whether it was the maximum. How would we do it?
- Look for a path from s to t that can admit more flow and then increase the flow along that path (this is called an **augmenting path**).

Algorithm 1.0: Ford-Fulkerson(G, s, t).

- 1. initialize flow f to 0.
- 2. while there exists an augmenting path p
- 3. do augment flow f along p
- 4. return f.

What do we need to show to prove that Ford-Fulkerson is correct if it terminates?

• if there is no augmenting path then f is a max flow. x

Residual networks

So how do we find an augmenting path?

- Let's just create a graph showing the excess capacity we have at each edge.
- The excess capacity of an edge (u, v) is called the **residual capacity** of (u, v):

$$c_f(u,v) = c(u,v) - f(u,v)$$

• The graph is called the **residual network** of G induced by f denoted by $G_f = (V, E_f)$ where

$$E_f = \{(u, v) : c_f(u, v) > 0\}$$

• Each edge in E_f is called a residual edge.

Draw the residual network for graph previously shown:

- Can we have $(u, v) \in E_f$ if $(u, v) \notin E$?
- Yes! notice edge (v_1, s) in the residual graph drawn.
- But $(u, v) \in E_f$ if and only if at least one of (u, v) or (v, u) are in E.
- $|E_f| \le 2|E|$

Definition 1.1 Define $(f_1 + f_2)(u, v) = f_1(u, v) + f_2(u, v)$

Lemma 1.2 (CLR Lemma 27.2)

- Let G be flow network with source s and sink t.
- Let f be a flow in G.
- Let G_f be the residual network induced by f.
- Let f' be a flow in G_f .

Then:

- f + f' is a flow.
- |f + f'| = |f| + |f'|

Proof. Need to verify skew symmetry, capacity contraints and flow conservation to show that f + f' is a flow (See CLR.)

$$|f + f'| = \sum_{v \in V} (f + f')(s, v)$$

$$= \sum_{v \in V} [f(s, v) + f'(s, v)]$$

$$= \sum_{v \in V} f(s, v) + \sum_{v \in V} f'(s, v)$$

$$= |f| + |f'|$$

How to find flow in casilwal retwork?

1.0.1 Augmenting paths

Definition 1.3 Given a flow network G and a flow f, an augmenting path is a simple path from g to g in the residual network g.

8/

Definition 1.4 The <u>residual capacity</u> of a path p in a residual network G_f is:

$$c_f(p) = \min \{ c_f(u, v) : (u, v) \in p \}$$

Lemma 1.5 (CLR Lemma 27.3) Let

- G be a flow network.
- f be a flow.
- and p be an augmenting path in G_f .

Proof. Exercise 27.2-7.

Corollary 1.6 (CLR Cor 27.4) Let $f' = f + f_p$; i.e. $\forall u, v, f'(u, v) = f(u, v) + f_p(u, v)$

• Then f' is a flow in G with value $|f| + |f_p| > |f|$.

Proof. Immediate from previous two lemmas.

. So we can strictly increase flows by adding flow along an asymptic path.

Q: when there are no none aventing paths, is flow national?

Cuts of flow networks

Definition 1.7 A cut (S,T) of a flow network G=(V,E) is a partition of V into S and T=V-S such that $s\in S$ and $t\in T$.

• The capacity of a cut (S,T) is $c(S,T) = \sum_{u \in S, v \in T} c(u,v)$.

Show example using network already drawn and a cut down the middle.

$$c(S,T) = 5$$

6

Lemma 1.8 (CLR Lemma 27.5) Let (S,T) be a cut in G. Then

$$f(S,T) = |f|$$

Proof. Intuitively, we are counting the flow that moves from one side to the other. There is no place for the flow to go once it reaches the t side except to t.

$$f(S,T) = f(S,V-S)$$

$$= f(S,V) - f(S,S) \text{ by Lemma 27.1}$$

$$= f(S,V) \text{ since } f(S,S) = 0$$

$$= f(s,V) + f(S-s,V) \text{ by Lemma 27.1}$$

$$= f(s,V) \text{ since } \notin S - \{s\}$$

$$= |f|$$

Corollary 1.9 (CLR Cor 27.6) Let (S,T) be any cut. then

$$|f| \le c(S,T)$$

Proof.

$$|f| = f(S,T)$$
 By Lemma 27.5
 $= \sum_{u \in S} \sum_{v \in T} f(u,v)$
 $\leq \sum_{u \in S} \sum_{v \in T} c(u,v)$
 $= c(S,T)$

Theorem 1.10 (Max-flow Min-cut Theorem) Let f be a flow in G. The following conditions are equivalent.

1. f is a maximum flow in G.

- 2. G_f contains no augmenting paths.
- 3. |f| = c(S,T) for some cut (S,T) of G.

Proof.

$$\begin{array}{ccc} (1) & \Rightarrow & (2) & \left(& \neg 2 & \Rightarrow & \neg 1 & \right) \end{array}$$

- Let f be a max flow and suppose G has an augmenting path.
- by Cor CLR 27.4, $|f + f_p| > |f|$.
- contradiction.

$$(2) \Rightarrow (3)$$

- Suppose G_f contains no path from s to t.
- Define $S = \{v \in V : \text{there is a path from } s \to v \text{ in } G_f\}$ and T = V S. Set (obvins); tell since I sate path in GC
- \Rightarrow (S,T) is a cut since there is no path from s to 4 in G_Y .
 - For each $u \in S$ and $v \in T$, f(u,v) = c(u,v) since otherwise $(u,v) \in E_f$ which implies $v \in S$.
 - So c(S,T) = f(S,T) = |f|.

$$(3) \Rightarrow (1)$$

- By Cor CLR 27.6, $|f| \le c(S,T)$ for all cuts (S,T).
- So |f| = c(S, T) for some cut implies f is a max flow.

Ford-Fulkerson Algorithm

Algorithm 1.0: Ford-Fulk(G, s, t).

Algorithm 1.0: Fold-Falk
$$(0,s,t)$$
.

$$\begin{cases}
1. & \text{for each } (u,v) \in E \\
2. & \text{do } f[u,v] \leftarrow 0 \\
3. & f[v,u] \leftarrow 0
\end{cases}$$
while there is a path p from s to t in G_f

$$\begin{cases}
5. & \text{do } c_f(p) = \min\{c_f(u,v) : (u,v) \in p\} \\
6. & \text{for each } (u,v) \in p \\
7. & \text{do } f[u,v] \leftarrow f[u,v] + c_f(p) \\
8. & \text{do } f[v,u] \leftarrow -f[u,v]
\end{cases}$$
Plant is always strictly increases.

Flow is always of max flow?

9. return f .

Do bad example of running time from the book:

Running Time Suppose all capacities are integers.

- Find a path using DFS or BFS in O(E) time (since connected).
- At most $|f^*|$ iterations since value increases by at least 1 each time
- So $O(E|f^*|)$ time where f^* is a max flow.
- \bullet Problem: What if max flow is huge.

Draw long example:

