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Abstract

We prove several new results on the Hamming weight of bounded uniform and
small-bias distributions.

We exhibit bounded-uniform distributions whose weight is anti-concentrated, match-
ing existing concentration inequalities. This construction relies on a recent result in
approximation theory due to Erdéyi (Acta Arithmetica 2016). In particular, we match
the classical tail bounds, generalizing a result by Bun and Steinke (RANDOM 2015).
Also, we improve on a construction by Benjamini, Gurel-Gurevich, and Peled (2012).

We give a generic transformation that converts any bounded uniform distribution
to a small-bias distribution that almost preserves its weight distribution. Applying
this transformation in conjunction with the above results and others, we construct
small-bias distributions with various weight restrictions. In particular, we match the
concentration that follows from that of bounded uniformity and the generic closeness of
small-bias and bounded-uniform distributions, answering a question by Bun and Steinke
(RANDOM 2015). Moreover, these distributions are supported on only a constant
number of Hamming weights.

We further extend the anti-concentration constructions to small-bias distributions
perturbed with noise, a class that has received much attention recently in derandomiza-
tion. Our results imply (but are not implied by) a recent result of the authors (CCC
2024), and are based on different techniques. In particular, we prove that the standard
Gaussian distribution is far from any mixture of Gaussians with bounded variance.
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1 Introduction and our results

A distribution D over {−1, 1}n is (ε, k)-biased if for every S ⊆ [n] of size 0 < |S| ≤ k, we
have |E[DS]| ≤ ε, where DS :=

∏
i∈S Di. If ε = 0 then any k bits are uniform and D is called

k-wise uniform or simply k-uniform. If k = n then D is called ε-biased.
The study of these distributions permeates and precedes theoretical computer science.

They were studied already in the 40’s under the name of orthogonal arrays [RR47], and are
closely related to universal hash functions [CW79], error-correcting codes (see e.g. [HH23]),
and in their modern guise were introduced in the works [ABI86, CGH+85, NN90].

Exploited in countless works, one of the most useful properties of such distributions D is
that the distribution of their Hamming weight

1⊤D :=
n∑

i=1

Di

is approximately the (centered) binomial distribution

B := 1⊤U,

where U is uniform in {−1, 1}n. (For simplicity, in this work we focus on the simplest setting
where the distributions are supported on {−1, 1}n.)

Yet, perhaps surprisingly, available bounds were loose or only applied to specific settings
of parameters. In this work, we prove several new results on the Hamming weight of bounded-
uniform distributions, small-bias distributions, and an extension of the latter obtained by
perturbing it with noise. We discuss each of these in turn.

1.1 Bounded uniformity

One of the key properties of bounded uniform distributions is their tail bounds. They have
myriad applications in a wide range of areas in computer science, including hashing, load
balancing, streaming algorithms, derandomization and cryptography. For example, the work
[SSS95] titled “Chernoff–Hoeffding bounds for applications with limited independence” has
500+ references according to Google scholar.

These bounds can be obtained from applying Markov’s inequality on an upper bound of the
higher moments of the Hamming weight 1⊤D :=

∑n
i=1 Di of the distribution [SSS95, BR94].

See Section 3.4 in [DP09] for details of this proof strategy and others.

Fact 1. Let D be a (2k)-uniform distribution on {−1, 1}n. For every integer t > 0, we have

P
[
|1⊤D| ≥ t

]
≤

√
2

(
2kn

et2

)k

.

Note that one can replace k with any k′ ≤ k in the bound, as any k-uniform distribution
is also k′-uniform. Thus, this tail bound becomes non-trivial whenever t ≥ c

√
n. In this

paper, as in [Vio23], every occurrence of “c” denotes a possibly different positive real number.
The notation “cx” for parameter(s) x indicates that this number may depend on x and only
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on x. Replacing “c” with O(1) everywhere is consistent with one common interpretation of
the big-O notation.

When t ≤ c
√
n log k, pseudorandomness results on k-uniformity against halfspaces [BGGP12,

DGJ+10, DKN10] imply that every k-uniform distribution puts roughly the same mass on
P[1⊤D ≥ t] as B.

Theorem 2 ([BGGP12, DGJ+10, DKN10]). Let D be a k-uniform distribution on {−1, 1}n.
For every integer t > 0, we have |P[1⊤D ≥ t]− P[B ≥ t]| ≤ c/

√
k.

Therefore, for thresholds in this regime, essentially the upper and lower bounds on the
tail of the (centered) binomial distribution extend to k-uniform distributions.

We note that tight estimates on the moments of the sum of independent bounded random
variables have been established [Sko22]. But these bounds do not imply the tightness of
Fact 1. More generally, and perhaps surprisingly, lower bounds on the tail mass of k-
uniform distributions remain scarce. This question was revisited by Bun and Steinke [BS15].
They show that for every k ≥ c log n, there exists a k-uniform distribution D such that
P[1⊤D ≥ t] ≥ c−k for t = c

√
nk. However, their result only applies to k ≥ c log n and ties t

and k, and so it does not apply in several regimes of interest.

Our results. In this work, we obtain matching lower bounds to Fact 1 and Theorem 2,
generalizing or strengthening a number of previous works.

Theorem 3. For every k and t, there exists a k-uniform distribution D on {−1, 1}n such
that

P[1⊤D ≥ t]− P[B ≥ t] ≥ c
√

n
k
P[B = t] ≥ c2−t2/n/

√
k.

Note that P[B = t] on the right hand side cannot be replaced with P[B ≥ t].
Theorem 3 matches Theorem 2 up to constant, in particular removing a logarithmic

factor from a lower bound sketched in [BGGP12]. Moreover, it shows that Fact 1 is tight for
t ∈ [

√
n, c

√
nk].

For t ≥ c
√
nk, we obtain the following lower bound, again matching Fact 1.

Theorem 4. For every k ≤ (n/9)1/3 and t ≥
√
nk, there exists a k-uniform distribution D

on {−1, 1}n such that P[1⊤D ≥ t] ≥ 1
3k3/2

( kn
16t2

)k/2.

Theorem 4 generalizes [BS15]. To illustrate this regime, note that in particular for
t = c

√
n log n we show that the error is large: ≥ (c/ log n)k, whereas P[B ≥ t] ≤ 1/nc is

exponentially smaller.
There remain some parameter regimes that are not covered by our or previous works.

For example, does every k-uniform distribution put mass at least 1/kc on strings of weight
c
√
n log k? In general, we raise the question of establishing the best possible error for any

threshold t between k-uniform distributions and binomial, interpolating between the error
c/
√
k for t ≤ c

√
n log k [BGGP12, DGJ+10, DKN10] and the exponentially small error for

larger t (Fact 1 and Theorem 4).
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1.2 Small-bias

We develop a paradigm to obtain small-bias distributions from k-uniform distributions while
retaining some of their deviation properties. The paradigm has two steps. First, symmetrize
the distribution. As k-uniform distributions are typically supported on nearly balanced
strings, this step has the effect of making the bias small on tests of size not too large. Second,
add noise, following [LV17]. This makes the bias small on large tests. Moreover, the small-bias
distributions that we construct are supported on few Hamming weights.

Lemma 5. Let D be any k-uniform distribution. There exists a distribution Dbias supported
on ck2 Hamming weights that is simultaneously k-uniform and (ck/n)k/4-biased such that for
every interval [a, b],

P
[
1⊤Dbias ∈ [a− k, b+ k]

]
≥ P

[
1⊤D ∈ [a, b]

]
.

We note that while the idea of adding noise is from [LV17], here we inject much less noise
than in [LV17]. This is made possible by the symmetrization step, which lets us reduce the
bias for moderate-size parities. On the other hand, symmetrization destroys linearity which
is essential in [LV17].

Using this approach, we carry results on the Hamming weight of k-uniform distributions,
including our new results for k-uniformity (Theorems 3 and 4), to small-bias distributions.

First, we obtain the following theorem stating that there are small-bias distributions
supported on few Hamming weights that are nearly “balanced.” This is obtained from the
construction of k-uniform distributions in [BHLV19] (Lemma 22).

Theorem 6. For every k, there exists a (ck/n)k-biased distribution D supported on at most
ck2 weights such that |1⊤D| ≤ 21

√
kn always.

Now we state results corresponding to Theorem 3 and Theorem 4.

Theorem 7. For every k and t, there exists a (ck/n)k-biased distribution D supported on at
most ck2 weights such that

P[1⊤D ≥ t− k]− P[B ≥ t] ≥ c
√

n
k
P[B = t] ≥ c2−t2/n/

√
k.

In typical settings, one can replace t− k with t. However this in general depends on t
and k so we leave the general statement for simplicity.

Theorem 8. For every k ≤ (n/9)1/3 and t ≥
√
nk, there exists a (ck/n)k/2-biased distribution

D supported on at most ck2 weights such that

P[1⊤D ≥ t] ≥ 1

3k3/2

( kn

64t2

)k/2

.

Several researchers, see for example [BS15], posed the question of understanding tail bounds
for small-bias distributions. And yet, our understanding of their tail probabilities is notably
lacking. In terms of upper bounds, existing tail bounds follow from Fact 1 via a connection to
the closeness between small-bias and k-uniform distributions [AGM03, AAK+07, OZ18]. On
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the opposite direction, Bazzi [Baz15] showed that an exponentially small-biased distribution
does not fool the majority function with error c/

√
n. The recent work [DILV24] shows that

P[1⊤D ≥
√
nk] ≥ ck for some (ck/n)k-biased distribution D. However, this result applies to

a specific threshold and does not scale as the threshold varies.
By contrast, Theorem 8 shows that the tail bounds for bounded uniformity cannot be

improved even for small-bias distributions, in general parameter settings. This in particular
answers a question in [BS15] and generalizes the recent work [DILV24].

1.3 Small-bias plus noise

In the past decade, researchers have considered bounded uniform and small-bias distributions
which are perturbed by noise.

Definition 9. Nρ is the noise distribution on {−1, 1}n, where each bit is independently set
to uniform with probability 1− ρ and 1 otherwise. We write D ·Nρ for the coordinate-wise
product of D and Nρ, which corresponds to bit-wise xor over {0, 1}. We also call this the
ρ-smoothed distribution. Note that x ·N1 = x and x ·N0 = U , for any x.

Note that smoothing does not increase the distance of any two distributions, with
respect to any class of tests which is closed under shifts. So distinguishing smoothed
distributions is at least as hard as distinguishing the corresponding (non-smooth) distributions.
A main motivation for considering smoothed distributions comes from several paradigms for
constructing pseudorandom generators (PRGs) that combine (ε, k)-biased distributions in
different ways. These paradigms have been proposed in the last 15 years or so; for additional
background, we refer the readers to the recent monograph [HH23].

A main result from [DILV24] is that smoothed n−k-bias distributions do not fool thresholds
with error less than ck. This is then used to show that they do not fool, even with constant
error, other models such as small-space algorithms or small-depth circuits.

Our results. Using the small-bias distributions constructed in this work, we obtain alter-
native proofs of the main result from [DILV24]. We note that these proofs provide different
information. In [DILV24], the pseudorandom distributions put more mass than the binomial
on the tail. In some of the proofs presented here, the mass will be less and the distribution is
supported only on a few weights. This also provides a more complete picture of how these
distributions can be designed.

In more detail, the small-bias distributions given in Theorems 6 and 8 put noticeable
different masses on its tail than the binomial distribution. From this, one can argue that
they remain so after perturbed with noise, and thus can be distinguished by thresholds.

Theorem 10. For any ρ ∈ (0, 1] and k ≤ cρ2n1/3, there is a (ck/n)k-biased distribution D
on {−1, 1}n and some threshold t = c

√
nk/ρ such that

P[B ≥ t] ≥ P[1⊤(D ·Nρ) ≥ t] + 2−ck/ρ2 .

Moreover, we show that a threshold can distinguish smoothed small-bias from any k-
uniform distribution, answering a question that was left open in [DILV24] in the affirmative.
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Theorem 11. For every k ≤ (n/9)1/3 and ρ ∈ [0, 1), let k′ := c log(1/ρ)k. There exists a
(ck/n)k/2-biased distribution D and a threshold t such that for every k′-uniform distribution
Dk′,

P[1⊤(D ·Nρ) ≥ t] ≥ P[1⊤Dk′ ≥ t] +
( cρ2

log(1/ρ)

)k/2

.

Note that Theorem 11 shows that a smoothed small-bias distribution puts more mass on
the tail than the uniform distribution (which is also k′-uniform), whereas Theorem 10 shows
the opposite.

In addition, we show that any distribution supported on a few weights, after perturbed
with noise, can be distinguished from the binomial distribution by a threshold. This uses a
new bound on the total variation distance between any mixture of few Gaussian distributions
with bounded variance the standard Gaussian distribution (Lemma 31).

Theorem 12. Let D be any distribution on {−1, 1}n supported on k weights. For any
ρ ∈ (0, 1], there is some t such that∣∣P[B ≥ t]− P[1⊤(D ·Nρ) ≥ t]

∣∣ ≥ 2−ck/ρ.

Applying Theorem 12 to our small-bias distributions D that are supported on ck2 weights
implies that their smoothed distributions D · Nρ can be distinguished from uniform with
advantange 2−ck2/ρ. We remark that one can further improve the advantage to 2−ck/ρ, by
applying Lemma 20 to “sparsify” any k-uniform distribution so that it is supported on k + 1
weights, and then observing that D ·N2ρ ≡ (D ·Nρ) ·Nρ and D ·Nρ is small-biased.

2 Proof of Theorem 4

At a high level, the proof of Theorem 4 follows the same strategy in [BS15]. However, there
are some noticeable differences. First, we decouple the threshold and the error parameters.
Second, we do not pass the argument to Gaussian distributions. Finally and most importantly,
their proof incurs a loss of a 1/

√
n factor in their lower bound on the tail mass (and thus

requires k ≥ c log n), which is significant in certain regimes of parameters.
To prove Theorem 4, we use tools in approximation theory. In particular, to remove the

1/
√
n loss in [BS15], instead of applying a Markov–Bernstein type inequality for L∞-norms,

we rely on the following inequality by Erdéyi,

Lemma 13 (Theorem 2.1 (q = 1 case) in [Erd16]). For m ∈ N and L > 0, let Q ∈ C[x] be a
degree-d univariate polynomial (possibly with complex coefficients) such that

|Q(0)| > 1

L

( m∑
j=1

|Q(j)|
)
.

Then d ≥ 7
√
m/L.

We also need the following inequality due to Ehlich, Zeller, Coppersmith, Rivlin, and
Cheney.
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Lemma 14 (Lemma 20 in [BS15]). Let p be a univariate degree-d polynomial such that
|p(i)| ≤ 1 on i ∈ {0, . . . ,m}, where 3d2 ≤ m. Then |p(x)| ≤ 3/2 for every x ∈ [0,m].

We will also use the following extremal property of Chebyshev polynomials Tk (cf. [SV13,
Propositions 2.4 and 2.5]).

Fact 15. Let p be a univariate polynomial of degree k such that |p(t)| ≤ 1 on [−1, 1]. For
every s ≥ 1, |p(s)| ≤ Tk(s) ≤ (2|s|)k, where Tk is the Chebyshev polynomial of degree k.

Fact 16 (cf. Lemma 23 in [BHLV19]). If a is an integer such that |a| ≤ n and a ≡ n mod 2,
then P[B = a] ≥ 2−a2/n 1

2
√
n
.

Proof of Theorem 4. By strong duality (cf. [BS15]), we have

max
D

P
[
1(1⊤D ≥ t)

]
= min

p
E
[
p(U)

]
,

where the maximum is over all k-uniform distributions D, and the minimum is over all
degree-k (upper sandwiching) polynomials p : {−1, 1}n → R such that p(x) ≥ 1(1⊤x ≥ t).

Let p be a degree-k polynomial attaining δ := minp E[p(U)]. Define the univariate
polynomial q to be the symmetrization of p, that is, q(

∑n
i=1 xi) := p(x).

We use Lemmas 13 and 14 to bound q(t) on t ∈ [−
√
kn,

√
kn]. We first state the lemma

and defer its proof to the end of this section.

Lemma 17. Suppose 3k2 ≤
√
kn. Then we have |q(t)| ≤ 3δ · k3/2 · 2k for every t ∈

[−
√
kn,

√
kn].

Note that the upper bound is independent on n, whereas the bound in [BS15, Theorem
9] has a polynomial dependence on n.

We now continue the proof assuming Lemma 17. Let s :=
√
kn. Observe that q(t) ≥

1(t ≥ t) = 1. Let q̃s(θ) = q(θs). By Lemma 17, we have maxθ∈[−1,1]|q̃(θ)| ≤ 3δ · k3/2 · 2k. By
Fact 15, for t ≥ s, we have

1 ≤ q(t) = q̃s

( t

s

)
≤

(2t
s

)k

· max
θ∈[−1,1]

|q̃s(θ)|

≤
( 2t√

kn

)k

· 3δ · k3/2 · 2k.

Rearranging gives δ ≥ 1
3k3/2

( kn
16t2

)k/2, proving Theorem 4.

To prove Lemma 17, we use Lemma 13 to bound q(t) on the integer points between −
√
kn

and
√
kn, and then extend the bound to the whole interval using Lemma 14.

Claim 18. 0 ≤ q(t) ≤ 2δ · k3/2 · 2k for every t ∈ {−
√
kn, . . . ,

√
kn},
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Proof of Claim 18. Assume n is even so that B is supported on even integers. Fix an
even integer t0 such that |t0| ≤

√
kn and without loss of generality assume t0 > 0. As

P[B = t] ≥ P[B =
√
nk] for every even t with |t| ≤

√
nk and q is nonnegative, we have

P
[
B =

√
kn

]√
nk/2∑
j=1

q(t0 − 2j) ≤

√
nk/2∑
j=1

P
[
B = t0 − 2j

]
q(t0 − 2j)

≤ E[q(B)] = δ.

Rearranging and using Fact 16 gives
√
nk/2∑
j=1

q(t0 − 2j) ≤ δ

P[B =
√
kn]

≤ 2δ ·
√
n · 2k.

Consider the polynomial Q(t) := q(t0 − 2t) of degree k. Let m =
√
nk/2, and L = m/k2 =

n1/2k−3/2. As k < 7k = 7
√

m/L, by the contrapositive of Lemma 13, we have

|q(t0)| = |Q(0)| ≤ 1

L

m∑
j=1

|Q(j)| (Lemma 13)

=
1

L

√
kn/2∑
j=1

q(t0 − 2j)

≤ 2δ ·
√
n · 2k

L
= 2δ · k3/2 · 2k.

Proof of Lemma 17. Let Q be the degree-k polynomial Q(j) := q(
√
kn− 2j). By Claim 18,

we have |Q(j)| ≤ M on j ∈ {0, . . . ,
√
kn}, where M := 2δ · k3/2 · 2k. As 3k2 ≤

√
kn for

k ≤ (n/9)1/3, by Lemma 14, we have q(t) ≤ 3M/2 for every t ∈ [0,
√
kn].

3 Proof of Theorem 3

We rely on the result from [BHLV19, Theorem 2] that for every a, m, and k ≤ n/(8m2), there
is a k-uniform distribution D supported on {x ∈ {−1, 1}n : 1⊤x ≡ a (mod m)}. Moreover,
implicit in the proof they show that the probability mass on every point s in the support of
D is at least (m/4) · P[B = s].

Let m :=
√

n/(8k). We can pick an integer a such that t belongs to the support of some
k-uniform D, from which we conclude that

ε := P[1⊤D = t]− P[B = t] ≥ (m/4− 1)P[B = t].

Now, we have either

P[1⊤D ≥ t]− P[B ≥ t] ≥ ε/2 or

P[1⊤D ≤ t]− P[B ≤ t] ≥ ε/2,

as otherwise, summing both inequalities give (1 + P[1⊤D = t]) − (1 + P[B = t]) < ε, a
contradiction. If we are in the second case, we can consider D, the complement of D, which
is also k-uniform, and we have P[1⊤D ≤ t] = P[1⊤(D) ≥ t].
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4 From bounded-uniformity to small-bias

In this section, we prove Lemma 5, which gives a generic way to transform any k-uniform
distribution into a (ck/n)k/4-bias distribution while preserving some of the weight properties
of the distribution.

We start with a lemma that lets us “sparsify” the weight distribution of any k-uniform
distribution. This uses Carathéodory’s theorem from convex geometry, stated next, which
has a simple proof (see e.g. Theorem 2.3 in Chapter 1 in [Bar02]).

Lemma 19 (Carathéodory’s theorem). Every point in the convex hull of a set S ⊆ Rk can
be represented as a convex combination of k + 1 points from S.

We use Lemma 19 to sparsify any symmetric k-uniform distribution so that it is supported
on k+1 weights. Here we use the fact that a symmetric distribution on {−1, 1}n is k-uniform
if and only if the first k moments of 1⊤D match the ones of B.

Lemma 20. Let D be any symmetric k-uniform distribution such that 1⊤D is supported on
a set S ⊆ {−1, 1}n. Then there is a symmetric k-uniform distribution D′ such that 1⊤D′ is
supported on a subset S ′ ⊆ S of size at most k + 1.

Proof. For each i, define pi := P[1⊤D = i] and vi := (i, i2, . . . , ik) ∈ Rk. Let b ∈ Rk be the
vector (E[B],E[B2], . . . ,E[Bk]). As D is k-uniform, we have b =

∑
i∈S piv

i, and so b lies in
the convex hull of the vi’s. Thus, there is a set S ′ of k + 1 indices such that b =

∑
i∈S′ qivi.

We define the symmetric distribution D′ by P[1⊤D = i] := qi1(i ∈ S ′) It is clear that∑
i P[1⊤D′ = i]vi = b, and thus D′ is k-uniform.

We will also use the following bound on the bias of the uniform distribution on a “Hamming
slice.” This follows from an upper bound on Krawtchouk polynomials that was established
in [DILV24].

Lemma 21 (Claim 31 and Corollary 16 in [DILV24]). Let Wt be the uniform distribution on
{x ∈ {−1, 1}n :

∑n
i=1 xi = t}. For every subset S ⊆ [n] of size ℓ, we have

∣∣E[W [n]\S
t

]∣∣ = ∣∣E[W S
t

]∣∣ ≤ ( ℓ

n
+

t2

n2

) ℓ
2
.

Proof of Lemma 5. Let D be any k-uniform distribution on {−1, 1}n. We obtain our
small-bias distribution Dbias in 3 steps as follows:

First, we symmetrize D to obtain Dsym. Then, we use Lemma 20 to sparsify Dsym to obtain
D′ so that it is supported on k + 1 weights. Finally, we add k/2 bits of noise, obtained by
repeating the following process independently k/2 times: pick a uniform random coordinate
of D′ and set it to uniform.

We now claim that Dbias is (ck/n)
k
4 -biased. Let S ⊆ [n] be any non-empty subset. Note

that the noise applied in the last step can only reduce the bias of D′. We consider three
cases:

1. |S| ∈ [1, k]: observe that D′ remains k-uniform. So E[D′S] = 0.
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2. |S| ∈ [k + 1, n− k − 1]: let t = (kn3)
1
4 . By Lemma 21 and Fact 1, we have∣∣E[D′S]

∣∣ ≤ ∣∣E[D′S | |1⊤D′| ≤ t
]∣∣+ P

[
|1⊤D′| > t

]
≤

(
|S|
n

+
t2

n2

)|S|/2

+
√
2

(
kn

et2

)k/2

≤ 2 · (2k/n)
k
4 .

3. |S| ∈ [n − k, n]: If a bit in S is set to uniform by the noise, which happens with
probability (1− k/n), then the bias is 0. So∣∣E[DS

bias]
∣∣ ≤ (1− (1− k/n))k/2 = (k/n)k/2.

Since changing a bit xi ∈ {−1, 1} of x can only change 1⊤x by at most 2, the lemma
follows.

4.1 Proofs of Theorems 6, 7 and 8

Theorems 7 and 8 directly follow from applying Lemma 5 to Theorems 3 and 4 respectively.
Theorem 6 follows from applying the lemma to following result, which exhibits bounded
uniform distributions that are supported only on nearly-balanced strings.

Lemma 22 ([BHLV19]). For any integer k, there is a distribution D supported on {x ∈
{−1, 1}n : |1⊤x| ≤ 10

√
kn} which is (2k)-uniform.

We note that one can instead apply Lemma 5 to the standard randomness-efficient
construction of k-uniform distributions via BCH codes, and then use results from algebraic
geometry to bound the Hamming weight, specifically Theorem 18 in [MS77]. However, the
support is slightly less concentrated to the center than Lemma 22.

Claim 23. There exists a linear distribution D supported on {x ∈ {−1, 1}n : |1⊤x| ≤ ck
√
n}

which is k-uniform.

5 Distinguishing small-bias plus noise

In this section we prove Theorems 10, 11 and 12. We will apply several results on sums of
independent random variables. We first state these results before proceeding to the proofs.

Let N (0, 1) denote the standard normal distribution, which has mean 0 and variance 1.

Lemma 24 (Theorem 11.2 in [Das08]). Let Y1, . . . , Yn be n independent random variables
with E[Yi] = 0, Var[Yi] = σ2

i , E[|Yi|3] < ∞. Let Y :=
∑n

i=1 Yi. For every θ ∈ R,∣∣∣∣P[ Y(∑n
i=1 σ

2
i

)1/2 ≥ θ

]
− P

[
N (0, 1) ≥ θ

]∣∣∣∣ ≤ ∑n
i=1 E[|Yi|3](∑n
i=1 σ

2
i

)3/2 .
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For fixed ρi’s and σi’s, the additive error given by Lemma 24 is roughly 1/
√
n. So, for

Theorem 12 to hold with k ≥ c log n, we would need a more refined approximation. For this
reason, we will be using the following Cramér’s estimate of sums of independent random
variables, which gives a multiplicative rather than additive approximation in terms of N (0, 1).

Lemma 25 (Chapter VIII, Equation (2.41) in [Pet75]). There exists a constant c > 0 such
that the following holds. Let Y1, . . . , Yn be n independent random variables with E[Yi] = 0,
and E[Y 2

i ] = σ2
i for each i ∈ [n]. Let Y :=

∑n
i=1 Yi. For 0 ≤ θ ≤ cn1/6, there exists an

ε ∈ [0, (θ+1)
c
√
n
] such that

P
[

Y(∑n
i=1 σ

2
i

)1/2 ≥ θ

]
= P

[
N (0, 1) ≥ θ

]
· exp

( ∑n
i=1 E[Y 3

i ]

6
(∑n

i=1 σ
2
i

)3/2 · θ3
)
(1 + ε).

To relate Lemma 25 to Lemma 24, note that when θ is small, exp(
∑n

i=1 E[Y 3
i ]

6(
∑n

i=1 σ
2
i )

3/2 · θ3) is

roughly 1 +
∑n

i=1 E[Y 3
i ]

(
∑n

i=1 σ
2
i )

3/2 .

Specializing Lemma 25 to our applications, we obtain the following lemma. We first need
a simple claim.

Claim 26. For every x ∈ {−1, 1}n and i ∈ [n], let Yi be the mean zero variables Yi :=
(x ·Nρ)i − ρxi. Then E[Y 2

i ] = 1− ρ2 and E[Y 3
i ] ≤ −2ρ(1− ρ2)xi ∈ [−1, 0].

Proof. It suffices to compute the first 3 moments of (x · Nρ)i. We have E[(x · Nρ)i] = ρxi,
E[(x ·Nρ)

2
i ] = 1, and E[(x ·Nρ)

3
i ] = ρxi.

Lemma 27. For every x ∈ {−1, 1}n, ρ ∈ [0, 1), and θ ∈ [0, cn1/6], we have

1. P[B ≥
√
n · θ] ≥ P[N (0, 1) ≥ θ], and

2. P
[
1⊤(x·Nρ)−ρ·1⊤x√

n(1−ρ2)1/2
≥ θ

]
≤ 2P

[
N (0, 1) ≥ θ

]
.

Proof. We apply Lemma 25 to obtain both inequalities. For the first inequality, observe that
E[Y 3

i ] = E[B3
i ] = 0. For the second inequality, we apply Lemma 25 using Claim 26, which

gives E[Y 3
i ] ≤ 0. Note that ey ≤ 1 for any y ≤ 0, and c(1 + θ)/

√
n ≤ 1.

We will use the following approximation to compare the tails of the standard normal
distribution.

Lemma 28 (Lemma 22.2 in [Kle20]). For any θ > 0,

1

θ + 1
θ

≤ P
[
N (0, 1) ≥ θ

]
·
√
2π

e−θ2/2
≤ 1

θ
.

Finally, we state the following tail bounds for sums of independent bounded random
variables with small variances.

Claim 29 (Bernstein’s inequality). Let Y1, . . . , Yn be independent mean-zero random variables.
Suppose |Yi| ≤ M for every i ∈ [n]. Then

P
[ n∑
i=1

Yi ≥ t
]
≤ exp

(
− t2/2∑n

i=1 E[Y 2
i ] +Mt/3

)
.

11



Again, specializing Claim 29 to our applications, we obtain the following.

Claim 30. P[|1⊤(x · Nρ) − ρ · 1⊤x| ≥ s] ≤ 2 exp(− cs2

(1−ρ2)n+s
) for every x ∈ {−1, 1}n and

s > 0.

Proof. We will only prove that P[1⊤(x · Nρ) − ρ · 1⊤x ≥ s] ≤ exp(− cs2

(1−ρ2)n+s
). The other

direction is analogous and the conclusion follows from a simple union bound. Let us consider
the mean zero variables Yi := (x ·Nρ)i − ρxi. We have |Yi| ≤ 1 + ρ ≤ 2. Applying Claim 29
with Claim 26, we have

P
[
1⊤(x ·Nρ)− ρ · 1⊤x ≥ s

]
= P

[ n∑
i=1

Yi ≥ s
]
≤ exp

(
− cs2

(1− ρ2)n+ s

)
.

5.1 Proof of Theorem 10

Let D be the (ck/n)k-biased distribution in Theorem 8 such that |1⊤D| ≤ 21
√
kn. Let

t := β
√
kn/ρ for a sufficiently large constant β > 0, and θ = t/

√
n = β

√
k/ρ. Using

(1− ρ2)−1/2 ≥ 1 + ρ2/2, we have

t− 21ρ
√
kn√

n(1− ρ2)1/2
=

√
k ·

β
ρ
− 21ρ

(1− ρ2)1/2
≥ β

√
k

ρ
·
(
1− 21ρ2

β

)
·
(
1 +

ρ2

2

)
≥ (1 + ρ2/4) · θ. (1)

By assumption, k ≤ cρ2n1/3 and so θ ≤ cn1/6 for which Lemma 27 applies. As |1⊤D| ≤ 21
√
kn,

using the second inequality in Lemma 27 and (1), we have

P
[
1⊤(D ·Nρ) ≥ t

]
≤ P

[
1⊤(D ·Nρ)− ρ · 1⊤D ≥ t− 21ρ

√
kn

]
≤ 2P

[
N (0, 1) ≥ (1 + ρ2/4) · θ

]
. (2)

On the other hand, from the first inequality of Lemma 27, we have

P
[
B ≥ t

]
≥ P

[
N (0, 1) ≥ θ

]
. (3)

By Lemma 28,

P[N (0, 1) ≥ θ] ≥ 1

2θ

1√
2π

e−θ2/2

≥ c
√
k

ρ
e−θ2/2 +

2

θ

1√
2π

e−(1+ρ2/4)θ2/2

≥ e−ck/ρ2 + 2P
[
N (0, 1) ≥ (1 + ρ2/4) · θ

]
. (4)

Putting (2), (3) and (4) together completes the proof.
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5.2 Proof of Theorem 11

Let k′ = C log(1/ρ)k and t =
√
k′n. For every k′-uniform distribution Dk′ , by Fact 1, we

have

P[1⊤Dk′ ≥ t] ≤
√
2
(k′n

et2

)k′/2

≤ ρCk/2.

We will construct a small-distribution D that puts more mass on the tail of an even larger
threshold than t. Specifically, let t′ = 2t/ρ. Applying Theorem 8 to k and t′, we obtain a
(ck/n)k/2-biased distribution D such that

P[1⊤D ≥ t′] ≥ 1

3k3/2

( ρ2

256C log(1/ρ)

)k/2

.

We now show that conditioned on 1⊤D ≥ t′, the smoothed distribution D ·Nρ still puts at
least half the mass beyond t. Since ρt′ − t ≥ t, by Claim 30,

P
[
|1⊤(x ·Nρ)− ρ · 1⊤x| ≥ t

]
≤ 2e

− ct2

(1−ρ2)n+t ≤ 1/2.

Therefore

P[1⊤(D ·Nρ) ≥ t] ≥ 1

6k3/2

( ρ2

256C log(1/ρ)

)k/2

≥
( cρ2

log(1/ρ)

)k/2

.

5.3 Proof of Theorem 12

We first state the main technical result we need, which may be of independent interest. We
defer its proof to the next section.

Lemma 31. Let M be a mixture of k Gaussian distributions each with variance σ2 = 1− ρ2.
Then there exists an interval I such that∣∣P[N (0, 1) ∈ I]− P[M ∈ I]

∣∣ ≥ 2−ck/ρ.

In particular, up to a factor 2 the same bound applies with the interval replaced with some
threshold.

Proof of Theorem 12 assuming Lemma 31. We first claim that D ·Nρ is (cn−1/2)-close to a
mixture of k Gaussian distributions with variance 1− ρ2 in Kolmogorov (aka. CDF) distance.
This follows from applying Lemma 24 and Claim 26 to any fixed weight w of D. Specifically,
we have that for every x ∈ {−1, 1}n and θ,∣∣P[1⊤(x ·Nρ) ≥ θ

√
n
]
− P

[
N (µ, 1− ρ2) ≥ θ

]∣∣ ≤ c/
√
n,

for some µ that depends only on 1⊤x and ρ. On the other hand, again by Lemma 24, for
every θ, we have ∣∣P[B ≥ θ

√
n
]
− P

[
N (0, 1) ≥ θ

]∣∣ ≤ 1/
√
n.

Combining the above with Lemma 31, we conclude that there exists some θ such that∣∣P[B ≥ θ
√
n
]
− P

[
1⊤(D ·Nρ) ≥ θ

√
n
]∣∣ ≥ 2−ck/ρ − c/

√
n.
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6 Proof of Lemma 31

We wish to show that a linear sum of k exponential functions with variance < 1 cannot
approximate the standard normal well. We can factor the two expressions so the mixture
becomes a linear sum of k exponential functions, which can be written as

∑
i∈[k] aie

bi , while

the standard normal can be written as eαx
2
. This factoring crucially uses the fact the variances

in the mixture are identical.
We then argue the distance must be large for some point. To prove this, we show the

entries in the inverse of a Vandermonde like matrix which corresponds to the eαx
2
are not

too large. This step is the bulk of the proof. On the other hand, the Vandermonde matrix
corresponding to the sum of exponentials is singular. After some matrix norm manipulations
this allows us to achieve the desired result.

Lemma 32. Suppose that f(x) is the PDF of a Gaussian distribution with variance 1, and
g(x) is the PDF of a mixture of k Gaussian distributions with variance 1 − ρ2 = σ2 < 1.
Then

∥f − g∥∞ ≥ e−ck/ρ.

We let ϕ(x) := 1√
2π
e−x2/2 denote the probability density function of N (0, 1).

Proof of Lemma 31 assuming Lemma 32. Let g(x) denote the PDF of M and set h(x) =
ϕ(x)− g(x). By Lemma 32, there exists some a ∈ R with

|h(a)| ≥ e−ck/ρ.

We have |ϕ′(x)| ≤ (2πe)−1/2 and |g′(x)| ≤ (2πe)−1/2/σ2 for all x, so |h′(x)| ≤ (2πe)−1/2(1 +
1
σ2 ) <

1
2σ2 . We claim there exists an interval I ⊆ R with

|P[N (0, 1) ∈ I]− P [M ∈ I]| ≥ 2σ2
(
e−ck/ρ

)2
= e−ck/ρ.

To see this, assume that h(0) ≥ e−ck/ρ. Then h(x) ≥ e−ck/ρ − 1
2σ2 |x| for any x. So we set

the interval I = [−2σ2e−ck/ρ, 2σ2e−ck/ρ], and then
∫
I
h(x)dx ≥ 2σ2(e−ck/ρ)2. Finally, note the

assumption that a = 0 can be made without loss of generality.

6.1 Proof of Lemma 32

The main technical result we need is the following.

Lemma 33. Let α,D > 0 be fixed. Let

∆(k) := inf
g
∥eαx2 − g(x)∥∞

where the infimum is over g that are a linear combination of k exponential functions, and the
norm ∥ · ∥∞ is the supremum over the interval [−D

√
k,D

√
k]. Then we have

∆(k) ≥ exp
(−ck

D2α

)
.
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Proof of Lemma 32 assuming Lemma 33. Without loss of generality we may assume that
f(x) is the PDF of the standard normal distribution with mean 0 and variance 1. Define
f(x) = ex

2/2σ2
f(x) = eαx

2
with α = 1

2σ2 − 1
2
, and g(x) = ex

2/2σ2
g(x). Now g(x) is a linear

combination of k exponential functions. If we choose some D > 0 then Lemma 33 gives us

∆(k) ≥ exp
(−ck

D2α

)
,

where ∆(k) is the supremum of |f − g| over the interval [−D
√
k,D

√
k]. It follows that

∥f − g∥∞ = ∥e−x2/2σ2

(f − g)∥∞ ≥ exp
(−D2k

2σ2

)
∆(k) = exp

(
− k

(D2

2σ2
+

c

D2α

))
,

Then if we set D2 = c
√
σ2/α we have

∥f − g∥∞ ≥ exp
( −ck√

σ2α

)
= exp

( −ck√
1− σ2

)
.

6.2 Proof of Lemma 33

Definition 34. For a function f : Z → R define the (k + 1) × (k + 1) matrix Mk(f) by
Mk(f)i,j = f(i+ j − k − 2). For example,

M3(f) =


f(−3) f(−2) f(−1) f(0)
f(−2) f(−1) f(0) f(1)
f(−1) f(0) f(1) f(2)
f(0) f(1) f(2) f(3)


Fact 35. If f(x) =

∑k
i=1 aie

bix, then detMk(f) = 0.

Proof. We claim the sequence . . . , f(−1), f(0), f(1), f(2), . . . satisfies a linear recurrence of
order k, which implies the columns of Mk(f) are linearly dependent.

To prove the claim, we show the existence of c1, . . . , ck such that

f(x) = c1f(x− 1) + · · ·+ ckf(x− k).

Solving for c1, . . . , ck, we obtain k linear constraints

1 =
c1
eb1

+ · · ·+ ck
ekb1

, . . . , 1 =
c1
ebk

+ · · ·+ ck
ekbk

.

There exists a solution to this system.

Fact 36. If |x| < 1 then
∞∏
i=1

(1− xi) ≥ exp
( −c

1− x

)
.

Proof. Using absolute convergence, and the inequality (1− xj) ≥ jxj(1− x), we get

∞∑
i=1

log(1−xi) = −
∞∑
i=1

∞∑
j=1

xij

j
= −

∞∑
j=1

∞∑
i=1

xij

j
= −

∞∑
j=1

xj

j(1− xj)
≥ −

∞∑
j=1

1

j2(1− x)
= − π2

6(1− x)
.

Then apply the exponential function to both sides.
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Lemma 37. Suppose that q > 1 and k is a positive integer. Let A := Mk(q
x2
)−1. Then

|Ai,j| ≤

(
k

i− 1

)(
k

j − 1

)
∏k

i=1(1− q−2i)
.

Proof of Lemma 33. Let f(x) = eαx
2
and g(x) =

∑
i=1 aie

bix. Define f̃(x) = f(Dx/
√
k) =

qx
2
, where q = eD

2α/k and g̃(x) = g(Dx/
√
k). By Fact 35, Mk(g̃) is singular. Let A be the

inverse of Mk(f̃). The matrix

AMk(g̃) = AMk(f̃)− AMk(f̃ − g̃) = I − AMk(f̃ − g̃)

is singular. It follows that

∥A∥σ∥Mk(f̃ − g̃)∥σ ≥ ∥AMk(f̃ − g̃)∥σ ≥ 1

where ∥A∥σ is the spectral norm of A. The matrix A is positive definite symmetric and the
sum of the singular values is the sum of the eigenvalues which is equal to the trace of A. By
Lemma 37 we get

∥A∥σ ≤ trace(A) ≤

k∑
i=0

(
k

i

)2

∏k
i=1(1− q−2i)

=
4k∏k

i=1(1− q−2i)
.

On the other hand,
∥Mk(f̃ − g̃)∥∞ ≤ (k + 1)∥f − g∥∞.

Combining everything and using Fact 36, we get

∥f − g∥∞ ≥
∏k

i=1(1− q−2i)

4k(k + 1)
≥ exp

( −c

1− q−2
− log(4)k − log(k + 1)

)
= exp

(−ck

D2α

)
.

6.3 Proof of Lemma 37

First we define Vandermonde matrices.

Definition 38.

Vand(x0, x1, x2, . . . , xk) =


1 1 1 · · · 1
x0 x1 x2 · · · xk

x2
0 x2

1 x2
2 · · · x2

k
...

...
...

...
xk
0 xk

1 xk
2 · · · xk

k

 .

Proof. We can transform Mk(q
x2
) into Vand(1, q2, q4, . . . , q2k) by multiplying the rows and

columns ofMk(q
x2
) with powers of q. Thus by Proposition 39, stated at the end, (−1)i+jAi,j

∏k
b=1(q

2b−
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1) is a sum of
(

k
i−1

)(
k

j−1

)
powers of q. This implies (−1)i+jAi,j

∏k
b=1(1− q−2b) is also a sum

of
(

k
i−1

)(
k

j−1

)
powers of q.

Next we claim no positive powers of q appear in the aforementioned sum. We define

Bk(q) :=


q(−k)2/2

q(2−k)2/2

. . .

qk
2/2


so that we can write

Mk(q
x2

) = Bk(q)Ck(q)Bk(q)

where Ck(q) is a matrix with 1 on the diagonal and negative powers of q outside of the
diagonal. In particular, Ck(q) converges to the identity matrix as q → ∞. So

A = A(q) = Mk(q
x2

)−1 = Bk(q)
−1Ck(q)

−1Bk(q)
−1

converges as q → ∞ because bothBk(q)
−1 and Ck(q)

−1 converge. This shows thatAi,j

∏k
b=1(1−

q−2b) cannot have positive powers of q in its corresponding sum. Since

|Ai,j|
k∏

b=1

(1− q−2b)

is a sum of
(

k
i−1

)(
k

j−1

)
non-positive powers of q and q > 1 we get

|Ai,j|
k∏

b=1

(1− q−2b) ≤
(

k

i− 1

)(
k

j − 1

)
.

Proposition 39. Let V = Vand(1, q, q2, . . . , qk). Then

(−1)i+j(V −1)i,j

k∏
b=1

(qb − 1)

is a sum of
(

k
i−1

)(
k

j−1

)
powers of q.

Proof. Note that det(V ) =
∏

0≤a<b≤k(q
b − qa). Let Ṽi be the matrix V with the i-th column

removed, and Ṽj,i be the matrix V with the j-th row and i-th column removed. By the
formula of V −1 from Cramer’s rule we get

(V −1)i,j =
(−1)i+j det(Ṽj,i)

det(V )
.

Note that Ṽk+1,i = Vand(1, q, · · · , qi−2, qi, . . . , qk+1), so

det(Ṽk+1,i) =
∏

0≤a<b≤k
a,b ̸=i−1

(qb − qa).
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So we have ∏k
b=1(q

b − 1) det(Ṽk+1,i)

det(V )
=

∏k
b=1(q

b − 1)∏k
j=i(q

j − qi−1)
∏i−2

j=0(q
i−1 − qj)

which is up to a power of q factor equal to∏k
j=1(q

j − 1)∏k−i+1
j=1 (qj − 1)

∏i−1
j=1(q

j − 1)
=

(
k

i− 1

)
q

,

where the right-hand side is a Gaussian q-binomial coefficient which is a sum of
(

k
i−1

)
powers

of q. To see this, consider the generating function
∏k−1

j=0(1 + qjt) =
∑k

j=0 q
j(j−1)/2

(
k
j

)
q
tj . This

implies that
(

k
i−1

)
q
is a sum of

(
k

i−1

)
powers of q.

Next, by Claim 40 we have that

det(Ṽj,i)

det(Ṽk+1,i)
= ek+1−j(1, q, . . . , q

i−2, qi, . . . , qk)

is a sum of
(

k
j−1

)
powers of q. We conclude that

(−1)i+j(V −1)i,j

k∏
b=1

(qb − 1) =
det(Ṽj,i)

det(Ṽk+1,i)
·
∏k

b=1(q
b − 1) det(Ṽk+1,i)

det(V )
.

is a sum of
(

k
i−1

)(
k

j−1

)
powers of q.

Claim 40. Let X = Vand(x0, . . . , xk). Then

det(X̃j,i)

det(X̃k+1,i)
= ek+1−j(x0, . . . , xi−2, xi, . . . , xk).

Proof. Without loss of generality assume i = 1. Let X ′ := X̃k+1,1, and note X ′ =
Vand(x1, . . . , xk). We first sketch out the polynomial argument which proves that det(X ′) =∏

1≤a<b≤k(xb − xa) (see [Wik]).
For b ̸= a, (xb − xa) is a factor of det(X ′), since if we replace xb with xa in X ′ then the

determinant becomes 0. Thus, det(X ′) = p1
∏

1≤a<b≤k(xb − xa) for some polynomial p1.
Now by the Leibniz formula for the determinant, since all entries of the jth row have

degree j − 1, det(X ′) is a homogeneous polynomial of degree 1 + · · ·+ k − 1 = k(k − 1)/2.
This implies that p1 is a constant.

Finally, p1 = 1 since the product of the diagonal entries of X ′ is x2x
2
3 . . . x

k−1
k , which is

the monomial obtained by taking the first entry of each term in
∏

1≤a<b≤k(xb − xa).

Next we have that det(X̃j,i) = p2
∏

1≤a<b≤k(xb − xa) for some homogeneous polynomial
p2 of degree k − (j − 1). This follows by repeating the start of the previous argument.

Moreover we claim that p2 is symmetric and squarefree. The first claim follows since if
we swap xb with xa in X̃j,i that will only change the sign of the determinant, and this occurs
in

∏
1≤a<b≤k(xb − xa). The second claim follows since there are terms in

∏
1≤a<b≤k(xb − xa)

where the degree of an individual variable is k − 1. Thus if p2 is not square free, the degree
of these variables becomes > k, which is a contradiction.

This implies that p2 = ek+1−j(x1, x2, . . . , xk).
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