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5. Network flow problems

� Example: Sailco

� Minimum-cost flow problems

� Transportation problems

� Shortest/longest path problems

� Max-flow problems

� Integer solutions
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Example: Sailco

Sailco manufactures sailboats. During the next 4 months the
company must meet the following demands for their sailboats:

Month 1 2 3 4

Number of boats 40 60 70 25

At the beginning of Month 1, Sailco has 10 boats in inventory.
Each month it must determine how many boats to produce.
During any month, Sailco can produce up to 40 boats with
regular labor and an unlimited number of boats with overtime
labor. Boats produced with regular labor cost $400 each to
produce, while boats produced with overtime labor cost $450
each. It costs $20 to hold a boat in inventory from one month
to the next. Find the production and inventory schedule that
minimizes the cost of meeting the next 4 months’ demands.
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Example: Sailco

Summary of problem data:

� Regular labor: $400/boat (at most 40 boats/month).

� Overtime labor: $450/boat (no monthly limit).

� Holding a boat in inventory costs $20/month.

� Inventory initially has 10 boats.

� Demand for next 4 months is:

Month 1 2 3 4

Number of boats 40 60 70 25

What are the decision variables?
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Example: Sailco

Remember: Decision variables aren’t
always things that you decide directly!

For this problem, the decision variables are:

� x1, x2, x3, x4: boats produced each month with regular labor.

� y1, y2, y3, y4: boats produced each month with overtime.

� h1, h2, h3, h4, h5: boats in inventory at start of each month.

Parameters:

� d1, d2, d3, d4: demand at each month
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Example: Sailco

The constraints are:

� 0 ≤ xi ≤ 40 (monthly limit of regular production)

� yi ≥ 0 (unlimited overtime production)

� Conservation of boats:
I hi + xi + yi = di + hi+1 (for i = 1, 2, 3, 4)

I h1 = 10 (initial inventory)

Solution: Sailco.ipynb
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http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Sailco.ipynb


Example: Sailco

1 2 3 4
h1 h2 h3 h4 h5

customers customers customers customers

d1 d2 d3 d4

R R R R

x1 x2 x3 x4

OT OT OT OT

y1 y2 y3 y4

i : month i R : regular labor OT : overtime
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Example: Sailco

1 2 3 4
h1 h2 h3 h4 h5

customers customers customers customers

d1 d2 d3 d4

R R R R

x1 x2 x3 x4

OT OT OT OT

y1 y2 y3 y4

� Arrows indicate flow of boats

� conservation at nodes: h1 + x1 + y1 = d1 + h2, etc.
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Minimum-cost flow problems
� Many optimization problems can be interpreted as

network flow problems on a directed graph.

� Decision variables: flow on each edge.

� Edges have flow costs and capacity constraints

� Each node can either:
I produce/supply flow (source)

I consume/demand flow (sink)

I conserve flow (relay)

What is the minimum-cost feasible flow?

5-8



Minimum-cost flow problems
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� The set of nodes: N = {1, . . . , 8}.

� The set of directed edges: E = {(1, 3), (2, 3), (2, 4), . . . }.

� Each node i ∈ N supplies a flow bi . Node i is called
a source if bi > 0, a relay if bi = 0, and a sink if bi < 0.

� Decision variables: xij is the flow on edge (i , j) ∈ E .

� Flow cost: cij is cost per unit of flow on edge (i , j) ∈ E .
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Minimum-cost flow problems
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� Decision variables: xij is the flow on edge (i , j) ∈ E .

� Capacity constraints: pij ≤ xij ≤ qij ∀(i , j) ∈ E .

� Conservation:
∑

j∈N xkj −
∑

i∈N xik = bk ∀k ∈ N .

� Total cost:
∑

(i ,j)∈E cijxij .

Note: bk , cij , pij , qij are parameters.
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Minimum-cost flow problems
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The entire model:

minimize
xij∈R

∑
(i ,j)∈E cijxij

subject to:
∑

j∈N xkj −
∑

i∈N xik = bk ∀k ∈ N
pij ≤ xij ≤ qij
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Minimum-cost flow problems
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Expanded conservation constraint:


1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
−1 −1 0 1 1 0 0 0 0 0 0
0 0 −1 0 0 1 0 0 0 0 0
0 0 0 −1 0 −1 1 1 0 0 0
0 0 0 0 −1 0 −1 0 1 1 0
0 0 0 0 0 0 0 −1 −1 0 1
0 0 0 0 0 0 0 0 0 −1 −1


A = incidence matrix



x13
x23
x24
x35
x36
x45
x56
x57
x67
x68
x78


=


b1
b2
b3
b4
b5
b6
b7
b8


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Minimum-cost flow problems
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The entire model (compact form):

minimize
x∈R|E|

cTx

subject to: Ax = b

p ≤ x ≤ q

Note: The incidence matrix A is a property of the graph.
It does not depend on which nodes are sources/sinks/relays.
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Balanced problems
The incidence matrix has the property that all columns sum to
zero. In other words: 1TA = 0. Since Ax = b is a constraint,
we must therefore have: 1TAx = 1Tb = 0. Therefore:∑

i∈N
bi = 0 (total supply = total demand)

� If
∑

i∈N bi = 0, the model is called balanced.

� Unbalanced models are always infeasible.

� Note: balanced models may still be infeasible.

Unbalanced models still make sense in practice, e.g. we may
have excess supply or allow excess demand. These cases can
be handled by making small modifications to the problem,
such as changing “=“ to “≤”.
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Minimum-cost flow problems

Many problem types are actually min-cost flow models:

� transportation problems

� assignment problems

� transshipment problems

� shortest path problems

� max-flow problems

Let’s look at these in more detail...

Legend: : source : relay : sink
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Transportation problems

The objective is to transport a particular commodity from
several possible sources to several possible destinations while
minimizing the total cost.

� Sources have known supply limits

� Destinations each have demands

� Edges may have capacity limits

� Each link has an associated cost
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Transportation example

Millco has three wood mills and is planning three new logging
sites. Each mill has a maximum capacity and each logging site
can harvest a certain number of truckloads of lumber per day.
The cost of a haul is $2/mile of distance. If distances from
logging sites to mills are given below, how should the hauls be
routed to minimize hauling costs while meeting all demands?

Note: problem is balanced!

Source: J. Reeb and S. Leavengood, 2002 5-17



Transportation example

� Arrange nodes as:
[
1 2 3 A B C

]
(sources, sinks).

� Graph is fully connected. Incidence matrix:

A =


1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
−1 0 0 −1 0 0 −1 0 0

0 −1 0 0 −1 0 0 −1 0
0 0 −1 0 0 −1 0 0 −1



Julia code: Millco.ipynb
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http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Millco.ipynb


Transportation example

Solution is:
A B C

1 20 0 0

2 10 20 0

3 0 15 30

A

20

30

45

3 30 35 30 30

Similar to “magic squares” but without cell constraints
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Assignment problems

We have n people and n tasks. The goal is to assign each
person to a task. Each person has different preferences (costs)
associated with performing each of the tasks. The goal is to
find an assignment that minimizes the total cost.

� It’s just a transportation problem!

� Each source has supply = 1

� Each sink has demand = 1

� Edges are unconstrained

What about the integer constraint? More about this later...
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Assignment example

The coach of a swim team needs to assign swimmers to a
200-yard medley relay team to compete in a tournament. The
problem is that his best swimmers are good in more than one
stroke, so it’s not clear which swimmer to assign to which
stroke. Here are the best times for each swimmer:

Stroke Carl Chris David Tony Ken

Backstroke 37.7 32.9 33.8 37.0 35.4

Breaststroke 43.4 33.1 42.2 34.7 41.8

Butterfly 33.3 28.5 38.9 30.4 33.6

Freestyle 29.2 26.4 29.6 28.5 31.1

Julia code: Swim Relay.ipynb

Source: B. Van Roy and K. Mason 5-21

http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Swim Relay.ipynb


Transshipment problems

The same as a transportation problem, but in addition to
sources and destinations, we also have warehouses that can
store goods. The warehouses are relay nodes.

� Sources have known supply limits

� Destinations each have demands

� Links may have capacity limits

� Each link has an associated cost

� For warehouses, inflow = outflow.

Sailco problem is a transshipment problem!
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Transshipment example: Sailco

1 2 3 4
h1 h2 h3 h4 h5

customers customers customers customers

d1 d2 d3 d4

R R R R

x1 x2 x3 x4

OT OT OT OT

y1 y2 y3 y4

R

OT

: sources i : relays customers : sinks

� The “warehouses” are the different months.

� Storing in inventory = shipping to the future.
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Shortest/longest path problems
We have a directed graph and edge lengths. The goal is to
find the shortest or longest path between two given nodes.

� Again, a transportation problem!

� Edge cost = length of path.

� The source has supply = 1

� The sink has demand = 1

� To find longest path, just change
the min to a max!

23

4
23

1
5

3

2

3

2 4

Again we need integer constraints on the edges...
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Longest path example

The house building example is a longest path problem!

� Add source and sink nodes

� Move times out of nodes
and onto preceding edges

l,3

o,3 m,1 n,2

s,2

t,3
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Longest path example

The house building example is a longest path problem!

� Add source and sink nodes

� Move times out of nodes
and onto preceding edges

� Each path says “it takes at
least this long.” Longest
path gives the shortest time
we have to wait.

l
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3

0
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Max-flow problems

We are given a directed graph and edge capacities. Find the
maximum flow that we can push from source to sink.

� Edges have max capacities

� Flow can split!

� notions of supply and demand
don’t make sense...

� add a feedback path and make
every node a relay!

2

3
3

4

1
2

(edge capacity)
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Max-flow problems

We are given a directed graph and edge capacities. Find the
maximum flow that we can push from source to sink.

� Edges have max capacities

� Flow can split!

� notions of supply and demand
don’t make sense...

� add a feedback path and make
every node a relay!

Solve minimum-cost flow where
feedback path has cost (−1) and
all other paths have zero cost.

0

0
0

0

0
0

−1

(cost)
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Integer solutions

Some minimum-cost flow problems require integer solutions
(assignment problems and shortest path problems). Is there a
way of guaranteeing integer solutions? yes!

Definition: A matrix A is totally unimodular (TU) if every
square submatrix of A has determinant 0, 1, or −1.

� The definition includes 1× 1 submatrices, so every entry of
A must be 0, 1, or −1.

� ex.

[
1 1 0
−1 0 1

]
is TU but

[
1 1 1
−1 0 1

]
is not.
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Integer solutions

Theorem: If A is TU and b is an integer vector, then
the vertices of {x | Ax ≤ b} have integer coordinates.

Theorem: Every incidence matrix is TU.

What does this mean? (a lot!)

� If a minimum-cost flow problem has integer supplies,
integer demands, and integer edge capacities, then there is
a minimum-cost integer flow.

� every assignment problem is an LP.

� every shortest path problem is an LP.
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