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Introduction to Network Flow Problems

1 Basic definitions and properties

Definition 1.1. A flow networkis a directed graptD = (V, E)) with two distinguished vertices and
t called thesourceand thesink respectively. Moreover, each afe,v) € E has a certaircapacity
c(u,v) > 0 assigned to it.

If (u,v) ¢ E (including pairs of the fornm{u, v)), we assume(u,v) = 0. In this note, we shall
restrict ourselves to the case whespacities are all rational numbers Some of the capacities might
beco.

Definition 1.2. Let G = (V, E') be a graph or a digraph. L&f be a proper non-empty subsetlof Let
X :=V — X, then the pai X, X) forms a partition ofi’, called acutof G. The set of edges af with
one end point in each of and X is called aredge cubf G, denoted by.X, X].

Definition 1.3. A source/sink cubf a networkD is a cut(S,T") with s € S andt € T. (Note that,
implicitly 7= S.)

Definition 1.4. A flow for a networkD = (V, E) is a functionf : V' x V' — R, which assigns a real
number to each paifu, v) of vertices. A flowf is called afeasible flowif it satisfies the following
conditions:

() 0< f(u,v) < c(u,v),¥(u,v) € E. These are theapacity constraints(If a capacity isx, then
there is no upper bound on the flow value on that edge.)

(i) Forallv € V — {s,t}, the total flow intov is the same as the total flow out af
Yo fwv)= > f,w). 1)
u:(u,v)EE w:(v,w)EE
These are called théow conservation law
Definition 1.5. Thevalueof a flow f for D, denoted by va(f), is the net flow out of the source:
val(f)= > flsu)— Y [flvs)
u:(s,u)€E v:(v,8)EE
For notational conveniences, for every two subséty” C V, define
FXY) =)0 fa,y).
zeX yeY

For every proper and non-empty subSet V we definef ™ (S) to be the net flow leaving and f~(S)
to be the net flow entering, namely
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1) = K
f7(8) = f(S,
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If S = {w} for some vertexv € V, we write f*(w) and f~(w) instead off* ({w}) and f~ ({w}),
respectively. The flow conservation law (1) now regdgv) = f~(v),Vv € V — {s,t}. And, the value
of f is nothing butf*(s) — f~(s).

With the conservation law held at all vertices other than the source and the sink, it is intuitively clear
that the net flow into the sink is also vgf).

Proposition 1.6. The value of a flovwf is equal to the net flow into the sink:

val (f) = f~(t) = f*(t).
Proof. The proof is intuitively trivial:
0= Y (flu,v) = flw,v)) => (fT(0) = () = (f(s) = f () + (ST () = F~ ().
(uv)EE veV
O

Definition 1.7 (The Maximum Flow problem). The maximum flow probleris the problem of finding
a feasible flow with maximum value, given a netwdpk(and the capacities on the edges).

Exercise 1.8.Formulate the maximum flow problem as a linear program.

Definition 1.9. Given a source/sink cytS, T'), thecapacityof the cut, denoted by c&f, T') is the total
capacity of edges leaving:

caps,T) := Z c(u,v).
ueSweT,
(u,v)EE

A cut with minimum capacity is called minimum cut
The following exercise generalizes the previous proposition. It should be intuitively obvious.

Exercise 1.10.Given a source/sink c\tS, T') and a feasible flowf for a networkD, show that

val (f) = f7(8) = f(S) = f7(T) = F7(T).

Theorem 1.11 (Weak duality). For every source/sink cuf, T'] and any feasible floy for a network
D = (V,E), we have
val (f) < cap(S,T).

Proof. You should be able to guess the reason we call this theoremehlk dualityproperty. The proof
is more than trivial, given the result of Exercise 1.10

val (f) = f7(S) = f7(S) < f7(S) < ca(S,T).
O

Due to the weak duality property, a feasible flgwvith value equal to the capacity of some €5it 7]
is amaximum flowThe cut is then aninimum cut (Why?)

In the next sections, we develop the Max-Flow Min-Cut theorem, which basically says that the
maximum flow value is always the same as the minimum cut capacity, which could both be infinite.
(This is the analog of the strong duality property for linear programming.)



2 The augmenting path method

Since thed-flow is always feasible, one might attempt to gradually increase the flow until the flow gets
its maximum value. By definition, in order to increase the flow we have to either incf¢ase) of an
out-edge(s, v) from s or decreasef (v, s) of an in-edge(v, s) to s, as long as the capacity constraint
for that edge is still valid. Doing so, however, requires adjusting the flows at edges incideso that
the flow conservation constraintais still valid. In fact, this kind of update shall propagate dowr,to
which is the place where the conservation constraint does not have to hold.

The propagation, as described above, can be done via a “path”sftom. We make this notion
mathematically precise by introducing the notion of a residual network as follows.

Definition 2.1 (Residual capacity).Let D = (V, E)) be a network and be a feasible flow foD. For
each pair(u, v), the residual capacityy (u, v) is defined to be

cr(u,v) == c(u,v) — f(u,v) + f(v,u).

Consider an edgéu,v) € E. How much more flow can we push fromto v? Clearly an amount
of ¢(u,v) — f(u,v) can be added. Moreover, if we redute, «) to 0, then an amounf (v, u) is also
added. Even whefu,v) ¢ E, the above analysis is still valid, sineéu,v) = f(u,v) = 0. Thus, the
residual capacity(u, v) represents the additional flow which can be pushed fadow.

Definition 2.2 (Residual network). Let D = (V, E') be a network ang’ be a feasible flow foD. Let
Dy = (V, Ey) be the directed graph whose edges are the pairs) with c¢(u,v) > 0. This graphD;
is called theresidual networlof D with respect tof .

Definition 2.3 (Augmenting path). Let D = (V, E) be a network and’ be a feasible flow forD.
A path P from s to t in Dy is called anaugmenting pattfor D with respect tof. Let d(P) :=
min{cs(u,v) | (u,v) € P}. Note thaty(P) > 0, by definition.

Lemma 2.4. Let P be an augmenting path fdp with respect to a flowf. Let f’ be a flow which is the
same ag except in the cases as follows. For edahv) € P, let

f’(u,v) = f(u,v) + min{é(P)a C(“?’”) - f(u,v)},

and

Flovu) = 100 = OP) = (e(w,v) = f(w,0)) ¥F6(P) > (efu,v) = f(u,0))
7 f(v,u) otherwise

Then, " is feasible and va({ /) = val (f) + §(P).

Proof. Trivial. -

Theorem 2.5 (Max-Flow Min-Cut). Let f be a feasible flow of a netwotR, then the following state-
ments are equivalent:

(i) fis amaximum flow
(i) there is no augmenting path ab with respect tof

(ii) there some source/sink c{#, T'] with val (f) = cap(S,T')



Proof. If fis maximum, then there cannot be any augmenting path; this is a consequence of the previous
lemma. Thus(i) = (ii).

Suppose there is no augmenting pathffoin the residual network;, let.S be the set of all vertices
reachable froms by some pathP. Note that ifv € S via ans, v-path P, then all vertices of are inS.
As there is no augmenting pathis not in S.

Consider a forward edge:, v) € E withu € S,v € S. Clearly f(u,v) = capgu, v), otherwisev
would have been 5. Similarly, for a “backward” edgé¢v, u) € E, withu € S,v ¢ S, it must be the
case thatf(u,v) = 0. Thus, val(f) = f+(S) — f=(S) = capS,S). LetT = S and we have just
shown that(ii) = (ii7).

Lastly, if there was a cut whose capacity is the same as the validluén f is maximal by the weak
duality property. O

The previous theorem suggests a few strategies to find a maximum flow.
One could repeatedly try to find an augmenting pBtfor some feasible flowf, staring from the
0-flow. If P is found, we can augmerftby an amount 06(P) and repeats the search.Afis not found,
then f is maximum. This general strategy is called gugmenting path metho®epending on how one
find augmenting paths, we have algorithms of different time complexities; some may not even terminate.
The second idea which comes from the proof is to find augmenting paths by starting frofs }
and keep adding t§' the set of vertices reachable fronby some pathP with §(P) > 0. If we reacht,
then an augmenting path is found. If we do not regdhen we found a cut whose capacity is the same
as f’s value. This is the content of the Ford-Fulkerson algorithm:

Ford-Fulkerson
1: f(u,v) < 0,V(u,v) eV xV
2: while there is ars, t-path inD, do
3: updatef < f’, wheref’ is defined in Lemma 2.4
4:  updateDy
5. end while
6: return val(f)

If there is an augmenting pafh with §(P) = oo, then the copy of in D has all edges with infinite
capacity. This is the case where there is no maximum flow. Thus, for useful conversations we assume
that there is na, t-path with infinite capacity.

Recall the assumption that non-infinite capacities are rationals. In this case eachdptaiéthe
algorithm increases the flow value by at least one over the largest common denominator.

If all capacities are integers, then each iteration increases the flow by at |dastval (f*) be the
value of a maximum flow, then the algorithm takes time at nad$&|val (f*)). In fact, it is easy to see
that all f (u, v) are always integers in this case. Thus, we have the following theorem.

Theorem 2.6 (Integrality theorem). If the finite capacities are all integers, and the maximum flow is
bounded, then there is a maximum flgwn which f (u, v) and val( f) are all integers.

Exercise 2.7.Show that a maximum flow iv = (V, E') can always be found by a sequence of at most
| E| augmenting paths.

3 Applications of the Max-Flow Min-Cut theorem

Before proceeding to more formal discussions on algorithms to find maximum flows, let us discuss some
applications of the Max-Flow Min-Cut theorem to connectivity problems in graph theory.



3.1 Matchings, covers, and systems of distinct representatives

Definition 3.1. A matchingG is a subsef\/ of edges no two of which share an end pointmaximal
matchingis a matching where no more edge can be added to it to form another matchimgxium
matchingis a matching with maximum size. perfect matchings a matching which covers all vertices.
The size of a maximum matching, called thatching numbeof G, is denoted by (G).

For any matching\/ of GG, an M-alternating pathis a path ofG which alternates between edges in
M and not inM; an M-augmenting patlis an M -alternating paths which starts and ends at edges not in
M.

Exercise 3.2.Prove that a matching/ of a graphG is maximum iff there is nd//-augmenting path.

Definition 3.3. A subsetU C V(G) is called avertex covernf G iff every edge ofG is incident to at
least one vertex ify. The size of any smallest vertex cover®fs called thevertex covering numbenf
G, and is denoted by(G).

Definition 3.4. An edge-covenf G is a set of edges whose set of end pointg {§7). The size of any
smallest edge cover @f is denoted by(G), and is called thedge covering numbeaf G.

Definition 3.5. A set of vertices isndependenif there’s no edge between any two of them. The size of
any maximum independent set is called itmgependent numbef GG, and is denoted by (G).

Exercise 3.6 (Gallai Identities, 1959 [6]).For any graplG, letn = V(G), prove that
() o(G)+71(G) =n.

(i) v(G)+ p(G) = nif G has no isolated vertex.

Exercise 3.7.Prove the following statements

(i) A minimal edge-cover is minimum iff it contains a maximum matching.

(i) A maximal matching is maximum iff it is contained in a minimum edge-cover.
Exercise 3.8.Show that for any grapt¥, v(G) < 7(G) < 2v(G).
Exercise 3.9 (Konig, 1916 [7]). Show thain(G) = p(G) if G is a bipartite graph.

Definition 3.10. A graphG = (A U B, E) where A and B are non-empty independent sets, is called a
bipartite graph A complete matchinffom A into B is a matching of> which covers all vertices ofl.

The following theorem is another duality-type of theorem.
Theorem 3.11 (Konig-Egervary Theorem). LetG be a bipartite graph, them(G) = v(G).

Proof. SupposeG = (A U B, E). Construct a flow networlD = (V, A) from G as follows. Let
V ={s} U AU B U{t}, wheres andt are two new vertices. The edgesidfconsists of:

e all edges of the fornfs, a), for eacha € A
e edges of the fornja, b), whenever(a,b) € £

e all edges of the fornfb, ¢), for eachb € B.



Set the capacities of all edgesiinto bel.

The theorem asserts that in a bipartite graph, the:&i¢8 of a maximum matching is equal to the
sizer(G) of a minimum vertex cover aff. We shall show that(G) is equal to the maximum flow value
val (f*), and7(G) is the same as the capacity of a minimum cubof

By the integrality theorem, there is a maximum flgit with integer flow values on each edge. It
is easy to see that the sffa,b) | f(a,b) = 1} forms a matching ofs. Hence, val f*) < v(G).
Conversely, given a matching of G we can construct a feasible flofwvith val (f) = |M| by assigning
f(a,b) =1,¥(a,b) € M, f(s,a) = 1if there is somé such thata,b) € M, andf(b,t) = 1if there is
someq such thata,b) € M. Thus,v(G) > val (f*). Consequentlyy(G) = val (f*).

Let (S, T") be a source/sink cut dd with minimum capacity. LeX = SN AandY = SN B. Itis
easy to see that

caf(S. T) = (|A] — |X|) + |[X, Y]l + (|B| - [

(Drawing a little picture would help understanding this.) SuppdggY’] is not empty. Let(x,y) be
some edge ifX,Y]. LetS’ = S — {z} andT’ = T'U {z}, then

cap(S", T") < (|A| = [X] + 1) + (I[X, Y]| = 1) + (| B| = [Y]) = cap(S, T).

As (S,T) is a minimum cut, it must be the case tli&t, 7”) is also a minimum cut. Keep doing this until
we get a minimum cutS, T') for which [X, Y] = ). Then, itis clear thatA — X)U (B —Y) is a vertex
cover of G. Moreover, cafS,T) is precisely the size of this vertex cover|a¥,Y]| = 0. This shows
that cag.s,7') > 7(G). Conversely, supposé C A U B is a vertex cover of7 of size|C| = 7(G). We
construct a min-cut with capacitg’| by “reversing” the previous argument. L&t= {s} U (A — C) and
T = (B—C)U{t}. Then(S,T) is a source/sink cut. Sine& is a vertex cover, there cannot be any edge
of G with one end point ird — C and the other ilB — C. Hence, this cutS, T") has capacity exactly
|C'NA|+ |C N B| = |C|. Consequently;(G) is at least the size of a minimum cut. This completes the
proof that min-cut size is the same&a&7).

The max-flow min-cut theorem then finishes the proof of the theorem. O

Exercise 3.12.Given a bipartite graplt: = (A U B, E). Suppose7 is k-regular, namely each vertex
v € AU B has degree preciseky

(i) Show that/A| = |B|.
(ii) Use network flow to show that has a perfect matching.

Exercise 3.13 (Hall's Theorem).For each subsef of vertices of a graplty = (V, E), letT'(S) :=
{v|3Jue S,uw e E}.

Use network flow to show that a bipartite grapgh= (A U B, E) has a complete matching frorh
into B if and only if |S| < [['(S5)|,V.S C A.

Exercise 3.14 (Konig's Line Coloring Theorem (1916, [7])). Show that for every bipartite graph,
Xe(G) = A(G). Herex.(G) is the chromatic index of7, i.e. x.(G) is the minimum integer so that a
Xe(G)-edge-coloring of~ exists, and\(G) is the maximum degree of all vertices@h

Exercise 3.15.Two network routerd? and.S are connected by fibers. Thejth fiber can accommodate
up ton; different wavelengths] < j < f.

A setC of connections are routed througR, S). Each connection id’ is to be carried on a pre-
assigned wavelength. There aredifferent wavelengths. I, there arem; connections on théth
wavelengthl < i < w.

We are to route the connectionsGhthrough(R, S), namely each connection @it is assigned to one
of the f fibers such that no two connections with the same wavelength are assigned on the same fiber,
and that theith fiber does not get assigned to more tharconnections.

6



(i) Show how to use network flows to test whether the routing can be done.

(i) Supposemn; > --- > my, andn; < --- < ny. Show that the routing can be done if and only if,
for all k, andl, where0 < k < w, 0 < [ < f, it holds thatk(f — 1) + Z;Zl nj > % m;.

Exercise 3.16 (Common System of Distinct Representatived)et X = { X1, ..., X,,,} be acollection
of sets. A set of distinct elemend§ = {x1,...,x,,} is called asystem of distinct representativesSx’
if there exists a one-to-one mapping X — X such thate; € ¢(x;),Vi=1...m.

Let A= {A,...,A,}andB = {By,..., B, } be two collections of subsets pf] = {1,...,n},
m < n. A common system of distinct representatives (CSDR) is &'set{sy, .. ., s, } of m (different)
elements such th&f represents bothl andB. (Note that the one-to-one mappings fréhio .4 andB
do not need to be the same.)

Use network flows to show that and B have a CSDR if and only if

(UAZ')FW UBj > |I|+|J| —m, forall I,JC [m].

icl jeJ

3.2 Connectivity concepts for graphs

Definition 3.17. A separating setalso calledvertex cu} of a graphGG = (V, E) is a subsef of vertices
such that? — S has more than one componentsdf S is an isolated vertex. A graph is k-connected
iff every separating set has size at lelasThe connectivityx(G) of G is the maximumk such thatG is
k-connected.

Note that if G is k-connected, then is is alggconnected for alj < k. The definition basically
means that if7 is k-connected, ther would still be connected if we remove less thamertices. For
example, a connected graph is certaitdgonnected and-connected. A patl® is 1-connected but not
2-connected. A cycl€' of large length i$)-, 1- and2-connected but ndt-connected. Clearly(P) = 1
andx(C) = 2.

Definition 3.18. Givenu,v € V, then anu, v-separating sefor u, v-vertex cuf is a subsets C V' —
{u,v} such thatG — S has nou, v-path. Naturally, we use(u,v) to denote the minimum size of a
u, v-separating set.

Definition 3.19. Two u, v-paths arenternally disjointif they have no vertex in common excepandv.
Let A(u, v) denote the maximum number of internally disjoint-paths.

Definition 3.20. A disconnecting setf a graphG = (V, E) is a subsef’ C E such thatG — F' has
more than one connected component. A gragh k-edge-connecteiff every disconnecting set has size
at leastt. Theedge-connectivity’(G) of G is the minimum size of a disconnecting setaf

We shall adopt Douglas West's convention [14] to append a “prime” after a graph parametef)(like
to specify that it is the edge version of the parameter.

Definition 3.21. Givenu, v € V, then aru, v-disconnecting s€br u, v-cut) is a subset C F such that
G — S has nou, v-path. (ThusG — S has at least two components.) Naturally, we k/s@, v) to denote
the minimum size of a, v-disconnecting set.

Definition 3.22. Two u, v-paths areedge disjoinif they have no edge in common. L&t(u, v) denote
the maximum number of edge disjoimv-paths.

Exercise 3.23.Let GG be an undirected graph, andv be two vertices ofs. Show that:



(i) w'(u,v) > N(u,v),
(i) K(u,v) > Nu,v) if (u,v) ¢ E(G).
Exercise 3.24.Let GG be a graph, and, v be two vertices ofs. Show that
() <'(G) = min{x'(u,v) | u,v € V(G),u # v}.
(i) £(G) = min{k(u,v) | u,v € V(G),u # v}.

3.3 Connectivity concepts for digraphs

Definition 3.25. A digraphD = (V, E) is strongly connecteif there is a directed path fromato v and
a directed path frona to « for each pain,v € V.

Definition 3.26. A separating sefor vertex cu} of a digraphD = (V, E) is a setS of vertices such
that D — S is not strongly connected @¥ — S is an isolated vertex. Theonnectivity<(D) of D is the
minimum size of separating sets. The graph-ionnected if:(D) > k.

The concepts of(u,v) and\(u, v) are similar to the undirected case, hence we shall be brief.

Definition 3.27. Let x(u,v) denote the minimum number of vertices Wh— {u,v} whose removal
leaves a graph with no directedv-path. Let\(u, v) denote the maximum number of internally disjoint
directedu, v-paths.

Definition 3.28. Let D = (V, E) be a digraph. Lef) # S C V, and[S, S] denote the set of edges
going fromS to S. Then[S, S] is called aredge-cubf D. Theedge-connectivity'(D) is the size of a
minimum edge-cut. The graph isedge-connectei <'(D) > k.

Definition 3.29. A cut [S,T] with w € S, v € T is called au, v-cut (or u, v-disconnecting sgt Let
k'(u,v) denote the minimum size of @ v-cut. Let X' (u,v) denote the maximum number of edge
disjointu, v-paths.

Exercise 3.30.Let D be a directed graph, and v be two vertices of). Show that
(i) & (w,v) > N(u,v),
(i) k(u,v) > Au,v) if (u,v) ¢ E(G).

Exercise 3.31.Let D be a directed graph, and v be two vertices of). Show that
() (D) = min{x'(u,v) | u,v € V(D),u # v}.
(i) k(D) = min{k(u,v) | u,v € V(D),u # v}.

3.4 Menger theorems for digraphs

Theorem 3.32 (Local Menger Theorem for digraph, edge version)Lets # t be vertices of a digraph
D = (V,E). Thenx/(s,t) = N(s,t).

Proof. Think of D as a flow network all whose edges have capatitgnds as the source andas the
sink. We shall show that

max-flow value < X' (s, t) < x/(s,t) < min-cut capacity

which would complete the proof.



The fact that\'(s,t) < £/(s, t) is obvious.

By the integrality theorem, there is a maximum integral fibwLet G be the subgraph @b consists
of all edges with flow valud. We use outde@uv) and indegv) to denote the out-degree and in-degree
of a vertexv € V(G). Then, val(f) = outdeg(s) — indeg(s) = indeg(t) — outdeg(t). Moreover,
outdeg(v) = indeg(v), Vv € V(G) — {s, t}.

Walk along any directed walk starting froppand we shall come back toor end up at, never get
stuck in the middle since each vertexc V(G) — {s, ¢} has the same in-degree and out-degree. If we
come back ta;, remove that closed walk frol and the values outdgg) — indeg(v) is unchanged for
allv € V(G). If we end up at, then we get an, ¢t-path after removing cycles along the walk. Remove
the path fromG and we have reducef@utdeg(s) — indeg(s)) and(indeg(t) — outdeg(t)) each byl,
while (outdeg(v) — indeg(v)) is still 0 for all otherv. Repeating this procedure vgf) times and we
obtain val( /) edge disjoint paths fromto ¢. This shows that valf) < X(s, ).

To this end, le(S, T") be a minimum source/sink cut, thés\ 7] is ans, t-disconnecting set. Conse-
quently,x’(s,t) <|[S,T]| = capg(S,T). O

Theorem 3.33 (Local Menger Theorem for digraph, vertex version).Let s # ¢ be vertices of a
digraph D = (V, E) for which (s, t) ¢ E. Thenk(s,t) = (s, t).

Proof. Construct a digrap®’ from D as follows. Each vertex € V(D) — {s, t} is separated into~
andv™ with all edges going int@ now going intov™ in D’, and all edges going out fromnow going
out ofv™ in D’. Moreover, we add the edde—,v") to D'.

Eachs, t-path in D’ alternate between edges bf and edges of the forrfw—,v™). Hence, edge
disjoint s, t-paths inD’ are internally disjoint inD and vice versa. This means

K (s,t) = Npi(s,t) = Ap(s,t) < kp(s,t).

To complete the proof, we show thap (s, t) < k', (s, t).

LetC’ be ans, ¢-disconnecting set of edges i of size|C’| = k', (s, t). For each edgér, y) € C’,
not bothz andy are in{s, ¢}. (Note thatr andy, if not s or ¢, have to be some" or v~ for somev € V)

Let C be a subset of obtained fromC” by picking one end point of each edge y) € C’ which is
neithers or ¢, and remove the- or — from that end point. For example, (i, y) = (s,v™) then we put
vin C;orif (z,y) = (u™,v™) then we put eithet, or v in C; etc.

It is clear that|/C'| < |C’|. Moreover,C' must be ars, t-separating set ab, because any, t-path
which avoid all vertices irC' corresponds to ag t-path in D" which avoids all edges i6”. This shows
thatkp(s,t) < |C| < |C'| = Ky (s, t) as desired. O

Theorem 3.34 (Global Menger Theorem for digraphs).Let D = (V, E) be a digraph, then
(D) = min{)N(s,t)]|s,t €V,s#t},
k(D) = min{A(s,t)|s,t € V,s #t}.
Proof. Sincex/(D) = min{x/(s,t) | s,t € V, s # t}, andx/(s,t) = N(s,t), the first equality is trivial.
For the second equality, we also note th@f)) = min{x(s,t) | s,t € V,s # t}. However,
k(s,t) = A(s, t) only for cases whefs, t) ¢ E(D).

When (s,t) € E(D), we havek(s,t) = oco. Thus, we we can show thai(s,t) > x(D) for
(s,t) € E(D) then we are done. We have

)‘(Svt) =1+ AD—(s,lf)(37t) =1+ K:D—(s,t)(S?t) > 1+ "'{(D - (Svt)) > H(D)

All inequalities are straightforward, except possibly the last one, which asserts that deleting an edge
reduces the (vertex) connectivity by at mast



Let S be a separating set of minimum sizefih— (s, t). If eithers or ¢ is in S, thenS is also a
separating set ab, which impliesk(D — (s,t)) > (D). Suppose both andt¢ are not inS, and that
there is nau, v-path inD — (s,t) — S. If {u,v} # {s,t}, then eithetlS U {s} or S U {t} is a separating
set of D, which means:(D) < |S|+ 1 = k(D — (s,t)). The last case is whefu,v} = {s,t}. If
u=t,v = sthenS is also a separating set of.

Lastly, suppose: = s andv = t. If S =V — {s,t}, thenS U {s} is a separating set dd by
definition. On the other hand, if there is somes V' — S — {s,t}, then either there is ne w-path or
now, t path: we get back to a case we have seen before. O

3.5 Menger theorems for graphs

Theorem 3.35 (Local Menger Theorem for digraph, edge version)Let s # ¢ be vertices of a graph
G = (V,E). Thenx/(s,t) = N (s,t).

Proof. Construct a directed graph frofhby turning each edge:, v) € E(G) into a pair of edgeéu, v)
and(v,u) in D. The rest follows from the digraph version of the theorem. O

Theorem 3.36 (Local Menger Theorem for digraph, vertex version) Lets # t be vertices of a graph
G = (V, E) for which(s,t) ¢ E. Thenx(s,t) = A(s, t).

Proof. Construct a directed graph fro@by turning each edge:, v) € E(G) into a pair of edgesu, v)
and(v,u) in D. The rest follows from the digraph version of the theorem. O

Theorem 3.37 (Menger Theorem for graphs).LetG = (V, E) be a graph, then

k(G) = min{A(s,t)|s,t €V,s #t},
K'(G) = min{N(s,t)|s,t €V, s#t}.

Proof. Similar to the directed case. O

Historical Notes

The book by Ahuja, Magnanti and Orlin [1] contains extensive discussions on network flows, related
problems and applications.

The Max-Flow Min-Cut theorem was obtained independently by Elias, Feinstein, and Shannon
(1956, [4]), Ford and Fulkerson (1956, [5]). The special case with integral capacities was also discovered
by Kotzig (1956, [9]).

The augmenting path method, sometime referred to as the Ford-Fulkerson algorithm, was devised by
Ford and Fulkerson (1956, [5]) based on earlier ideas from Bge(1931, [3]) and Kuhn (1955, [10])

The augmenting path method could loop forever, or converge to a sub-optimal flow if some of the
capacities were irrational. Examples were constructed by Ford and Fulkerson (1956, [5]), Papadimitriou
and Steiglitz (1982, [13]). Edmonds and Karp (1970, [2]) later found a polynomial time algorithm
which works on all real capacities, with at mdsf® — n)/4 iterations. The basic idea is to force flow
augmentation to be made along an augmentation path with shortest length.

A superb text on matching theory is [11]. The book also contains many interesting topics, including
discussions on linear programming, convex polytopes, and Pfaffian.

The Konig-Egenary theorem is from Knig (1931, [8]) and Egeary (1931, [3]).

The local, edge version of Menger’s theorem was discovered by Menger (1927, [12]). Other versions
were later shown by Whitney (1932, [15]), Ford-Fulkerson (1956, [5]), and Elias-Feinstein-Shannon
(1956, [4]).
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