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Abstract
While many programmers appreciate the benefits of lazy program-
ming at an abstract level, determining which parts of a concrete
program to evaluate lazily poses a significant challenge for most
of them. Over the past thirty years, experts have published numer-
ous papers on the problem, but developing this level of expertise
requires a significant amount of experience.

We present a profiling-based technique that captures and auto-
mates this expertise for the insertion of laziness annotations into
strict programs. To make this idea precise, we show how to equip
a formal semantics with a metric that measures waste in an evalu-
ation. Then we explain how to implement this metric as a dynamic
profiling tool that suggests where to insert laziness into a program.
Finally, we present evidence that our profiler’s suggestions either
match or improve on an expert’s use of laziness in a range of real-
world applications.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms laziness; profiling; code refactoring

1. Where To Be Lazy
Experts have extolled the benefits of laziness for decades now. As
Hughes explained [12], lazy programming languages enable pro-
grammers to design code in a modular way; even earlier, Abelson
and Sussman [1] argued that programs in strict languages can profit
from laziness. Programmers have learned, however, that the key to
deploying laziness is moderation, because laziness severely com-
plicates reasoning about a program’s resource consumption [11].

Approaches to taming laziness come from two different direc-
tions. From one direction, lazy language researchers have devised
strategies for determining when to safely remove laziness [4, 6, 16].
Because these methods still tend to leave too much laziness behind,
lazy programmers frequently annotate their programs with strict-
ness annotations such as Haskell’s seq [18]. From the other direc-
tion, strict programmers add laziness via constructs such as delay
and force, for example to manage large data structures [17], de-
lay possibly unneeded tasks [8], or leverage other lazy design pat-
terns [21]. Though the strict approach is appealing since most pro-
grams need only a small amount of laziness [5, 14, 15, 20], finding
exactly where to add the laziness can be problematic.
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Consider a programmer who wishes to insert laziness annota-
tions into a finite strict program in order to improve its perfor-
mance. The problem is that laziness is a flow-oriented, global prop-
erty of programs. Inserting an annotation in one place tends to re-
quire additional annotations at other, distant points in the program.
Omitting even one of these annotations can result in the complete
loss of the desired benefits. In short, the difficulty in placing lazi-
ness in strict programs is a “devastating handicap.”1

Recently, Chang [3] tackled the problem with a static analysis-
based tool. This static analysis assumes that a programmer has
partially annotated a program. Based on these annotations and a
control-flow analysis, it suggests additional delay annotations. Be-
cause the tool considers only static information, it merely approx-
imates where laziness is needed and often produces spurious sug-
gestions. The requirement for some initial “seed” annotations con-
tributes additional imprecision. Finally, Chang reports that he oc-
casionally has to run his tool more than once to find expert-level
placement but offers no guidance on this issue.

In this paper, we present a dynamic solution that interprets in-
formation from an execution to determine which parts of the pro-
gram to evaluate lazily. Our solution consists of three concrete con-
tributions. First, we show how to equip a call-by-value λ-calculus
semantics with a metric for assessing each expression’s laziness
potential. Roughly, laziness potential represents the amount of “un-
needed computation” performed by the evaluation of an expression.
It thus predicts the degree to which a program’s performance ben-
efits from delaying that expression. Second, we explain how to im-
plement this metric as a dynamic profiler for an untyped scripting
language.2 After profiling a program on a typical input, the tool
suggests where to add laziness annotations. Third, we present evi-
dence that our profiler generates advice comparable to that of ex-
perts in the literature. For most of the programs we examined, our
profiler requests the insertion of delays at the same places as hu-
man experts; in a few instances, the profiler’s suggestions achieve
the same performance benefits with fewer laziness annotations.

The next section presents some motivating examples, and sec-
tion 3 formally describes the notion of laziness potential. Section 4
presents our prototype profiler implementation, while section 5
demonstrates its effectiveness. Finally, the remaining sections con-
clude with related and future work.

2. Laziness Potential, the Intuition
In some instances, it is easy for a programmer to identify where
laziness is beneficial. Other times, trying to find these spots in a
program is challenging. In this section, we explain our method for
finding such spots with a series of examples.

1 http://pchiusano.blogspot.com/2009/05/optional-laziness-doesnt-quite-cut-it.html
2 These languages tend to support laziness annotations natively or with
libraries and should benefit most from our work. Our work applies to typed
languages as well; see section 5.



2.1 Criteria for Laziness
If an expression’s result is not used, we should delay its evaluation.
Informally, a value is used if it reaches a position that requires a
specific (kind of) value to continue the evaluation process. Exam-
ples of such positions are the operands to primitive functions, the
test in a conditional, and the function position in an application. In
contrast, positions such as arguments to a programmer’s functions
and data constructors do not use their values. Thus the underlined
argument in the following expression should be delayed:

(λx.1) (2 + 3)

Our initial laziness criterion does not cover the case where a
program evaluates an expression more than once, e.g., via recur-
sion, producing multiple values. We could extend our criterion to
delay expressions where none of its values are used, but obviously
this binary classification is useless for practical cases. Consider the
following pseudocode, which represents a function definition and
its use in a typical strict functional language:

def rng n m = (1)
if n ≥ m then nil (2)
else n ::rng (n+1) m (3)

(4)
let lst = rng 1 1000 (5)
in (second lst) + (third lst) (6)

A call to rng n m produces the list of integers in [n,m). In
this example, the (underlined) recursive call to rng is evaluated
multiple times and produces multiple values. Although second and
third use two of these values, the program is likely to benefit
from delaying the underlined expression because most of the list
is unused.

The example suggests a quantitative criterion for the injection
of laziness into strict programs. Specifically, it hints that the ratio
of the number of used results to the total number of results per
expression might pinpoint delayable expressions. In the example,
the recursive call to rng is evaluated m − n = 999 times and two
of the values are used, giving it a ratio of 2/999.

Profiling this example with our tool reports the following:

rng (n+1) m [ln 3]: 2/999 values used

An expression with such a low ratio seems like a promising candi-
date for laziness, but as the following (boxed) changes to the exam-
ple show, this first quantitative criterion is still insufficient:

def rng f n m = (1)
if n ≥ m then nil (2)
else f n ::rng f (n+1) m (3)

(4)
let lst = rng add1 1 1000 (5)
in (second lst) + (third lst) (6)

Here is some data returned by our profiler:

f n [ln 3]: 2/999 values used
rng f (n+1) m [ln 3]: 2/999 values used

The expressions f n and rng f (n+1) m have equal ratios, seem-
ingly indicating that the program benefits equally from delaying
each. A programmer immediately understands, however, that this
recommendation is misleading because delaying the call to rng
would prevent most calls to f .

To combine these factors, we focus only on the unused values,
and additionally weight them by the number of child-values created
during the creation of an unused value. Essentially, this weight is
correlated to the size of the dynamic value-dependency tree whose
root is the unused value. The weight of an expression then, which

we dub its laziness potential, is roughly the average of the weights
of all its unused values. Our profiler reports this information, too:

rng f (n+1) m [ln 3]: 2/999 values used
- delaying 997 unused avoids 2989 subvalues, wgt=2990
f n [ln 3]: 2/999 values used
- delaying 997 unused avoids 0 subvalues, wgt=1

A higher weight indicates a greater benefit from laziness. The exact
calculation of laziness potential is discussed in section 3 but the
important takeaway here is that the profiler now considers delaying
the call to rng more beneficial than delaying the call to f , which
aligns with a programmer’s intuition.

Laziness potential seems promising as a criterion but the follow-
ing “generate and filter” example demonstrates another problem:

def rng f n m = (1)
if n ≥ m then nil (2)
else f n ::rng f (n+1) m (3)

def filter p? lst = (4)
if nil? lst then nil (5)
else let x = first lst (6)

in if p? x then x ::filter p? (rest lst) (7)
else filter p? (rest lst) (8)

(9)
let lst = filter even? (rng add1 1 1000) (10)
in (second lst) + (third lst) (11)

Profiling this example reports the following initial data:

filter p? (rest lst) [ln 7]: 2/500 used
- delaying 498 unused avoids 2486 subvalues, wgt=2487

meaning the profiler proposes delaying only a call to filter . Intu-
itively, the recursive call to rng should be delayed as well, but it
does not appear in the results because filter “uses” the entire list.

In response, our profiler iteratively:

1. simulates delaying the expression with the highest laziness po-
tential, and then

2. recalculates usages to possibly uncover more unused values.

With this refinement, the profiler reports:

~~~~~~~~~~~~~~ Profiling Summary: Round 0 ~~~~~~~~~~~~~~
filter p? (rest lst) [ln 7]: 2/500 values used
- delaying 498 unused avoids 2486 subvalues, wgt=2487

~~~~~~~~~~~~~~ Profiling Summary: Round 1 ~~~~~~~~~~~~~~
rng f (n+1) m [ln 3]: 4/999 values used
- delaying 995 unused avoids 983 subvalues, wgt=2984
f n [ln 3]: 5/999 values used
- delaying 994 unused avoids 0 subvalues, wgt=1

After round 0, the analysis simulates a delay of the call to filter
and then recomputes all usages, revealing unused values from the
call to rng in round 1. This process repeats until there are no more
unused expressions. The profiler then reports that delaying both the
calls to filter and rng would benefit program performance.

2.2 A Complete Example
This subsection shows how a programmer can use our laziness-
potential profiler to solve the n-queens problem. We compare our
result to Chang’s [3], who describes the problem like this:

The n-queens problem makes an illustrative playground for
advertising lazy programming. An idiomatic lazy solution
to such a puzzle may consist of just two parts: a part that
places n queens at arbitrary positions on an n by n chess
board, and a part for deciding whether a particular place-
ment is a solution to the puzzle.



Thus, Chang separates the program into two independent com-
ponents and defines one function to compute a solution:

def nqueens n = first (filter isValid all placements)

where

let all placements = foldl process row [nil] (rng n)
def process row r qss so far =

foldr (λ(qs new qss).
(map (λc.(r, c) ::qs) (rng n)) @ new qss)

nil qss so far

While all placements generates a stream of all possible queen
placements, isValid checks whether a placement is valid according
to the rules of chess. The solution then composes these functions
via filter and first.

As Chang explains, “the approach cleanly separates two distinct
concerns: all placements ignore[s] the rules of the puzzle, while
isValid enforce[s] them. If the components were large, two differ-
ent programmers could tackle them in parallel. All they would have
to agree on is the representation of queen placements, for which
we choose a list of board coordinates (r, c).” Accordingly, running
all placements n yields a list of lists of positions:

[[(n,1);(n-1,1); ... ;(1,1)];
...;

[(n,n);(n-1,n); ... ;(1,n)]]

Each line represents one possible placement.
In a strict language, computing all placements generates all

possible placements. Adding laziness preserves the elegant solution
and makes it efficient because it prevents unnecessary evaluation.
The question is which parts should be delayed. As Chang [3]
reports, naı̈vely switching all lists to lazy lists does not improve
program performance. Chang then presents a static tool to aid
programmers with the task of inserting additional laziness. For n-
queens, with lazy lists as the initial source of laziness, the static
analysis makes the key suggestion of adding laziness to foldr ,
which results in a significant speedup.

Without any such initial hints, our profiler suggests laziness at
the same place in foldr and also suggests laziness in filter :

filter p? (rest lst) [ln 23]: 0/2 values used
- delaying 2 unused avoids 5242 subvalues, wgt=5243
foldr f base (rest lst) [ln 40]: 36/85 vals used
- delaying 49 unused avoids 1939 subvalues, wgt=1507

Figure 1 summarizes the running times for the 8-queens program
implemented in Racket [9] and varying degrees of laziness. The
figure reports that the strict version is slow and that adding the
suggestions from Chang’s static tool produces roughly a four-fold
speedup. However, adding laziness annotations as suggested by our
profiler produces a program that is roughly twenty times faster than
the strict version. Chang’s oversight is due to the “seed” laziness
required by the static analysis. In order for the static tool to compute
its suggestions, Chang recommends first converting lists to lazy
lists, as strict programmers looking to add laziness commonly do.
It turns out, however, that this inserts too much laziness. As evident
from our profiler’s recommendations, only filter needs additional
laziness; the other lists should be evaluated eagerly.

Implementation Description Time (ms)
no laziness 20245
static tool-based suggestions from [3] 4874
profiler-based suggestions 1057

Figure 1. Running times for an 8-queens program.

3. Laziness Potential, the Definition
As our informal presentation suggests, we consider laziness poten-
tial the key to determining where to insert effective laziness anno-
tations in strict programs. This section formally defines the notion
in two stages, using a small model.

3.1 Partially-labeled λ-calculus
Our model starts from a labeled version of the untyped λ-calculus:

e ∈ Exp = x | v | e e | `̀̀e | `̀̀·`e

v ∈ LabVal = w
~̀

w ∈ Val = λx.e

x ∈ Var , `̀̀ ∈ eLab, ` ∈ vLab

The syntax employs two kinds of labels. Static labels `̀̀ (in bold)
name a syntactic expression in the source program. Dynamic labels
` (plain) name a value during evaluation, i.e., the result of one
runtime execution of an expression with a particular set of bindings
for its free variables. Define a program to be a closed expression
e with only static labels. As the grammar indicates, static labels
are optional decorations. During evaluation, a statically labeled
expression may be paired with a dynamic label at the upper left.
Evaluation may also tag values with any number of dynamic labels,
all positioned at the upper right and denoted with ~̀. We usew when
we wish to refer to a value without labels.

A program may evaluate an expression multiple times, e.g. via
recursion, so a statically `̀̀-labeled expression may be associated
with a set of dynamic labels representing the values that this ex-
pression produces. Further, we wish to compute usage of these val-
ues, which requires tracking value flow, so values themselves may
accumulate multiple ` labels to enable identification of the value’s
source expression(s). In the example (λx.x) ((λz.z) λy.y), λy.y
is the result of evaluating both underlined expressions and thus
must have two dynamic labels.

Evaluation contexts [7] specify the order of evaluation in our
labeled λ-calculus. They are the standard by-value evaluation con-
texts, plus an additional labeled context:

E ∈ ECtx = [ ] | E e | v E | `̀̀·`E
These contexts dictate that reductions take place within a labeled
expression only if it comes with a static and a dynamic label.

The 7−→ reduction relation specifies one step of evaluation. It
is generated from three basic notions of reduction: βv and two
additional reductions that introduce and manipulate value labels:

E[(λx.e)
~̀
v] 7−→ E[e{x ::= v}] (βv)

E[`̀̀e] 7−→ E[`̀̀·`e], ` /∈ E[`̀̀e] (vstart)

E[`̀̀·`w
~̀
] 7−→ E[w`,~̀] (vend)

The semantics satisfies a conventional well-definedness theorem.

Theorem 1 (Well-Definedness). A program e either reduces to a
value v or starts an infinitely long chain of reductions.

Proof Sketch. The 7−→ relation satisfies unique decomposition, so
e is a value or can be partitioned uniquely into an evaluation context
and a redex. Using a progress-and-preservation approach [7], we
can then show that this property is preserved for all reductions.

From an extensional perspective, the labeled λ-calculus reduces
programs just like the by-value λ-calculus [19]. Theorem 2 says
that the labeled calculus produces the same result, modulo labels,
as the unlabeled by-value semantics generated by βv . The 7−→v

relation is the by-value standard reduction and 7−→→ v is its reflexive,
transitive closure. The function ξ strips labels from programs.



Theorem 2 (Label Non-interference). For any labeled program e1,
if e1 7−→→ e2, then ξ(e1) 7−→→ v ξ(e2).

Proof Sketch. Show, by cases on 7−→, that if e1 7−→ e2, then either
ξ(e1) 7−→v ξ(e2) or ξ(e1) = ξ(e2).

From an intensional perspective, labels play a critical role. Ex-
pressions may be labeled in three different ways and the two label-
related reductions specify transitions between labelings. Suppose a
redex is statically labeled with `̀̀. Before it is evaluated, a unique,
dynamic label ` is generated and placed on the upper-left, as indi-
cated by the vstart reduction. When such a labeled subexpression is
reduced to a value, a vend reduction shifts the value label from the
left-hand side to the right-hand side and discards the static label.

3.2 Labeling a Program
The labeled λ-calculus does not specify which expressions in a
program to label statically. Hence, the calculus is applicable in a
variety of scenarios, depending on the specific labeling strategy.

For the purposes of finding candidates for lazy evaluation, we
employ a function L that maps unlabeled expressions to expres-
sions with labels on arguments that are not already values:

L[[x]] = x L : Exp → Exp

L[[λx.e]] = λx.L[[e]]
L[[e1 e2]] = L[[e1]] Larg[[e2]]

Larg[[x]] = x

Larg[[λx.e]] = λx.L[[e]]
Larg[[e1 e2]] =

`̀̀(L[[e1]] Larg[[e2]])

The L function labels only applications because delaying values
or variables is pointless. Furthermore, only applications in an ar-
gument position receive a label. Again, it is not beneficial to delay
applications in a usage context because the created suspension is
immediately forced. We also do not label function bodies. We pre-
fer to delay its application to avoid spoiling the proper implemen-
tation of tail calls for the execution of annotated programs.

3.3 Usage Contexts
To determine whether a particular value is used during evaluation,
we define usage contexts U :

u ∈ uCtx = [ ] e

U ∈ UCtx = [ ] | E[u]

Intuitively, a context is a usage context if creating a redex requires
a specific (kind of) value placed in the hole. In our core calculus,
the function position of an application is the only usage context
because it requires a λ value. In addition, the top-level context is a
usage context and thus a program result is considered “used.”

3.4 Extending the Model
By design, our model smoothly generalizes to constructs found in
practical languages. Almost any evaluation-context-based reduc-
tion semantics can easily be extended to an appropriate labeled
reduction system. The only requirements are to extend the usage
contexts and labeling strategy.

We extend our model with typical features. Specifically, we
add constants, let, conditionals, primitive arithmetic and boolean
operations, lists and list operations, and delay and force laziness
constructs; see figures 2 and 3. The reductions are conventional [7]:

e = . . . | n | b | let x = e in e | if e then e else e
| o e e | and e e | or e e | not e
| cons e e | first e | rest e | nil | nil? e
| delay e | force e

o = + | − | ∗ | /, n ∈ N, b = #t | #f

w = . . . | n | b | cons v v | nil | delay e
E = . . . | let x = E in e | if E then e else e

| o E e | o v E | and E e | and v E, v 6= #f

| or E e | or #f E | not E
| cons E e | cons v E | first E | rest E | nil? E
| force E

Figure 2. Syntax for an extended by-value language.

E[let x = v in e] 7−→ E[e{x ::= v}] (let)

E[if #f then e1 else e2] 7−→ E[e2] (iff )

E[if v then e1 else e2] 7−→ E[e1], v 6= #f (ift)

E[o v1 v2] 7−→ E[δ v1 v2] (prim)

E[or v e] 7−→ E[v], v 6= #f (ort)

E[or #f v] 7−→ E[v] (orf )

E[and #f e] 7−→ E[#f] (andf )

E[and v1 v2] 7−→ E[v2], v1 6= #f (andt)

E[not #f] 7−→ E[#t] (notf )

E[not v] 7−→ E[#f], v 6= #f (nott)

E[first (cons v1 v2)] 7−→ E[v1] (fst)

E[rest (cons v1 v2)] 7−→ E[v2] (rst)

E[nil? nil] 7−→ E[#t] (nil)

E[nil? v] 7−→ E[#f], v 6= nil (nil)

E[force (delay e)] 7−→ E[force e] (frcd)

E[force v] 7−→ E[v], v 6= delay e (frcv)

Figure 3. Semantics for an extended by-value language.

• The true and false boolean literals are #t and #f. The seman-
tics treats all non-#f values as true, as is standard in untyped
(and some typed) languages.

• The and and or primitives are short-circuiting, meaning that the
second argument is only evaluated if necessary. This behavior
is reflected in the evaluation contexts for and and or.

• The force form is recursive, specified by the frcd rule, mean-
ing that applying a single force to a suspension returns the
underlying value no matter how many delays it is wrapped in.

• Untyped force is idempotent, as seen in the frcv rule. Applying
force to a non-delayed value returns that value.

Here is the extended set of usage contexts:

u = . . . | if [ ] e e | o [ ] e | o v [ ]

| and [ ] e | and v [ ], v 6= #f | or [ ] e | or #f [ ]

| not [ ] | first [ ] | rest [ ] | nil? [ ] | force [ ]



Finally, we extend our labeling function to mark expressions of in-
terest, maintaining the goal of finding expressions to delay. In ad-
dition to arguments in a function application, we label the bound
expression in a let and the arguments to cons. The ellipses tra-
verse all other expressions in a homomorphic manner:

L[[e1 e2]] = L[[e1]] Larg[[e2]]

L[[let x = e1 in e2]] = let x = Larg[[e1]] in L[[e2]]
L[[cons e1 e2]] = cons Larg[[e1]] Larg[[e2]]

. . .

Larg[[x]] = x

Larg[[v]] = L[[v]]
Larg[[e]] =

`̀̀(L[[e]]), if e 6= x or v

3.5 Calculating Laziness Potential
We calculate laziness potential via functions that extract informa-
tion from the propagation of labels in reduction sequences. Let Red
be the set of finite reduction sequences. In the following definitions,
a comma-separated series of expressions represents an element of
Red , i.e., a trace. We also use (T e) to denote e’s complete trace.

The V function takes a reduction sequence and a static label `̀̀
and returns a set of dynamic labels representing the values gener-
ated by the `̀̀-labeled expression over the course of reduction:

V : Red × eLab → P(vLab)

V (e) `̀̀ = ∅
V (E[`̀̀e], E[`̀̀·`e], e′, . . .) `̀̀ = {`} ∪ V (e′, . . .) `̀̀

V (e, e′, . . .) `̀̀ = V (e′, . . .) `̀̀, if e 6= E[`̀̀e0]

Intuitively, V inspects all vstart steps. In the last example from
section 2.1, call it program P , if the recursive call to filter
has static label `̀̀1, then a new dynamic label is created every
time `̀̀1(filter p? (rest lst)) is a redex and V (T P ) `̀̀1 =
{`1, . . . , `500}.

The U function counts how many times a specified value is used
in a given reduction sequence, as dictated by usage contexts:

U : Red × vLab → N

U (w
~̀
) ` = 1, if ` ∈ ~̀

U (e) ` = 0, if e 6= v, or e = w
~̀

but ` /∈ ~̀

U (U [w
~̀
], e′, . . .) ` = 1 + (U (e′, . . .) `), if ` ∈ ~̀

U (e, e′, . . .) ` = U (e′, . . .) `,

if e 6= U [v], or e = U [w
~̀
] but ` /∈ ~̀

An `-labeled value is unused in (T e) if U (T e) ` = 0. The
unused function relies on U and V to compute (the labels of) all
the unused values produced by a particular expression in e:

unused : Exp × eLab → P(vLab)

unused (e, `̀̀) = {` | ` ∈ V (T e) `̀̀, U (T e) ` = 0}

For sample program P , if second and third are desugared to
firsts and rests, then two created values reach a first [ ] or
rest [ ] usage context, so for `i ∈ {`1, . . . , `500}, U (T P ) `i = 1
for two values of i and is otherwise 0. Thus, unused (P, `̀̀1) = 2.

The C function returns the labels of all the child-values that are
generated during the creation of a given `-labeled value:

C : Red × vLab → P(vLab)

C (e) ` = ∅
C (E[`̀̀·`e], e′, . . .) ` = C′ (e′, . . .) `

C (e, e′, . . .) ` = C (e′, . . .) `, if e 6= E[`̀̀·`e0]

C′ : Red × vLab → P(vLab)

C′ (e) ` = ∅

C′ (E[w`,~̀], e′, . . .) ` = ∅

C′ (E[`̀̀e], E[`̀̀·`
′
e], e′, . . .) ` = {`′} ∪ C′ (e′, . . .) `

C′ (e, e′, . . .) ` = C′ (e′, . . .) `, if e 6= E[`̀̀e0]

When the creation of the specified value begins, the C function dis-
patches to C′. When this helper function encounters a reduction
that creates another value label, it adds it to its results. When eval-
uation of the specified value completes or the reduction sequence
ends, the helper function stops collecting labels.

The created function uses C to compute (the labels of) all
child-values generated during the creation of all the unused values
of a given `̀̀-labeled expression in e:

created : Exp × eLab → P(vLab)

created (e, `̀̀) =
⋃

`∈unused (e,̀`̀)

C (T e) `

In our running example, created (P, `̀̀1) tallies the additional
values created while evaluating each of `1, . . . , `500, about 2,500.

Finally, the LP function computes the laziness potential of an
`̀̀-labeled expression in program e. Roughly, the function computes
the “average” number of child-values generated during the creation
of an unused value of expression `̀̀, if unused (e, `̀̀) 6= ∅:

LP : Exp × eLab → R

LP (e, `̀̀) =
|(unused (e, `̀̀)) ∪ (created (e, `̀̀))|
|(unused (e, `̀̀)) \ (created (e, `̀̀))|

The function uses unused to compute the (labels of the) unused
values created by the specified `̀̀-labeled expression and created
to compute the (labels of the) child-values. Together, these two sets
represent the total number of wasted values for which expression
`̀̀ is responsible. The numerator of the calculation uses the union
of the two sets to avoid double-counting values, for example when
expression `̀̀ is a recursive call. To compute the desired ratio, LP
divides the total value count by the number of unused values pro-
duced by expression `̀̀. The denominator of the calculation addi-
tionally subtracts those unused values that are child-values of other
unused values. This appropriately gives higher weight to recursive
calls, which matches a programmer’s intuition.

In the running example, all but one of the 498 unused values are
induced by the first recursive call to filter . Thus the denominator
in the laziness potential for `̀̀1 is one and LP (P, `̀̀1) ≈ 2500.

The LP function computes the laziness potential of one par-
ticular expression in a program. Delaying the expression with the
highest laziness potential should generate the largest possible ben-
efit but doing so may reveal additional opportunities for laziness.
Hence, we iteratively define the following series of LP functions:



LP0 (e, `̀̀) = LP (e, `̀̀)

LPi+1 (e, `̀̀) = LPi (C
force[delay `̀̀max

emax], `̀̀),

where e = C[`̀̀
max

emax]

and `̀̀max= argmax
`̀̀′∈e,unused (e,̀`̀′)6=∅

LPi (e, `̀̀
′)

An LPi+1 function first delays the subexpression with (according
to LPi) maximal laziness potential and adds appropriate forcing
for the used values of that subexpression. It then uses LPi on this
transformed program to determine the next opportunity for laziness
injection. In the definition, `̀̀max labels emax, the expression with
the most laziness potential, and C is its context. Since some values
produced by emax may still be used, Cforce is C augmented with
forces around those usage contexts that require emax’s values.
Though it is sufficient to simply force every usage context in C,
a flow analysis like Chang’s [3] may compute a more a precise
placement of forces.

In our running example, assume LP0 determines that the `̀̀1-
labeled filter expression has the highest laziness potential. Then
LP1 first delays `̀̀1 and inserts forces at its use points. LP1 then
re-runs the augmented program and recomputes laziness potential
for other expressions. Assume that both arguments to cons in
rng also have static labels. As mentioned in section 2.1, the LP1

computations would find that the call to both rng and f create
unused values but that only the unused values of rng subsequently
induce many more values and thus has higher laziness potential.

A Non-theorem An astute reader may wonder whether we can re-
late the laziness potential of an expression to a formal step-counting
cost model. It would show that the suggestions are guaranteed to
improve a program’s performance. Unfortunately, the predictive ca-
pability of a step-counting model depends on how laziness is imple-
mented meaning the desired theorem may hold only for semantic
cost models truly close to one specific implementation.

4. A Laziness Profiler
An implementation of a laziness profiler cannot use the definition
of LPi as a blueprint because it is highly impractical to re-run a
modified program for every i. Instead our profiler creates a value
dependence graph in an online fashion during a single execution
and uses this graph to perform laziness potential calculations.

4.1 Usage Information Gathering
Table 1 describes the collected information. It also lists the anal-
ogous mathematical function from section 3.5. The I function in-
struments a labeled λ-calculus program to collect this information:

I[[x]] = x I : Exp → Exp

I[[λx.e]] = λx.I[[e]]
I[[e1 e2]] = U [[I[[e1]]]] A[[I[[e2]]]]

I relies on two additional functions, A and U , to instrument argu-
ment and usage positions, respectively. We defined I only for core
λ-calculus expressions so far but in general the application of A
exactly follows the labeling strategy from the previous section. In
other words, a subexpression in a program is only instrumented as
an “argument” if it has a static label `̀̀. In addition, a subexpression
is instrumented with U if it resides in a usage context.

Here are A and U , which inject imperative code fragments that
perform the required accounting during program execution:

Information collected during evaluation Math function
ALL-VNUMS : P(vLab)

set of labels representing all values created during evaluation
EXPR-VALS : eLab → P(vLab) V

maps an expression label to a set of value labels representing
the values created by that expression during evaluation

CHILD-VNUMS : vLab → vLab C
maps a value label ` to a value label `hi such that the set
of values created while evaluating ` is the exclusive interval
(`, `hi); i.e., the `-rooted subtree in the value-dependency tree

USES : vLab → N U
the number of times a value is used during evaluation

USES-BY-VNUM : vLab → vLab → N
maps a value label ` to another map of value labels to counts,
representing the value usage while evaluating ` only; to avoid
double-counting uses, a value with label `used is considered
used while evaluating value ` only if ` is the immediate an-
cestor in the program’s value-dependency tree; for example,
if value ` is created while evaluating another value with label
`parent, then `used is considered used while evaluating ` but
not while evaluating `parent

Table 1. Information collected by the profiler.

A[[`̀̀e]] = let `new = next-vnum () in
all-vnums ∪= {`new}
expr-vals[̀`̀] ∪= {`new}
push-ctxt-vnum `new

let w
~̀
= `̀̀e in

pop-ctxt-vnum ()
child-vnums[`new] = current-vnum ()

return w`new,~̀

U [[e]] = let `ctxt = top-ctxt-vnum () in

let w
~̀
= e in

for ` ∈ ~̀ :
uses[`] += 1
uses-by-vnum[`ctxt][`]+= 1

return w
~̀

In these definitions, let w
~̀
= e is a pattern-matching notation

that means evaluate e, bind the resulting value to w, and bind any
resulting value labels to the vector ~̀. The A and U-instrumented
code generates unique dynamic labels from a counter, and it tracks
which value is being evaluated via a value stack. The interfaces for
the counter and the stack are described in table 2.

counter
current-vnum returns the current count
next-vnum returns then increments current count
stack
push-ctxt-vnum adds a value label to the top of the stack
pop-ctxt-vnum removes top label from the context stack
top-ctxt-vnum returns top label but does not pop it

Table 2. Auxiliary functions for instrumenting functions.

4.2 Post-Execution Analysis
Before we show the loop that computes LPi, we introduce func-
tions that use the collected information from table 1:



unused `̀̀ =

{` | ` ∈ EXPR-VALS[̀`̀], ` ∈ ALL-VNUMS, USES[`] = 0}
createdv ` =

{`sub | ` < `sub < CHILD-VNUMS[`], `sub ∈ ALL-VNUMS}

created `̀̀ =
⋃

`∈unused `̀̀

createdv `

LP `̀̀ =
|(unused `̀̀) ∪ (created `̀̀)|
|(unused `̀̀) \ (created `̀̀)|

For program e, the main processing loop then looks like this:

while (
⋃
`̀̀∈e

unused `̀̀) 6= ∅ :

`̀̀ = argmax
`̀̀′∈e,unused `̀̀′ 6=∅

(LP `̀̀′)

for ` ∈ (unused `̀̀) : erase `

record-result `̀̀

The loop performs another iteration as long as some expression in
the program has an unused value. If all values are used, i.e., the
program cannot benefit from laziness, then the profiler does not
report any suggestions. At the start of each iteration, the analysis
selects an expression with the currently greatest laziness potential,
identified with label `̀̀ above. The analysis then simulates delaying
this expression by “erasing” its unused values via erase:

erase ` =

sub-uses-by-vnum `

ALL-VNUMS \= {`}
for `sub ∈ (createdv `) : erase `sub

sub-uses-by-vnum ` =

for (`used, n) ∈ USES-BY-VNUM[`] : USES[`used]−= n

The erase function erases a value by (1) subtracting its usage
of values from the total usage counts; (2) marking the value as
erased by removing it from ALL-VNUMS, so it is not considered in
subsequent calculations; and (3) recursively erasing all child-values
that were created while evaluating the parameter value.

Finally, at the end of each iteration, the analysis records the de-
layed expression via record-result, so it can present a summary
to the programmer after the calculations terminate. The main loop
always terminates since each iteration of the loop “erases” at least
one unused value.

Theorem 3. The profiler implements the labeled λ-calculus model.

Proof Sketch. The interesting part is showing that our post-execu-
tion analysis implements the functions from section 3.5. Specifi-
cally, the ith iteration of the main loop in this section corresponds
to the LPi function. In an iteration, both the model and implemen-
tation first compute the expression with highest laziness potential.
The implementation then “erases” information pertaining to this
expression and loops, while the math model inserts delays and
forces and re-runs the program. Thus the correctness of the imple-
mentation hinges on a correspondence between the erase function
and the delay and force transformation in LPi.

Delaying an expression and then forcing the needed thunks
eliminates: (1) the unused values produced by that expression,
(2) the usages incurred while producing those unused values, and
(3) all child-values of those unneeded values and their usages.
Similarly, an iteration of the main loop in the implementation calls
erase to eliminate: (1) all unused values of the highest potential
expression by removing them from ALL-VNUMS, the set of all

values produced during execution, (2) subtracts the usages incurred
by those unused values, as recorded in USES-BY-VNUM, from the
total usage counts in USES, and (3) recursively calls erase for each
(remaining) child-value, as recorded in CHILD-VNUMS.

Note that the theorem does not hold once side-effects as simple
as exception handling are added to the language, although our
empirical evidence suggests that this is not an issue in practice.

4.3 Implementation
We have implemented a prototype of the profiler described in this
section for most of the Racket language [9]. The profiler supports
all the language constructs from section 3.4, as well as several other
frequently used Racket forms such as pattern matching (match),
named records (struct), sequence iterations and comprehensions
(for), additional binding forms (define, let*, etc.), much of
the object system, and a large part of the syntax system. We use
Racket’s syntax system to modify the compiler so that it imple-
ments I[[·]], U [[·]], and A[[·]]. Using this compiler API greatly sim-
plifies the implementation of our profiler.

A Note on Performance Preliminary measurements indicate
roughly a two to three order-of-magnitude slowdown when pro-
filing certain degenerate programs. This kind of slowdown is not
unreasonable for high-level profilers because programmers are ex-
pected to test their code with small representative inputs. Programs
requiring laziness are especially suited for this style of testing be-
cause they generate lots of excess unused data, but so long as the
ratio of unused to used data remains the same, it does not matter to
the profiler whether the absolute amount of data is large or small.

5. Evaluation
To demonstrate the usefulness of the laziness potential metric, we
present the results of profiling a range of real-world examples
known to benefit from laziness: some of Okasaki’s purely func-
tional data structures, monadic parser combinators, and AI game
players. We show that in most cases, the profiler reproduces the
knowledge of experts. Secondarily, when our results differ from
the experts, we turn to wall-clock measurements to further evaluate
our profiler’s output.

General Profiling Issues In general, profilers produce meaning-
ful results only when given representative programs. For exam-
ple, it is impossible to demonstrate the effectiveness of a mem-
ory profiler using programs without memory leaks. Similarly, we
wish to demonstrate our profiler’s effectiveness at inserting lazi-
ness into strict programs for performance reasons; thus we choose
well-known uses of laziness rather than arbitrary programs and use
inputs designed to force our test applications to rely on laziness.

Our experiments proceeded as follows:

1. we implemented one of the expert examples as a strict program;

2. we then profiled this strict version in a representative context;

3. and finally, we re-inserted delays according to the profiler’s
suggestions. We inserted appropriate forces by hand, but one
could in principle derive the positions automatically [3].

We conducted all experiments in Racket, an untyped language.
We ported all implementations verbatim as we found them, except
for a few type-related discrepancies. Okasaki points out [17, page
35] that laziness in a typed language occasionally requires extra
annotations “to make the types work out”. For example, typed
languages must delay an empty stream tail, while in an untyped
language, this annotation is unneeded since the empty stream is a
value. In general, laziness in typed languages requires a pairing of
delays and forces, while untyped languages are more flexible due
to the recursive and idempotent nature of untyped force.



Data Structure Description Result
Basic Data Structures

banker’s queue canonical two-list functional queue with streams P©
banker’s deque like the banker’s queue, but allows inserting and deleting from both ends P©
binomial heap stores ordered elements in a series of increasingly sized trees, analogous to the

representation of binary numbers; supports constant amortized time insert and
log worse-case merge, delete min, and min operations

=©

pairing heap stores ordered elements as a tree where each node consists of a heap element
and a list of subheaps; supports constant worst-case time insert, merge, and min
operations, and log amortized time delete min operation

=©

Insightful Data Structures
physicist’s queue canonical two-list functional queue with a stream front list, an eager front list

cache, and a delayed rear list
*©

real-time queue converted banker’s queue with an incrementally reversed rear list, with the goal
of achieving worst case, rather than amortized, bounds

=©

real-time deque double-ended version of real-time queue =©
bootstrapped queue improves on banker’s queue by eliminating redundancy in append operation. =©

catenable list lists that support constant amortized time append =©
implicit queue achieves constant amortized operations via implicit recursive slowdown P©
implicit deque double-ended version of implicit queue P©

Other Functional Data Structures
finger tree Hinze and Paterson’s general purpose data structure (related to implicit queues) P©

P© = profiler-assisted implementation outperforms Okasaki’s implementation

=© = profiler suggests the same lazy annotations as Okasaki’s implementation

*© = mixed results

Table 3. Comparison of Okasaki’s lazy data structures with analogous profiler-generated data structures.

5.1 Purely Functional Data Structures
Okasaki’s purely functional data structures make up a well-known
library of algorithms that benefit from some degree of laziness in
the data representation. At the same time, these data structures do
not assume that the underlying language is lazy. Hence they are a
nearly ideal test bed for checking the usefulness of our profiler.

The appropriateness of our comparisons depends on the design
of a particular data structure. We therefore classify Okasaki’s lazy
data structures into two categories:

1. The first kind of lazy data structure is derived from an existing
strict data structure. Okasaki added laziness to improve perfor-
mance without making any other changes.

2. The second kind of data structure is either designed with lazi-
ness in mind or is converted from an existing strict data struc-
ture with changes more significant than simply adding laziness.

The first kind of data structure, dubbed basic, is ideal for evaluating
our profiler because a straightforward comparison of the laziness
annotations is appropriate. For the second kind of data structure,
which we refer to as insightful, the laziness is possibly integral to
its design and removing the laziness may not yield a realistic strict
data structure. Hence, any results concerning insightful structures
may be less general than basic ones, but enlightening nonetheless.

Table 3 describes several data structures of each kind and
presents the results of our comparisons. For most examples, our
profiler suggests laziness identical to Okasaki’s version. In some
cases, however, our profiler suggests what appears to be a better
use of laziness, and we present these latter cases in detail.

Banker’s Queue Our profiler-assisted banker’s queue and deque
implementations improve on Okasaki’s versions. To help readers
understand the differences and how they come about, we present
the queue experiment in more detail.

def enq x (Q f lenf r lenr ) = chk f lenf (x ::r) (lenr+1)

def chk f lenf r lenr =
if lenr ≤ lenf then Q f lenf r lenr

else Q (f ++ rev r) (lenf + lenr ) nil 0
rotation

def hd (Q nil ) = error
| hd (Q (x ::f) lenf r lenr ) = x

def tl (Q nil ) = error
| tl (Q (x ::f) lenf r lenr ) = chk f (lenf−1) r lenr

def (++) nil lst = lst
| (++) (x ::xs) lst = x :: (xs ++ lst)

def rev lst = rev/acc lst nil
def rev/acc nil acc = acc
| rev/acc (x ::xs) acc = rev/acc xs (x ::acc)

Figure 4. Functional queue implementation without laziness.

The canonical functional queue is implemented with two eager
lists, a “rear” list onto which elements are added to the queue,
and a “front” list from which elements are removed. A record
data definition, (Q front lenf rear lenr ), represents these queues
whereQ is the constructor and front , lenf , rear , and lenr are field
names. The front and rear lists are front and rear , respectively, and
lenf and lenr are the number of elements in each list.

Figure 4 presents this strict queue implementation in pseu-
docode. Function definitions in the figure use a pattern-matching
syntax to decompose lists and queues, where is the wildcard pat-
tern. The enq function adds an element to a queue, hd returns the



def enq x (Q f lenf r lenr ) = chk f lenf $(x ::r) (lenr+1)

def chk f lenf r lenr =
if lenr ≤ lenf then Q f lenf r lenr

else Q (f ++ rev r) (lenf + lenr ) nil 0

def hd (Q $nil ) = error
| hd (Q $(x ::f) lenf r lenr ) = x

def tl (Q $nil ) = error
| tl (Q $(x ::f) lenf r lenr ) = chk f (lenf−1) r lenr

def (++) $nil lst = lst
| (++) $(x ::xs) lst = $(x :: (xs ++ lst))

def rev lst = $(rev/acc lst nil)
def rev/acc $nil acc = acc
| rev/acc $(x ::xs) acc = rev/acc xs $(x ::acc)

Figure 5. Okasaki’s lazy banker’s queue.

frontmost element without removing it, and tl removes the front
element and returns the remaining elements as a new queue. The
figure also includes infix list append, ++, and list reverse, rev .

When elements are added to rear or removed from front , a
queue maintains the invariant that the size of front must be equal
to or greater than the size of rear . When rear is larger than front ,
a rotation is performed (figure 4 box), i.e., rear is reversed and
appended to the end of front , and rear is reset to empty. The
chk function checks the queue invariant and performs rotations
as needed. Though reversing a list takes time proportional to the
size of the list, for any given set of inserted elements, the list
containing those elements is only reversed once. Thus a functional
queue supports constant amortized time enq , hd , and tl operations.

Rotations are expensive but since the rotated elements are added
to the end of front and are not needed immediately, laziness might
improve the strict queue implementation. Also the constant amor-
tized time bounds of the strict queue do not hold when the queue is
used persistently. To illustrate this problem, consider a queue with
enough elements such that calling tl triggers a rotation. Calling tl
repeatedly on this pre-rotated queue triggers a rotation each time.
While the cost of the first rotation is amortized over all the ele-
ments, the subsequent rotations require more than constant amor-
tized time because the “savings” are already spent by the first one.

To address these issues, Okasaki adds laziness to the strict queue
implementation. The new queue, dubbed the banker’s queue,3 re-
places the eager lists with lazy streams and is shown in figure 5.
We adopt Okasaki’s syntax for laziness, where $ prefixing an ex-
pression delays that expression, while $ in a pattern means to force
the argument before trying to match the pattern.

Since the banker’s queue merely adds laziness to the strict
queue, it falls into the basic kind of lazy data structure described
earlier. To see what laziness annotations our profiler suggests, we
need a representative benchmark that uses the strict queue:

def build&sum size tosum = sum (build size) tosum
def build n = buildq 0 n
def buildq n n = Q nil 0 nil 0
| buildq m n = enq m (buildq (m+1) n)

def sum q n = sumq q 0 n
def sumq q n n = 0
| sumq q m n = (hd q) + (sumq (tl q) (m+1) n)

3 Okasaki uses the banker’s method to determine the queue’s complexity.

def enq x (Q f lenf r lenr ) = chk f lenf (x ::r)
1
(lenr+1)

def chk f lenf rlenr =
if lenr ≤ lenf then Q f lenf r lenr

else Q (f ++ $(rev r)
2
) (lenf + lenr ) nil 0

def hd (Q $nil ) = error
| hd (Q $(x ::f) lenf r lenr ) = x

def tl (Q $nil ) = error
| tl (Q $(x ::f) lenf r lenr ) = chk f (lenf−1) r lenr

def (++) $nil lst = lst

| (++) $(x ::xs) lst = x :: $(xs ++ lst)
3

def rev lst = rev/acc lst nil
1

def rev/acc nil acc = acc

| rev/acc (x ::xs) acc = rev/acc xs (x ::acc)
1

Figure 6. Profiler-assisted version of lazy banker’s queue.

The build function builds a queue of the specified size while sum
adds up the specified number of elements from the front of the
given queue. The build&sum function combines build and sum .

Our representative benchmark should benefit from laziness if
we sum only the first few elements of the queue, leaving most
of the queue unused. Hence, profiling this benchmark should re-
veal the places where it is profitable to insert laziness annotations.
Specifically, profiling build&sum 1024 50 produces the following
laziness suggestions:

rev r [ln 5]: 8/10 values used
- delaying 2 unused avoids 3848 subvalues, wgt=2564
xs ++ lst [ln 13]: 645/1013 values used
- delaying 368 unused avoids 2204 subvalues, wgt=1870

Figure 6 shows a lazy queue that implements these suggestions.
Our profiler-assisted lazy queue has fewer and different laziness
annotations than Okasaki’s. Specifically, the profiler does not rec-
ommend inserting laziness in enq and rev (boxes 1), leaving rear
as an eager list.4 This is justified because rev is monolithic, i.e., it
always traverses its entire argument regardless of whether it is an
eager list or a lazy stream. Instead, our profiler suggests a single
delay around the call to rev in chk (box 2). The profiler also differs
in its suggestion to delay the tail of the list returned by append (box
3) while Okasaki delays the entire list. Since the first list element is
already a value, this difference is trivial.

Since our profiler recommends uses of laziness different from
Okasaki, we further compare the queue implementations with em-
pirical experiments. We timed several calls to build&sum , varying
the number of elements summed. For each run, we used a fixed
queue of size 220:

for i ∈ [0, 220] : time (build&sum 220 i) (BUILD&SUM)

The graph in figure 7 shows that using an eager rear list in the
profiler-assisted lazy queue improves performance over Okasaki’s
queue, which has to build a suspension for each element.

A problem is that the BUILD&SUM benchmark does not test per-
sistence, because the queue is used in a single-threaded manner. To
expose persistence-related issues, a representative benchmark must

4 Okasaki observes in a footnote that the rear list could be left as an eager
list but, because of his preference of theoretical simplicity over practical
optimizations, he presents the version in figure 5.



Figure 7. Summing elements of a banker’s queue (lower is better).

implementation test name subtest time (ms)
strict strict time1 250
strict strict time2 250

Okasaki PERSIST:LAZY time1 828
Okasaki PERSIST:LAZY time2 0

profiler-assisted PERSIST:LAZY time1 94
profiler-assisted PERSIST:LAZY time2 0

Table 4. Testing persistence with rotations in the banker’s queue.

construct a queue such that a tl operation on the queue triggers
the rotations suggested by the spikes in the graph of figure 7. For
the lazy queues, the rotation operation is delayed, so we must re-
move a sufficient number of elements before the rotation is forced.
Specifically, we build a queue of size 2n − 1, right after a delayed
rotation is appended to the end of front , and then remove 2n−1−1
elements from the queue. Removing the next element of the queue
forces the rotation. This benchmark uses a drop function, which re-
moves some number of elements from a list. We again use n = 20
in the persistence benchmark:

let q = drop (build (220−1)) (219−1) (PERSIST:LAZY)
in time1 = time (tl q); time2 = time (tl q)

Table 4 presents timings for the persistence benchmarks. For ref-
erence, we additionally include times for a strict queue, which re-
quires the same time on each access because it repeats the rotation
each time. In contrast, the lazy queue times verify that both im-
plementations offer truly constant amortized operations, with the
profiler-assisted queue outperforming Okasaki’s queue.

Though our laziness potential model does not explicitly account
for the memoization that enables constant amortized operations for
persistently used queues, our profiler is still able to suggest lazi-
ness annotations that satisfy the desired behavior, which is a pleas-
ant surprise. This suggests that reasoning with laziness potential
possibly suffices to account for both the delaying and the memo-
ization benefits of laziness, which makes intuitive sense because
programmers typically do not use laziness for memoization only.
This observation warrants further investigation in future work.

Physicist’s Queue Okasaki’s physicist’s queue differs from the
banker’s queue in three ways. First, it employs a plain list for the
rear list instead of a stream. Second, the front list is a delayed
plain list instead of a stream. Third, the content of the front list
is cached into a separate plain list before a rotation, speeding up
hd accesses. Thus the physicist’s queue requires an extra field in

defenq x (Qp f
′ f lenf r lenr )=chk f ′ f lenf (x ::r) (lenr+1)

def chk f ′ f lenf r lenr =
if lenr ≤ lenf then chkw f ′ f lenf r lenr

else let f ′′ = force f
in chkw f ′′ $(f ′′ ++ rev r) (lenf + lenr ) nil 0

def chkw nil f lenf r lenr = (Qp (force f) f lenf r lenr )
| chkw f ′ f lenf r lenr = (Qp f

′ f lenf r lenr )

def hd (Qp nil ) = error
| hd (Qp (x ::f

′) f lenf r lenr ) = x
def tl (Qp nil ) = error
| tl (Qp (x ::f

′) f lenf r lenr ) =
chkw f ′ $(rest (force f)) (lenf−1) r lenr

def (++) nil lst = lst
| (++) (x ::xs) lst = x :: (xs ++ lst)

def rev lst = rev/acc lst nil
def rev/acc nil acc = acc
| rev/acc (x ::xs) acc = rev/acc xs (x ::acc)

Figure 8. Okasaki’s lazy physicists’s queue.

defenq x (Qp f
′ f lenf r lenr )=chk f ′ f lenf (x ::r) (lenr+1)

def chk f ′ f lenf r lenr =
if lenr ≤ lenf then chkw f ′ f lenf r lenr

else chkw f (f ++ $(rev r)) (lenf + lenr ) nil 0

def chkw nil f lenf r lenr = (Qp f f lenf r lenr )
| chkw f ′ f lenf r lenr = (Qp f

′ f lenf r lenr )

def hd (Qp $nil ) = error
| hd (Qp $(x ::f

′) f lenf r lenr ) = x
def tl (Qp $nil ) = error
| tl (Qp $(x ::f

′) $(y ::f) lenf r lenr ) =
chkw f ′ f (lenf−1) r lenr

def (++) $nil lst = lst
| (++) $(x ::xs) lst = x ::$(xs ++ lst)

def rev lst = rev/acc lst nil
def rev/acc nil acc = acc
| rev/acc (x ::xs) acc = rev/acc xs (x ::acc)

Figure 9. Profiler-assisted lazy physicists’s queue.

its data definition: (Qp frontcache front lenf rear lenr ). Figure 8
shows the implementation for Okasaki’s physicist’s queue.

Deriving the physicist’s queue from the strict queue (in figure 4)
involves more than just adding lazy annotations, so it belongs in the
insightful category of data structure. Nevertheless, we follow the
previously described steps to develop the alternative implementa-
tion in figure 9. It turns out that laziness potential cannot replicate
Okasaki’s caching strategy, and the profiler suggests turning front
and frontcache into duplicate lazy streams. The other profiler sug-
gestions are identical to the profiled banker’s queue: the rear list
remains an eager list and is delayed with a single delay in chk .



Figure 10. Summing physicist’s queue elements (lower is better).

Figure 10 shows physicist’s queue timings for the BUILD&SUM
benchmark. With its caching, Okasaki’s physicist’s queue is faster
than the profiler-assisted implementation, until half the queue is
used. After that point, the benefits of caching in the Okasaki’s
queue are nullified because the entire front list must be forced
anyways. Also, forcing this last part of front takes much longer due
to all the extra suspensions created by tl , which manifests as a large
spike in the graph. Essentially, our profiler-assisted queue forces
a little of front with each tl call, while Okasaki’s version delays
all the forcings until the second half of the queue is consumed.
Deciding which queue implementation is better depends on the
expected use cases.

Implicit Queues Implicit queue and deque data structures pose
challenging obstacles for both designers and profilers. Hinze and
Paterson’s finger trees [10] are a related data structure and pose the
same problems. This section presents details concerning queues;
the cases for deques and finger trees are similar; see table 3.

Implicit queues rely on implicit recursive slowdown [17, Ch.
11], a technique inspired by functional representations of Peano
numerals. Thus implicit queues are also an insightful kind of data
structure. Like explicit queues, implicit queues offer constant amor-
tized time hd , tl , and enq operations. Essentially, the queue main-
tains some front elements and some rear elements in two “digit”
structures, with the remaining elements residing in a delayed mid-
dle queue. Here are the record definitions for implicit queues.

A digit is a (Zero) or (One x) or (Two x y)

A queue is a (Shallow digit) or (Deep digitf midQ digitr)

A “digit” is either a Zero, One , or Two structure and an implicit
queue itself is represented with either a Shallow or a Deep struc-
ture. A Shallow queue is comprised of a single digit while a Deep
queue has two digits plus a delayed middle queue of element pairs.

Figure 11 presents enq , tl , and hd for implicit queues. The enq
function shows the progression of a queue’s internal state as more
elements are added, with the digits transitioning from Zero to Two,
and the queue itself from Shallow to Deep. These transitions are
reversed in tl . Finally, the hd function returns the front element by
destructuring a queue in a straightforward manner.

While the design of this data structure leverages laziness to
support constant amortized operations, it also magnifies the over-
head of laziness because every operation must destructure not only
the queue, but many fields of the queue as well. These numerous
destructuring operations result in a high rate of suspension cre-
ation and forcing. In fact, profiling the BUILD&SUM benchmark
only finds expressions with low laziness potential, even for queues
where most or all of the elements are unused, suggesting that the

def enq (Shallow (Zero)) x = Shallow (One x)
| enq (Shallow (One x)) y =

Deep (Two x y) nil (Zero)
| enq (Deep f m (Zero)) x = Deep f m (One x)
| enq (Deep f m (One x)) y =

Deep f $(enq (force m) (x, y)) (Zero)

def hd (Shallow (Zero)) = error
| hd (Shallow (One x)) = x
| hd (Deep (One x) m r) = x
| hd (Deep (Two x y) m r) = x

def tl (Shallow (Zero)) = error
| tl (Shallow (One x)) = Shallow (Zero)
| tl (Deep (One x) $(Shallow (Zero)) r) = Shallow r
| tl (Deep (One x) $m r) =

let (y, z) = hd m in Deep (Two y z) $(tl m) r
| tl (Deep (Two x y) m r) = Deep (One y) m r

Figure 11. Implicit queue operations.

Figure 12. Summing elements of a implicit queue (lower is better).

data structure should not use any laziness. This makes intuitive
sense since each operation effectively “uses” the entire queue.

To investigate this discrepancy, figure 12 presents BUILD&SUM
timing information for a strict queue compared to Okasaki’s queue.
The chart shows that the high rate of suspension creation and
forcing negates any benefits that laziness might provide, no matter
how much of the queue is used. Obviously, the laziness overhead
is implementation dependent. We implemented suspensions with a
lambda and a mutable box. Although direct compiler support for
suspensions would likely improve performance of the lazy queue
and decrease the gap, the discrepancy is large enough that an
implementer should consider omitting laziness.

While BUILD&SUM does not use the queue persistently, the
worst-case “expensive” operation for implicit queues is only log-
arithmic in the size of the queue (as opposed to the linear rotations
of the banker’s queue). Thus, even when we tested the queues with
persistent-usage benchmarks, the strict version still outperformed
the lazy one. In conclusion, this experiment further supports omit-
ting laziness from an implicit queue implementation even if it may
spoil its theoretical properties.

5.2 Monadic Parser Combinators
Our second suite of benchmarks concerns Parsec [13], a monadic
parser combinator library. Leijen and Meijer point to one spot in the
monadic bind operator where laziness is key, calling it “essential



for efficient behavior.” Since the library is a higher-order program,
we instantiated it for five different scenarios to apply our profiler:
a CSV parser, a URL query parser, a JSON parser, and an HTTP
request parser.5 In every case, the profiler suggested adding laziness
at the exact spot identified by the Parsec paper.

5.3 Manipulating Game Trees
Our final benchmark is an AI game algorithm from Land of
Lisp [2], which introduces programmers to functional Lisp via a
series of games. One of these games, Dice of Doom, is a turn-based
strategy game similar to Risk. After several chapters, a diligent stu-
dent is rewarded with a full-fledged game, complete with graphical
interface and AI players. An AI player generates a game tree of all
possible moves to help it determine the next move and utilizes lazi-
ness to manage the tree. Without laziness, the AI player analyzes
only a small version of the game. Utilizing laziness, however, the
AI player scales to a realistic-size game.

The game implementation (some 1,500 lines of code) consti-
tutes a broad-spectrum benchmark for our profiler, not only be-
cause it requires laziness, but also because it uses many additional
language features such as mutable state, list comprehensions, and
GUI libraries. Our profiler is able to instrument the game and col-
lects data as the game is played, returning suggestions when the
game concludes. It suggests enough laziness so that playing the
full game is possible but with fewer annotations than the Land of
Lisp version.

6. Related Work

Strictness Analysis A concept related to “use” is the denotational
notion of strictness [4, 16], which is defined via ⊥: a function f is
strict if f ⊥ = ⊥. In a lazy language, a strict function’s argument
does not need to be delayed. In the strict world, however, there is no
analogous ⊥-like value that extensionally indicates when to delay
an expression. We must instead consider intensional value flows,
which is precisely what “use” captures.

Low-Utility Data Structures Xu et al. [22] present a tool that
uses an object cost-benefit analysis to help programmers find ineffi-
cient parts of Java programs. While they analyze imperative, object-
oriented programs instead of functional ones, they have goals sim-
ilar to ours. However, a key difference lies in their somewhat indi-
rect approach. Their goal is to find problematic spots in the program
source, but they compute costs at the level of memory accesses and
bytecode instructions, thus requiring an extra final step to inter-
pret the results in terms of the source. It is not clear how the paper
achieves this last step, which becomes even more complicated for
a higher-order language. Our approach computes laziness potential
directly in terms of a high-level semantics, from which the problem
spots in a program become apparent.

7. Conclusion and Future Work
We introduce the notion of laziness potential, a metric that pre-
dicts which program expressions benefit from lazy evaluation. Our
Racket profiler implements these calculations and guides program-
mers with the insertion of laziness annotations. An evaluation of
our profiler automatically replicates, and in some cases improves
on, the laziness in a range of real-world applications, demonstrat-
ing the potential usefulness of our approach.

Though we presented laziness potential for a by-value λ-
calculus and implemented our profiler for a matching language,
the idea should be applicable to any language that supports both
strict and lazy evaluation. Specifically, our insights may transfer

5 We followed Real World Haskell [18] for guidance.

to a lazy language with strictness annotations, such as Haskell.
While the maturity of Haskell’s strictness analysis already assists
programmers with the task of eliminating unnecessary laziness, the
approach is intrinsically limited by its static, approximate nature.
Hence, books for real-world programmers [18] suggest the inser-
tion of strictness annotations to help the compiler. We conjecture
that a dynamic profiler, based on the notion of laziness potential,
would assist these programmers with the difficult task of locating
appropriate positions for these annotations.
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