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Introduction to Network Flow Problems

1 Basic definitions and properties

Definition 1.1. A flow networkis a directed graphD = (V,E) with two distinguished verticess and
t called thesourceand thesink, respectively. Moreover, each arc(u, v) ∈ E has a certaincapacity
c(u, v) ≥ 0 assigned to it.

If (u, v) /∈ E (including pairs of the form(u, u)), we assumec(u, v) = 0. In this note, we shall
restrict ourselves to the case wherecapacities are all rational numbers. Some of the capacities might
be∞.

Definition 1.2. Let G = (V,E) be a graph or a digraph. LetX be a proper non-empty subset ofV . Let
X̄ := V −X, then the pair(X, X̄) forms a partition ofV , called acutof G. The set of edges ofG with
one end point in each ofX andX̄ is called anedge cutof G, denoted by[X, X̄].

Definition 1.3. A source/sink cutof a networkD is a cut(S, T ) with s ∈ S andt ∈ T . (Note that,
implicitly T = S̄.)

Definition 1.4. A flow for a networkD = (V,E) is a functionf : V × V → R, which assigns a real
number to each pair(u, v) of vertices. A flowf is called afeasible flowif it satisfies the following
conditions:

(i) 0 ≤ f(u, v) ≤ c(u, v),∀(u, v) ∈ E. These are thecapacity constraints. (If a capacity is∞, then
there is no upper bound on the flow value on that edge.)

(ii) For all v ∈ V − {s, t}, the total flow intov is the same as the total flow out ofv:∑
u:(u,v)∈E

f(u, v) =
∑

w:(v,w)∈E

f(v, w). (1)

These are called theflow conservation law.

Definition 1.5. Thevalueof a flowf for D, denoted by val(f), is the net flow out of the source:

val (f) :=
∑

u:(s,u)∈E

f(s, u)−
∑

v:(v,s)∈E

f(v, s).

For notational conveniences, for every two subsetsX, Y ⊆ V , define

f(X, Y ) :=
∑
x∈X

∑
y∈Y

f(x, y).

For every proper and non-empty subsetS ⊆ V we definef+(S) to be the net flow leavingS andf−(S)
to be the net flow enteringS, namely

f+(S) := f(S, S̄), (2)

f−(S) := f(S̄, S). (3)
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If S = {w} for some vertexw ∈ V , we writef+(w) andf−(w) instead off+({w}) andf−({w}),
respectively. The flow conservation law (1) now readsf+(v) = f−(v),∀v ∈ V − {s, t}. And, the value
of f is nothing butf+(s)− f−(s).

With the conservation law held at all vertices other than the source and the sink, it is intuitively clear
that the net flow into the sink is also val(f).

Proposition 1.6. The value of a flowf is equal to the net flow into the sink:

val (f) = f−(t)− f+(t).

Proof. The proof is intuitively trivial:

0 =
∑

(u,v)∈E

(f(u, v)− f(u, v)) =
∑
v∈V

(
f+(v)− f−(v)

)
= (f+(s)− f−(s)) + (f+(t)− f−(t)).

Definition 1.7 (The Maximum Flow problem). Themaximum flow problemis the problem of finding
a feasible flow with maximum value, given a networkD (and the capacities on the edges).

Exercise 1.8.Formulate the maximum flow problem as a linear program.

Definition 1.9. Given a source/sink cut(S, T ), thecapacityof the cut, denoted by cap(S, T ) is the total
capacity of edges leavingS:

cap(S, T ) :=
∑

u∈S,v∈T,
(u,v)∈E

c(u, v).

A cut with minimum capacity is called aminimum cut.

The following exercise generalizes the previous proposition. It should be intuitively obvious.

Exercise 1.10.Given a source/sink cut(S, T ) and a feasible flowf for a networkD, show that

val (f) = f+(S)− f−(S) = f−(T )− f+(T ).

Theorem 1.11 (Weak duality). For every source/sink cut[S, T ] and any feasible flowf for a network
D = (V,E), we have

val (f) ≤ cap(S, T ).

Proof. You should be able to guess the reason we call this theorem theweak dualityproperty. The proof
is more than trivial, given the result of Exercise 1.10

val (f) = f+(S)− f−(S) ≤ f+(S) ≤ cap(S, T ).

Due to the weak duality property, a feasible flowf with value equal to the capacity of some cut[S, T ]
is amaximum flow. The cut is then aminimum cut. (Why?)

In the next sections, we develop the Max-Flow Min-Cut theorem, which basically says that the
maximum flow value is always the same as the minimum cut capacity, which could both be infinite.
(This is the analog of the strong duality property for linear programming.)
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2 The augmenting path method

Since the0-flow is always feasible, one might attempt to gradually increase the flow until the flow gets
its maximum value. By definition, in order to increase the flow we have to either increasef(s, v) of an
out-edge(s, v) from s or decreasef(v, s) of an in-edge(v, s) to s, as long as the capacity constraint
for that edge is still valid. Doing so, however, requires adjusting the flows at edges incident tov so that
the flow conservation constraint atv is still valid. In fact, this kind of update shall propagate down tot,
which is the place where the conservation constraint does not have to hold.

The propagation, as described above, can be done via a “path” froms to t. We make this notion
mathematically precise by introducing the notion of a residual network as follows.

Definition 2.1 (Residual capacity).Let D = (V,E) be a network andf be a feasible flow forD. For
each pair(u, v), the residual capacitycf (u, v) is defined to be

cf (u, v) := c(u, v)− f(u, v) + f(v, u).

Consider an edge(u, v) ∈ E. How much more flow can we push fromu to v? Clearly an amount
of c(u, v) − f(u, v) can be added. Moreover, if we reducef(v, u) to 0, then an amountf(v, u) is also
added. Even when(u, v) /∈ E, the above analysis is still valid, sincec(u, v) = f(u, v) = 0. Thus, the
residual capacitycf (u, v) represents the additional flow which can be pushed fromu to v.

Definition 2.2 (Residual network). Let D = (V,E) be a network andf be a feasible flow forD. Let
Df = (V,Ef ) be the directed graph whose edges are the pairs(u, v) with cf (u, v) > 0. This graphDf

is called theresidual networkof D with respect tof .

Definition 2.3 (Augmenting path). Let D = (V,E) be a network andf be a feasible flow forD.
A path P from s to t in Df is called anaugmenting pathfor D with respect tof . Let δ(P ) :=
min{cf (u, v) | (u, v) ∈ P}. Note thatδ(P ) > 0, by definition.

Lemma 2.4. Let P be an augmenting path forD with respect to a flowf . Letf ′ be a flow which is the
same asf except in the cases as follows. For each(u, v) ∈ P , let

f ′(u, v) = f(u, v) + min{δ(P ), c(u, v)− f(u, v)},

and

f ′(v, u) =

{
f(v, u)− (δ(P )− (c(u, v)− f(u, v))) if δ(P ) > (c(u, v)− f(u, v))
f(v, u) otherwise.

Then,f ′ is feasible and val(f ′) = val (f) + δ(P ).

Proof. Trivial.

Theorem 2.5 (Max-Flow Min-Cut). Let f be a feasible flow of a networkD, then the following state-
ments are equivalent:

(i) f is a maximum flow

(ii) there is no augmenting path onD with respect tof

(iii) there some source/sink cut[S, T ] with val (f) = cap(S, T )
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Proof. If f is maximum, then there cannot be any augmenting path; this is a consequence of the previous
lemma. Thus,(i) =⇒ (ii).

Suppose there is no augmenting path forf . In the residual networkDf , letS be the set of all vertices
reachable froms by some pathP . Note that ifv ∈ S via ans, v-pathP , then all vertices ofP are inS.
As there is no augmenting path,t is not inS.

Consider a forward edge(u, v) ∈ E with u ∈ S, v ∈ S̄. Clearlyf(u, v) = cap(u, v), otherwisev
would have been inS. Similarly, for a “backward” edge(v, u) ∈ E, with u ∈ S, v /∈ S, it must be the
case thatf(u, v) = 0. Thus, val(f) = f+(S) − f−(S) = cap(S, S̄). Let T = S̄ and we have just
shown that(ii) =⇒ (iii).

Lastly, if there was a cut whose capacity is the same as the value off , thenf is maximal by the weak
duality property.

The previous theorem suggests a few strategies to find a maximum flow.
One could repeatedly try to find an augmenting pathP for some feasible flowf , staring from the

0-flow. If P is found, we can augmentf by an amount ofδ(P ) and repeats the search. IfP is not found,
thenf is maximum. This general strategy is called theaugmenting path method. Depending on how one
find augmenting paths, we have algorithms of different time complexities; some may not even terminate.

The second idea which comes from the proof is to find augmenting paths by starting fromS = {s}
and keep adding toS the set of vertices reachable froms by some pathP with δ(P ) > 0. If we reacht,
then an augmenting path is found. If we do not reacht, then we found a cut whose capacity is the same
asf ’s value. This is the content of the Ford-Fulkerson algorithm:

Ford-Fulkerson

1: f(u, v)← 0, ∀(u, v) ∈ V × V
2: while there is ans, t-path inDf do
3: updatef ← f ′, wheref ′ is defined in Lemma 2.4
4: updateDf

5: end while
6: return val(f)

If there is an augmenting pathP with δ(P ) =∞, then the copy ofP in D has all edges with infinite
capacity. This is the case where there is no maximum flow. Thus, for useful conversations we assume
that there is nos, t-path with infinite capacity.

Recall the assumption that non-infinite capacities are rationals. In this case each updateδ(P ) of the
algorithm increases the flow value by at least one over the largest common denominator.

If all capacities are integers, then each iteration increases the flow by at least1. Let val(f∗) be the
value of a maximum flow, then the algorithm takes time at mostO(|E|val (f∗)). In fact, it is easy to see
that allf(u, v) are always integers in this case. Thus, we have the following theorem.

Theorem 2.6 (Integrality theorem). If the finite capacities are all integers, and the maximum flow is
bounded, then there is a maximum flowf in whichf(u, v) and val(f) are all integers.

Exercise 2.7.Show that a maximum flow inD = (V,E) can always be found by a sequence of at most
|E| augmenting paths.

3 Applications of the Max-Flow Min-Cut theorem

Before proceeding to more formal discussions on algorithms to find maximum flows, let us discuss some
applications of the Max-Flow Min-Cut theorem to connectivity problems in graph theory.
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3.1 Matchings, covers, and systems of distinct representatives

Definition 3.1. A matchingG is a subsetM of edges no two of which share an end point. Amaximal
matchingis a matching where no more edge can be added to it to form another matching. Amaximum
matchingis a matching with maximum size. Aperfect matchingis a matching which covers all vertices.
The size of a maximum matching, called thematching numberof G, is denoted byν(G).

For any matchingM of G, anM -alternating pathis a path ofG which alternates between edges in
M and not inM ; anM -augmenting pathis anM -alternating paths which starts and ends at edges not in
M .

Exercise 3.2.Prove that a matchingM of a graphG is maximum iff there is noM -augmenting path.

Definition 3.3. A subsetU ⊆ V (G) is called avertex coverof G iff every edge ofG is incident to at
least one vertex inU . The size of any smallest vertex cover ofG is called thevertex covering numberof
G, and is denoted byτ(G).

Definition 3.4. An edge-coverof G is a set of edges whose set of end points isV (G). The size of any
smallest edge cover ofG is denoted byρ(G), and is called theedge covering numberof G.

Definition 3.5. A set of vertices isindependentif there’s no edge between any two of them. The size of
any maximum independent set is called theindependent numberof G, and is denoted byα(G).

Exercise 3.6 (Gallai Identities, 1959 [6]).For any graphG, let n = V (G), prove that

(i) α(G) + τ(G) = n.

(ii) ν(G) + ρ(G) = n if G has no isolated vertex.

Exercise 3.7.Prove the following statements

(i) A minimal edge-cover is minimum iff it contains a maximum matching.

(ii) A maximal matching is maximum iff it is contained in a minimum edge-cover.

Exercise 3.8.Show that for any graphG, ν(G) ≤ τ(G) ≤ 2ν(G).

Exercise 3.9 (K̈onig, 1916 [7]). Show thatα(G) = ρ(G) if G is a bipartite graph.

Definition 3.10. A graphG = (A ∪ B,E) whereA andB are non-empty independent sets, is called a
bipartite graph. A complete matchingfrom A into B is a matching ofG which covers all vertices ofA.

The following theorem is another duality-type of theorem.

Theorem 3.11 (K̈onig-Egerváry Theorem). LetG be a bipartite graph, thenτ(G) = ν(G).

Proof. SupposeG = (A ∪ B,E). Construct a flow networkD = (V,A) from G as follows. Let
V = {s} ∪A ∪B ∪ {t}, wheres andt are two new vertices. The edges ofD consists of:

• all edges of the form(s, a), for eacha ∈ A

• edges of the form(a, b), whenever(a, b) ∈ E

• all edges of the form(b, t), for eachb ∈ B.
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Set the capacities of all edges inD to be1.
The theorem asserts that in a bipartite graph, the sizeν(G) of a maximum matching is equal to the

sizeτ(G) of a minimum vertex cover ofG. We shall show thatν(G) is equal to the maximum flow value
val (f∗), andτ(G) is the same as the capacity of a minimum cut ofD.

By the integrality theorem, there is a maximum flowf∗ with integer flow values on each edge. It
is easy to see that the set{(a, b) | f(a, b) = 1} forms a matching ofG. Hence, val(f∗) ≤ ν(G).
Conversely, given a matchingM of G we can construct a feasible flowf with val (f) = |M | by assigning
f(a, b) = 1,∀(a, b) ∈M , f(s, a) = 1 if there is someb such that(a, b) ∈M , andf(b, t) = 1 if there is
somea such that(a, b) ∈M . Thus,ν(G) ≥ val (f∗). Consequently,ν(G) = val (f∗).

Let (S, T ) be a source/sink cut ofD with minimum capacity. LetX = S ∩ A andY = S ∩B. It is
easy to see that

cap(S, T ) = (|A| − |X|) + |[X, Y ]|+ (|B| − |Y |).

(Drawing a little picture would help understanding this.) Suppose[X, Y ] is not empty. Let(x, y) be
some edge in[X, Y ]. Let S′ = S − {x} andT ′ = T ∪ {x}, then

cap(S′, T ′) ≤ (|A| − |X|+ 1) + (|[X, Y ]| − 1) + (|B| − |Y |) = cap(S, T ).

As (S, T ) is a minimum cut, it must be the case that(S′, T ′) is also a minimum cut. Keep doing this until
we get a minimum cut(S, T ) for which [X, Y ] = ∅. Then, it is clear that(A−X)∪ (B−Y ) is a vertex
cover ofG. Moreover, cap(S, T ) is precisely the size of this vertex cover as|[X, Y ]| = 0. This shows
that cap(S, T ) ≥ τ(G). Conversely, supposeC ⊆ A ∪B is a vertex cover ofG of size|C| = τ(G). We
construct a min-cut with capacity|C| by “reversing” the previous argument. LetS = {s}∪ (A−C) and
T = (B−C)∪{t}. Then(S, T ) is a source/sink cut. SinceC is a vertex cover, there cannot be any edge
of G with one end point inA − C and the other inB − C. Hence, this cut(S, T ) has capacity exactly
|C ∩A|+ |C ∩B| = |C|. Consequently,τ(G) is at least the size of a minimum cut. This completes the
proof that min-cut size is the same asτ(G).

The max-flow min-cut theorem then finishes the proof of the theorem.

Exercise 3.12.Given a bipartite graphG = (A ∪ B,E). SupposeG is k-regular, namely each vertex
v ∈ A ∪B has degree preciselyk.

(i) Show that|A| = |B|.

(ii) Use network flow to show thatG has a perfect matching.

Exercise 3.13 (Hall’s Theorem).For each subsetS of vertices of a graphG = (V,E), let Γ(S) :=
{v | ∃u ∈ S, uv ∈ E}.

Use network flow to show that a bipartite graphG = (A ∪ B,E) has a complete matching fromA
into B if and only if |S| ≤ |Γ(S)|,∀S ⊆ A.

Exercise 3.14 (K̈onig’s Line Coloring Theorem (1916, [7])). Show that for every bipartite graphG,
χe(G) = ∆(G). Hereχe(G) is the chromatic index ofG, i.e. χe(G) is the minimum integer so that a
χe(G)-edge-coloring ofG exists, and∆(G) is the maximum degree of all vertices inG.

Exercise 3.15.Two network routersR andS are connected byf fibers. Thejth fiber can accommodate
up tonj different wavelengths,1 ≤ j ≤ f .

A setC of connections are routed through(R,S). Each connection inC is to be carried on a pre-
assigned wavelength. There arew different wavelengths. InC, there aremi connections on theith
wavelength,1 ≤ i ≤ w.

We are to route the connections inC through(R,S), namely each connection inC is assigned to one
of thef fibers such that no two connections with the same wavelength are assigned on the same fiber,
and that thejth fiber does not get assigned to more thannj connections.
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(i) Show how to use network flows to test whether the routing can be done.

(ii) Supposem1 ≥ · · · ≥ mw, andn1 ≤ · · · ≤ nf . Show that the routing can be done if and only if,
for all k, andl, where0 ≤ k ≤ w, 0 ≤ l ≤ f , it holds thatk(f − l) +

∑l
j=1 nj ≥

∑k
i=1 mi.

Exercise 3.16 (Common System of Distinct Representatives).LetX = {X1, . . . , Xm} be a collection
of sets. A set of distinct elementsX = {x1, . . . , xm} is called asystem of distinct representativesof X
if there exists a one-to-one mappingφ : X → X such thatxi ∈ φ(xi),∀i = 1 . . .m.

LetA = {A1, . . . , Am} andB = {B1, . . . , Bm} be two collections of subsets of[n] = {1, . . . , n},
m ≤ n. A common system of distinct representatives (CSDR) is a setS = {s1, . . . , sm} of m (different)
elements such thatS represents bothA andB. (Note that the one-to-one mappings fromS toA andB
do not need to be the same.)

Use network flows to show thatA andB have a CSDR if and only if∣∣∣∣∣∣
(⋃

i∈I

Ai

)
∩

⋃
j∈J

Bj

∣∣∣∣∣∣ ≥ |I|+ |J | −m, for all I, J ⊆ [m].

3.2 Connectivity concepts for graphs

Definition 3.17. A separating set(also calledvertex cut) of a graphG = (V,E) is a subsetS of vertices
such thatG−S has more than one components orG−S is an isolated vertex. A graphG is k-connected
iff every separating set has size at leastk. Theconnectivityκ(G) of G is the maximumk such thatG is
k-connected.

Note that ifG is k-connected, then is is alsoj-connected for allj ≤ k. The definition basically
means that ifG is k-connected, thenG would still be connected if we remove less thank vertices. For
example, a connected graph is certainly0-connected and1-connected. A pathP is 1-connected but not
2-connected. A cycleC of large length is0-, 1- and2-connected but not3-connected. Clearlyκ(P ) = 1
andκ(C) = 2.

Definition 3.18. Givenu, v ∈ V , then anu, v-separating set(or u, v-vertex cut) is a subsetS ⊆ V −
{u, v} such thatG − S has nou, v-path. Naturally, we useκ(u, v) to denote the minimum size of a
u, v-separating set.

Definition 3.19. Two u, v-paths areinternally disjointif they have no vertex in common exceptu andv.
Let λ(u, v) denote the maximum number of internally disjointu, v-paths.

Definition 3.20. A disconnecting setof a graphG = (V,E) is a subsetF ⊆ E such thatG − F has
more than one connected component. A graphG is k-edge-connectediff every disconnecting set has size
at leastk. Theedge-connectivityκ′(G) of G is the minimum size of a disconnecting set ofG.

We shall adopt Douglas West’s convention [14] to append a “prime” after a graph parameter (likeκ′)
to specify that it is the edge version of the parameter.

Definition 3.21. Givenu, v ∈ V , then anu, v-disconnecting set(or u, v-cut) is a subsetS ⊆ E such that
G−S has nou, v-path. (Thus,G−S has at least two components.) Naturally, we useκ′(u, v) to denote
the minimum size of au, v-disconnecting set.

Definition 3.22. Two u, v-paths areedge disjointif they have no edge in common. Letλ′(u, v) denote
the maximum number of edge disjointu, v-paths.

Exercise 3.23.Let G be an undirected graph, andu, v be two vertices ofG. Show that:
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(i) κ′(u, v) ≥ λ′(u, v),

(ii) κ(u, v) ≥ λ(u, v) if (u, v) /∈ E(G).

Exercise 3.24.Let G be a graph, andu, v be two vertices ofG. Show that

(i) κ′(G) = min{κ′(u, v) | u, v ∈ V (G), u 6= v}.

(ii) κ(G) = min{κ(u, v) | u, v ∈ V (G), u 6= v}.

3.3 Connectivity concepts for digraphs

Definition 3.25. A digraphD = (V,E) is strongly connectediff there is a directed path fromu to v and
a directed path fromv to u for each pairu, v ∈ V .

Definition 3.26. A separating set(or vertex cut) of a digraphD = (V,E) is a setS of vertices such
thatD − S is not strongly connected orG − S is an isolated vertex. Theconnectivityκ(D) of D is the
minimum size of separating sets. The graph isk-connected ifκ(D) ≥ k.

The concepts ofκ(u, v) andλ(u, v) are similar to the undirected case, hence we shall be brief.

Definition 3.27. Let κ(u, v) denote the minimum number of vertices inV − {u, v} whose removal
leaves a graph with no directedu, v-path. Letλ(u, v) denote the maximum number of internally disjoint
directedu, v-paths.

Definition 3.28. Let D = (V,E) be a digraph. Let∅ 6= S ⊂ V , and [S, S̄] denote the set of edges
going fromS to S̄. Then[S, S̄] is called anedge-cutof D. Theedge-connectivityκ′(D) is the size of a
minimum edge-cut. The graph isk-edge-connectedif κ′(D) ≥ k.

Definition 3.29. A cut [S, T ] with u ∈ S, v ∈ T is called au, v-cut (or u, v-disconnecting set). Let
κ′(u, v) denote the minimum size of au, v-cut. Let λ′(u, v) denote the maximum number of edge
disjointu, v-paths.

Exercise 3.30.Let D be a directed graph, andu, v be two vertices ofD. Show that

(i) κ′(u, v) ≥ λ′(u, v),

(ii) κ(u, v) ≥ λ(u, v) if (u, v) /∈ E(G).

Exercise 3.31.Let D be a directed graph, andu, v be two vertices ofD. Show that

(i) κ′(D) = min{κ′(u, v) | u, v ∈ V (D), u 6= v}.

(ii) κ(D) = min{κ(u, v) | u, v ∈ V (D), u 6= v}.

3.4 Menger theorems for digraphs

Theorem 3.32 (Local Menger Theorem for digraph, edge version).Lets 6= t be vertices of a digraph
D = (V,E). Then,κ′(s, t) = λ′(s, t).

Proof. Think of D as a flow network all whose edges have capacity1, ands as the source andt as the
sink. We shall show that

max-flow value≤ λ′(s, t) ≤ κ′(s, t) ≤ min-cut capacity,

which would complete the proof.
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The fact thatλ′(s, t) ≤ κ′(s, t) is obvious.
By the integrality theorem, there is a maximum integral flowf . Let G be the subgraph ofD consists

of all edges with flow value1. We use outdeg(v) and indeg(v) to denote the out-degree and in-degree
of a vertexv ∈ V (G). Then, val(f) = outdeg(s) − indeg(s) = indeg(t) − outdeg(t). Moreover,
outdeg(v) = indeg(v),∀v ∈ V (G)− {s, t}.

Walk along any directed walk starting froms, and we shall come back tos or end up att, never get
stuck in the middle since each vertexv ∈ V (G) − {s, t} has the same in-degree and out-degree. If we
come back tos, remove that closed walk fromG and the values outdeg(v)− indeg(v) is unchanged for
all v ∈ V (G). If we end up att, then we get ans, t-path after removing cycles along the walk. Remove
the path fromG and we have reduced

(
outdeg(s)− indeg(s)

)
and

(
indeg(t)− outdeg(t)

)
each by1,

while
(
outdeg(v) − indeg(v)

)
is still 0 for all otherv. Repeating this procedure val(f) times and we

obtain val(f) edge disjoint paths froms to t. This shows that val(f) ≤ λ′(s, t).
To this end, let(S, T ) be a minimum source/sink cut, then[S, T ] is ans, t-disconnecting set. Conse-

quently,κ′(s, t) ≤ |[S, T ]| = cap(S, T ).

Theorem 3.33 (Local Menger Theorem for digraph, vertex version).Let s 6= t be vertices of a
digraphD = (V,E) for which(s, t) /∈ E. Then,κ(s, t) = λ(s, t).

Proof. Construct a digraphD′ from D as follows. Each vertexv ∈ V (D) − {s, t} is separated intov−

andv+ with all edges going intov now going intov− in D′, and all edges going out fromv now going
out ofv+ in D′. Moreover, we add the edge(v−, v+) to D′.

Eachs, t-path inD′ alternate between edges ofD and edges of the form(v−, v+). Hence, edge
disjoints, t-paths inD′ are internally disjoint inD and vice versa. This means

κ′D′(s, t) = λ′D′(s, t) = λD(s, t) ≤ κD(s, t).

To complete the proof, we show thatκD(s, t) ≤ κ′D′(s, t).
LetC ′ be ans, t-disconnecting set of edges inD′ of size|C ′| = κ′D′(s, t). For each edge(x, y) ∈ C ′,

not bothx andy are in{s, t}. (Note thatx andy, if not s or t, have to be somev+ or v− for somev ∈ V .)
Let C be a subset ofV obtained fromC ′ by picking one end point of each edge(x, y) ∈ C ′ which is

neithers or t, and remove the+ or− from that end point. For example, if(x, y) = (s, v−) then we put
v in C; or if (x, y) = (u+, v−) then we put eitheru or v in C; etc.

It is clear that|C| ≤ |C ′|. Moreover,C must be ans, t-separating set ofD, because anys, t-path
which avoid all vertices inC corresponds to ans, t-path inD′ which avoids all edges inC ′. This shows
thatκD(s, t) ≤ |C| ≤ |C ′| = κ′D′(s, t) as desired.

Theorem 3.34 (Global Menger Theorem for digraphs).LetD = (V,E) be a digraph, then

κ′(D) = min{λ′(s, t) | s, t ∈ V, s 6= t},
κ(D) = min{λ(s, t) | s, t ∈ V, s 6= t}.

Proof. Sinceκ′(D) = min{κ′(s, t) | s, t ∈ V, s 6= t}, andκ′(s, t) = λ′(s, t), the first equality is trivial.
For the second equality, we also note thatκ(D) = min{κ(s, t) | s, t ∈ V, s 6= t}. However,

κ(s, t) = λ(s, t) only for cases when(s, t) /∈ E(D).
When (s, t) ∈ E(D), we haveκ(s, t) = ∞. Thus, we we can show thatλ(s, t) ≥ κ(D) for

(s, t) ∈ E(D) then we are done. We have

λ(s, t) = 1 + λD−(s,t)(s, t) = 1 + κD−(s,t)(s, t) ≥ 1 + κ(D − (s, t)) ≥ κ(D).

All inequalities are straightforward, except possibly the last one, which asserts that deleting an edge
reduces the (vertex) connectivity by at most1.
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Let S be a separating set of minimum size inD − (s, t). If either s or t is in S, thenS is also a
separating set ofD, which impliesκ(D − (s, t)) ≥ κ(D). Suppose boths andt are not inS, and that
there is nou, v-path inD − (s, t)− S. If {u, v} 6= {s, t}, then eitherS ∪ {s} or S ∪ {t} is a separating
set ofD, which meansκ(D) ≤ |S| + 1 = κ(D − (s, t)). The last case is when{u, v} = {s, t}. If
u = t, v = s thenS is also a separating set ofD.

Lastly, supposeu = s andv = t. If S = V − {s, t}, thenS ∪ {s} is a separating set ofD by
definition. On the other hand, if there is somew ∈ V − S − {s, t}, then either there is nos, w-path or
now, t path: we get back to a case we have seen before.

3.5 Menger theorems for graphs

Theorem 3.35 (Local Menger Theorem for digraph, edge version).Let s 6= t be vertices of a graph
G = (V,E). Then,κ′(s, t) = λ′(s, t).

Proof. Construct a directed graph fromG by turning each edge(u, v) ∈ E(G) into a pair of edges(u, v)
and(v, u) in D. The rest follows from the digraph version of the theorem.

Theorem 3.36 (Local Menger Theorem for digraph, vertex version).Lets 6= t be vertices of a graph
G = (V,E) for which(s, t) /∈ E. Then,κ(s, t) = λ(s, t).

Proof. Construct a directed graph fromG by turning each edge(u, v) ∈ E(G) into a pair of edges(u, v)
and(v, u) in D. The rest follows from the digraph version of the theorem.

Theorem 3.37 (Menger Theorem for graphs).LetG = (V,E) be a graph, then

κ(G) = min{λ(s, t) | s, t ∈ V, s 6= t},
κ′(G) = min{λ′(s, t) | s, t ∈ V, s 6= t}.

Proof. Similar to the directed case.

Historical Notes

The book by Ahuja, Magnanti and Orlin [1] contains extensive discussions on network flows, related
problems and applications.

The Max-Flow Min-Cut theorem was obtained independently by Elias, Feinstein, and Shannon
(1956, [4]), Ford and Fulkerson (1956, [5]). The special case with integral capacities was also discovered
by Kotzig (1956, [9]).

The augmenting path method, sometime referred to as the Ford-Fulkerson algorithm, was devised by
Ford and Fulkerson (1956, [5]) based on earlier ideas from Egerváry (1931, [3]) and Kuhn (1955, [10])

The augmenting path method could loop forever, or converge to a sub-optimal flow if some of the
capacities were irrational. Examples were constructed by Ford and Fulkerson (1956, [5]), Papadimitriou
and Steiglitz (1982, [13]). Edmonds and Karp (1970, [2]) later found a polynomial time algorithm
which works on all real capacities, with at most(n3 − n)/4 iterations. The basic idea is to force flow
augmentation to be made along an augmentation path with shortest length.

A superb text on matching theory is [11]. The book also contains many interesting topics, including
discussions on linear programming, convex polytopes, and Pfaffian.

The König-Egerv́ary theorem is from K̈onig (1931, [8]) and Egerv́ary (1931, [3]).
The local, edge version of Menger’s theorem was discovered by Menger (1927, [12]). Other versions

were later shown by Whitney (1932, [15]), Ford-Fulkerson (1956, [5]), and Elias-Feinstein-Shannon
(1956, [4]).
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[4] P. ELIAS , A. FEINSTEIN, AND C. E. SHANNON, Note on maximal flow through a network, IRE Transactions on Infor-
mation Theory IT-2, (1956), pp. 117–199.

[5] L. R. FORD, JR. AND D. R. FULKERSON, Maximal flow through a network, Canad. J. Math., 8 (1956), pp. 399–404.
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