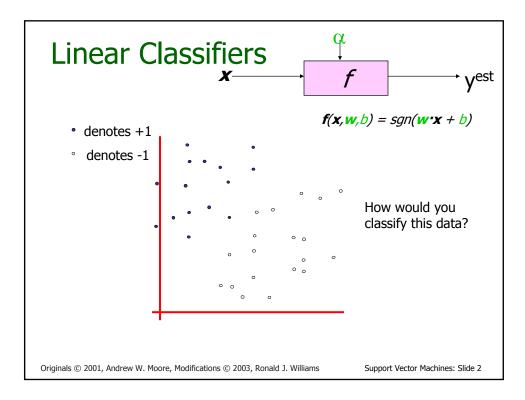
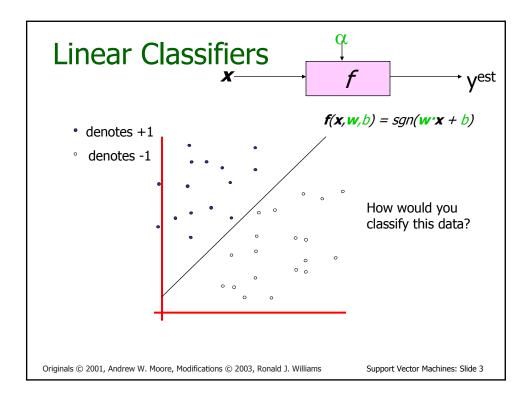
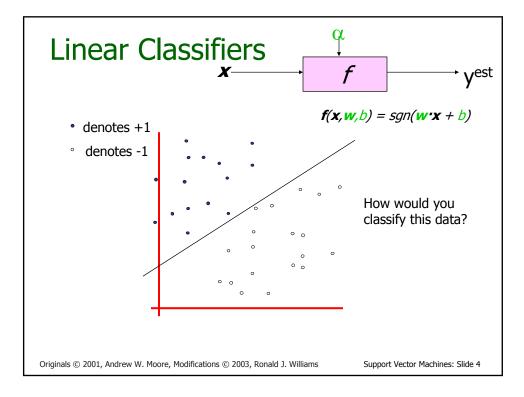
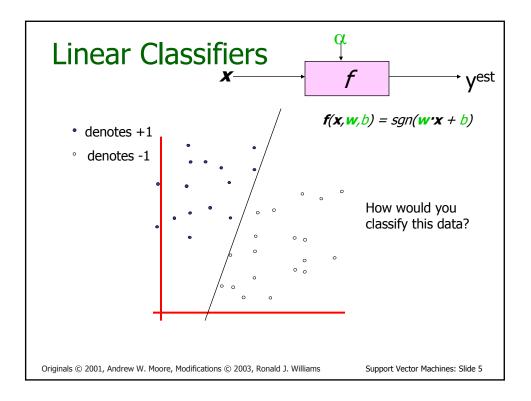


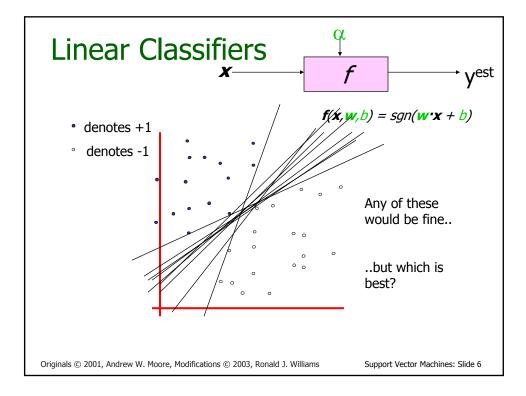
Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams

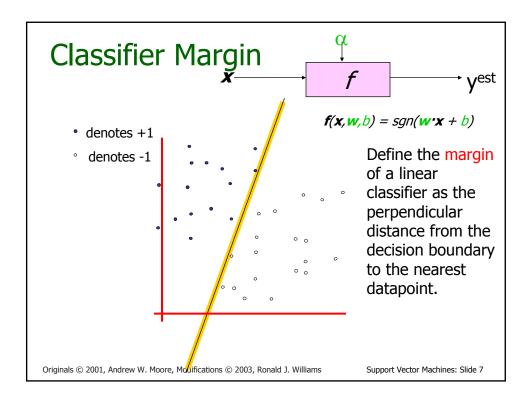


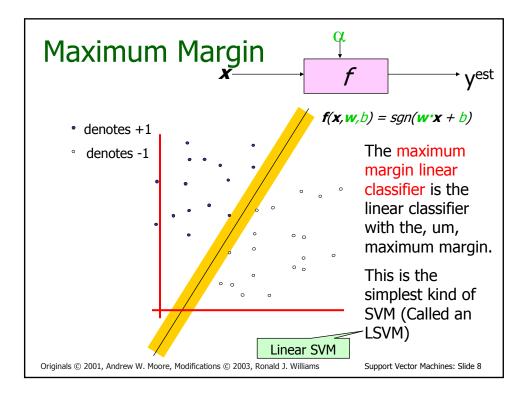


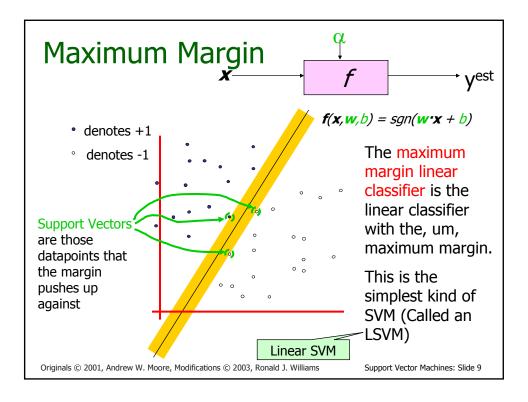


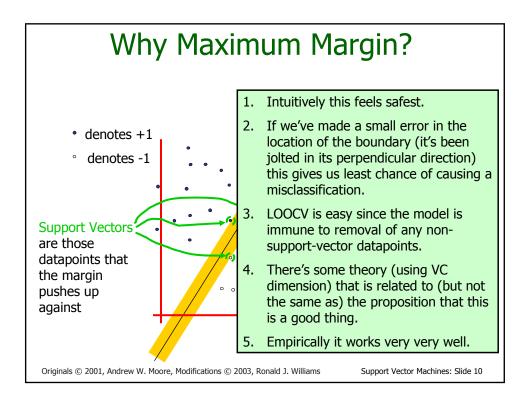


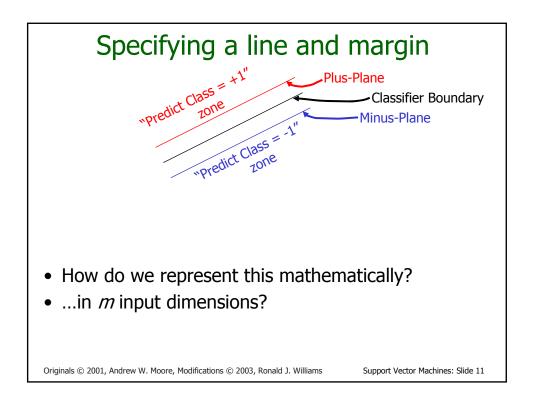


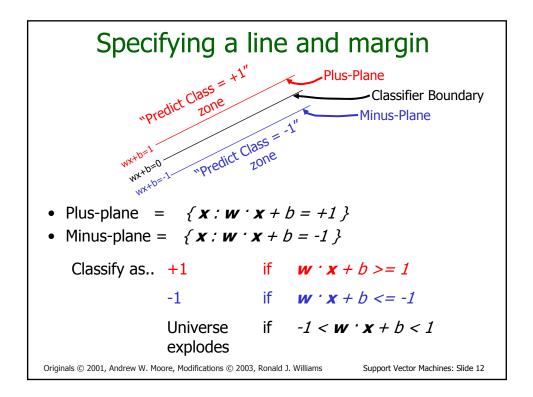


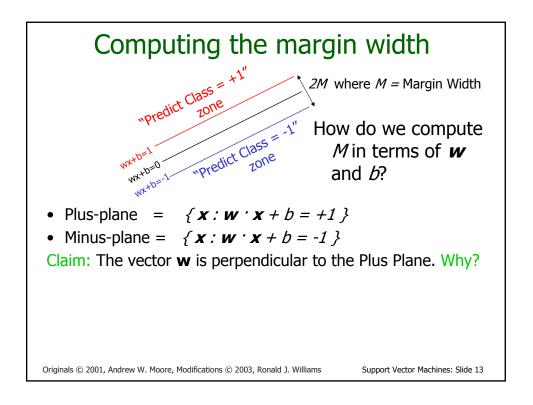


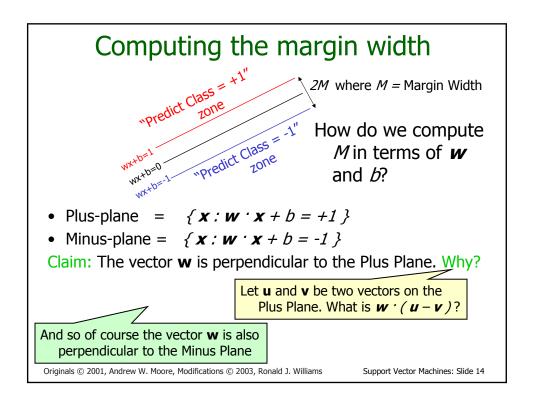


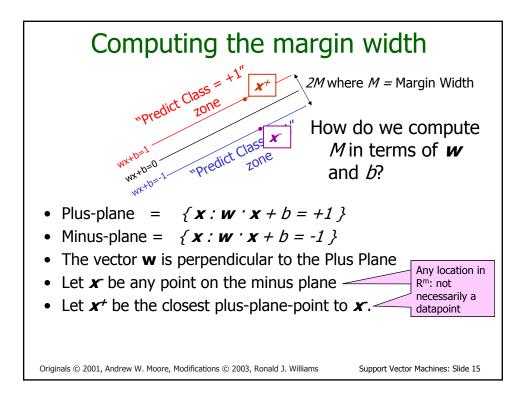


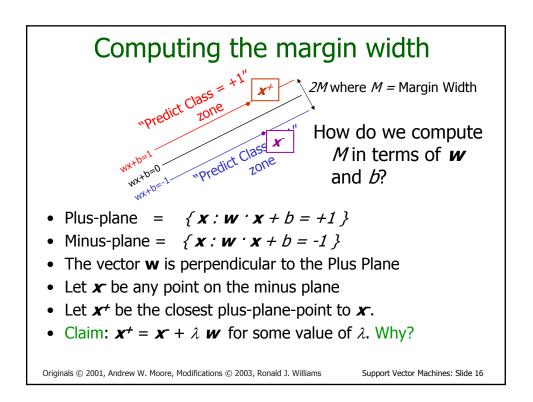


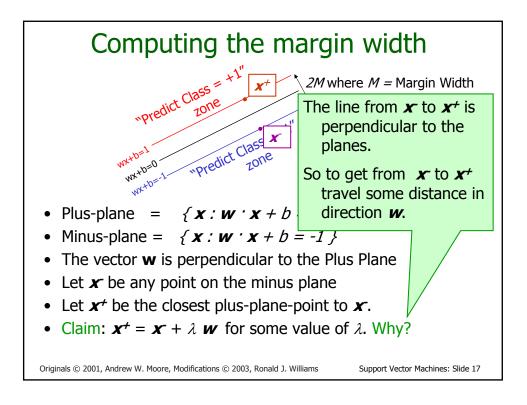


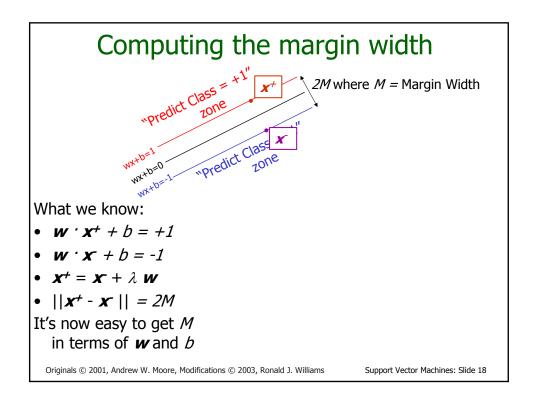


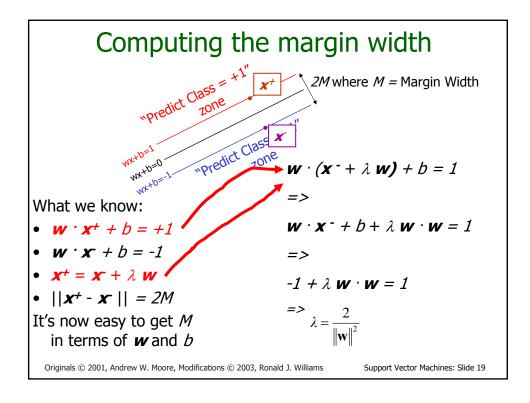


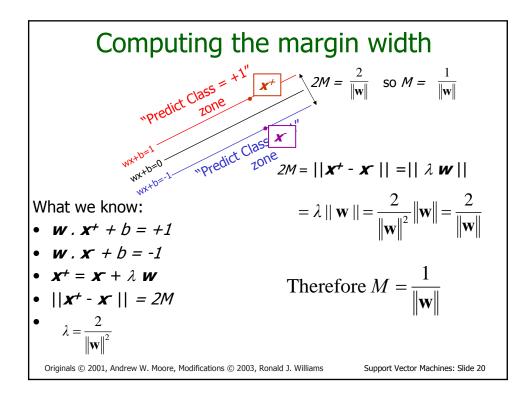


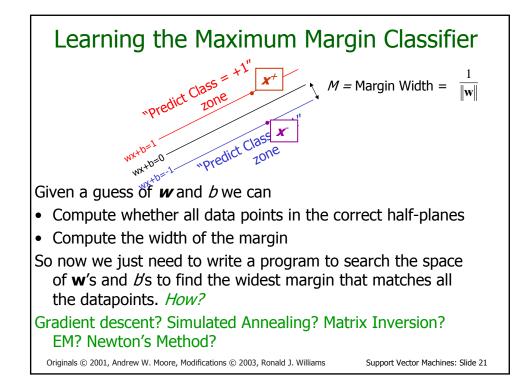


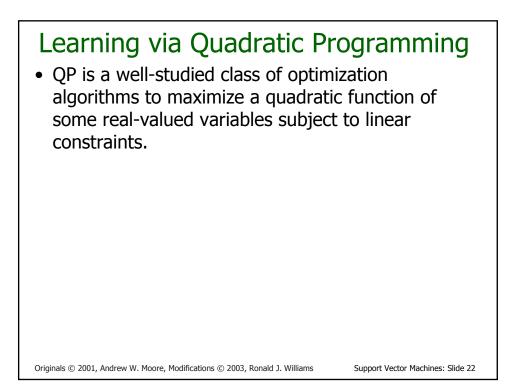


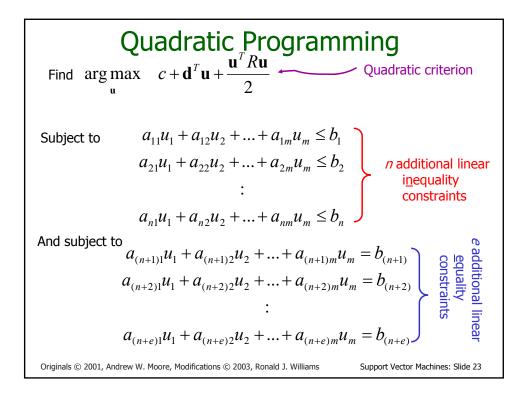


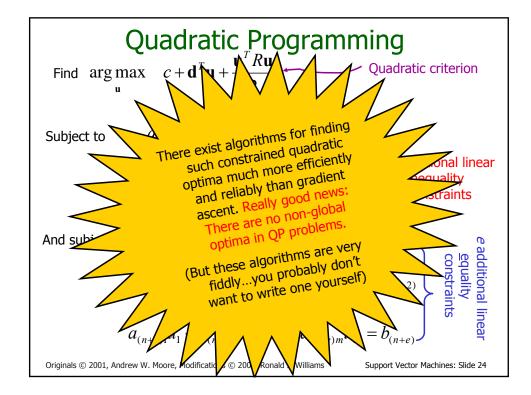


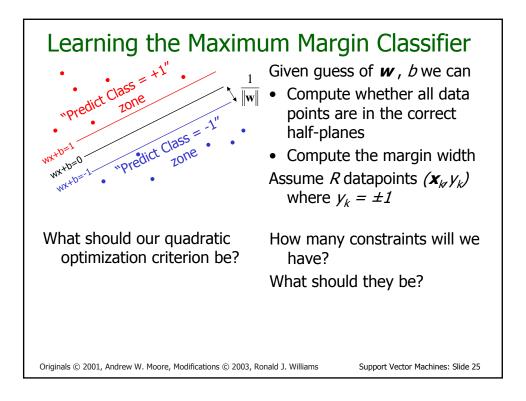


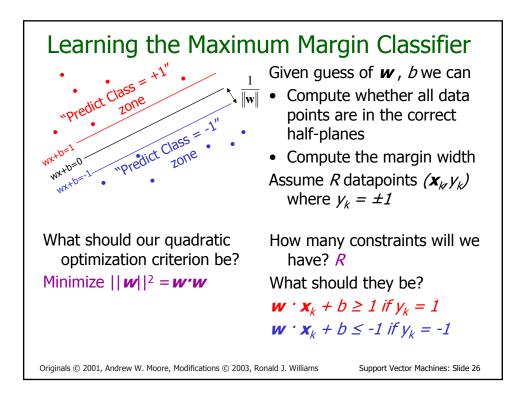


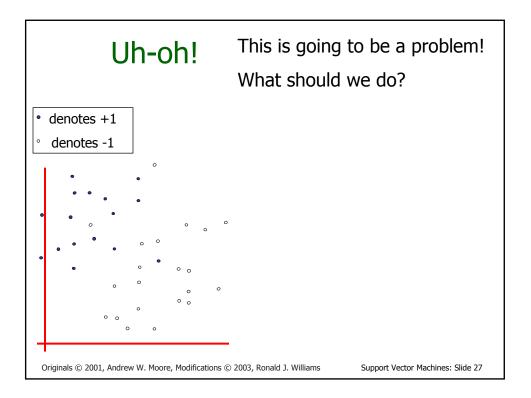


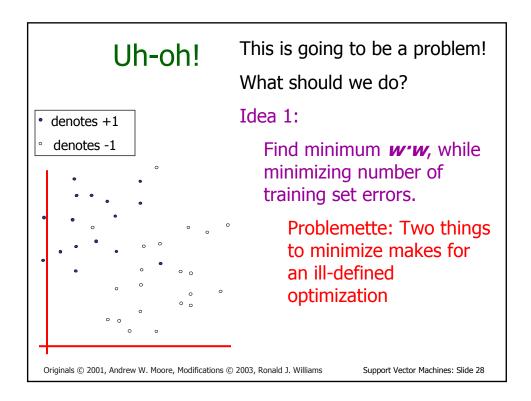


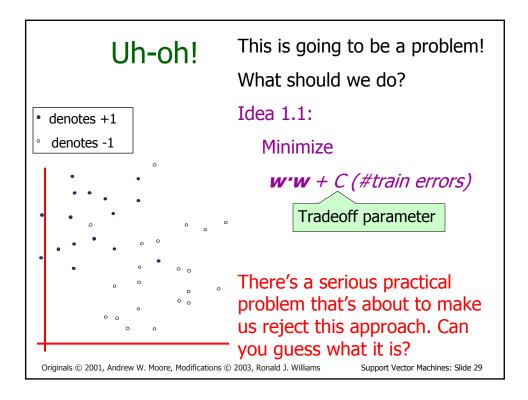


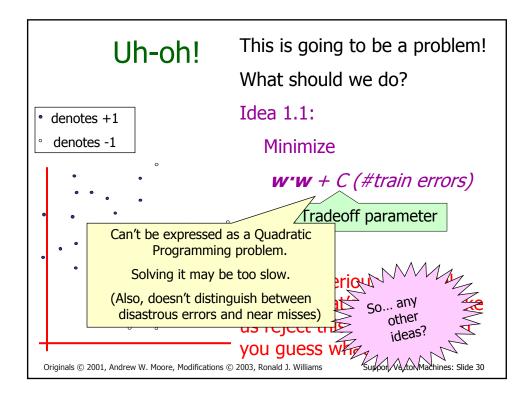


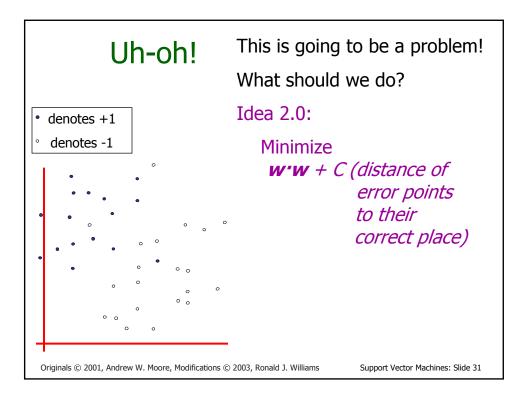


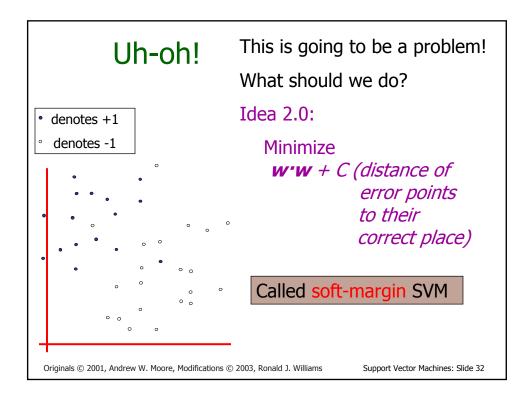


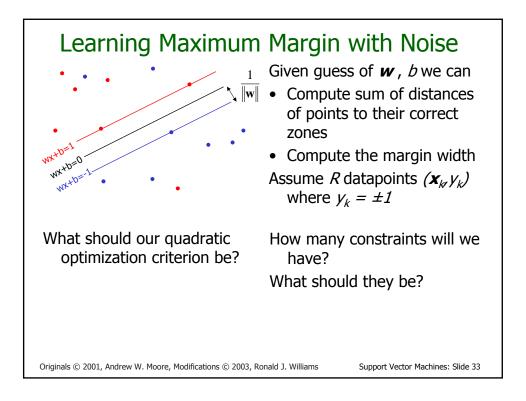


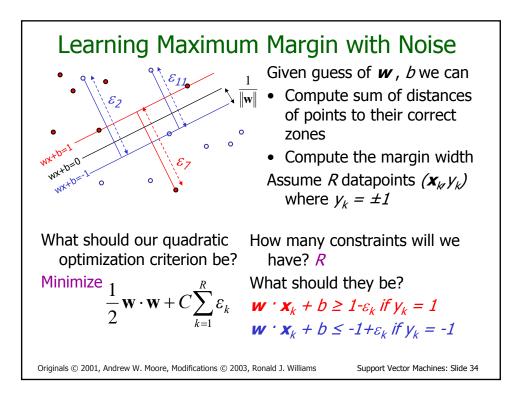


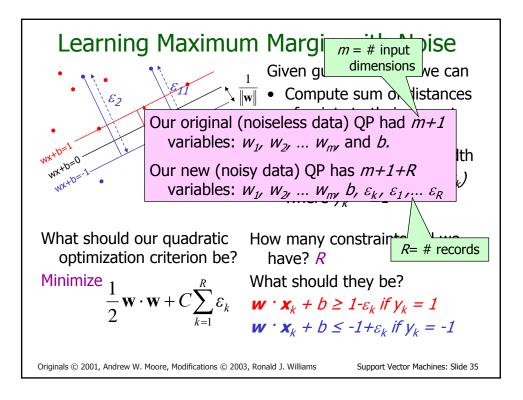


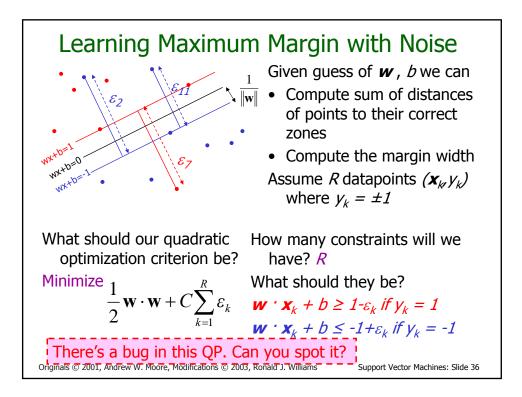


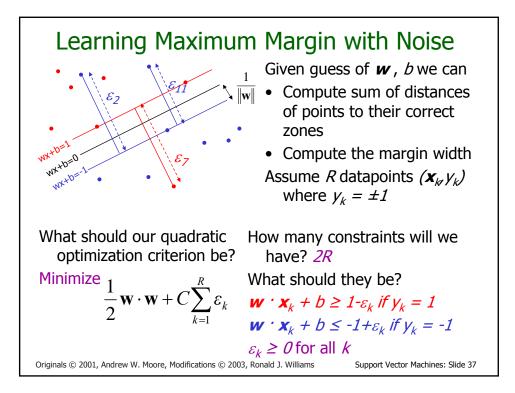


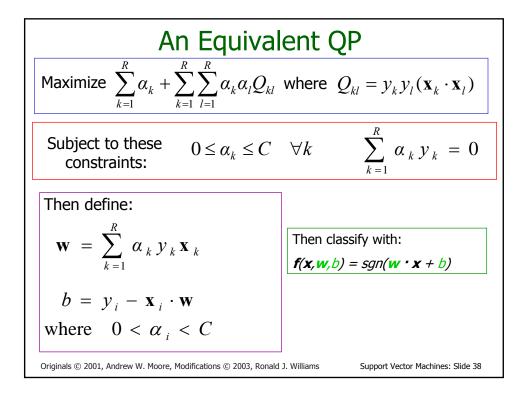


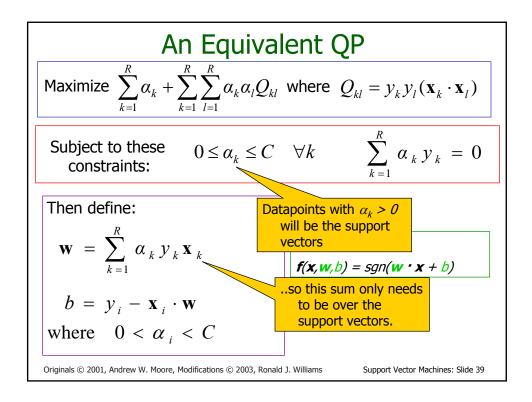


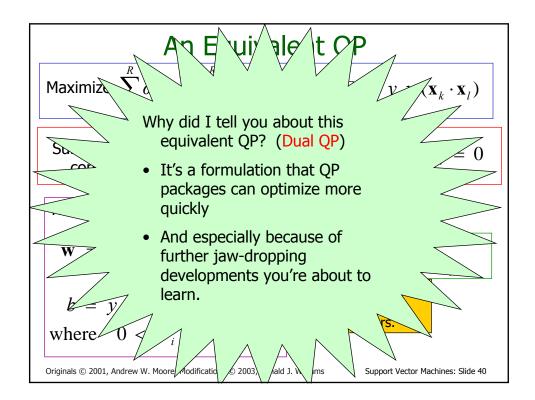


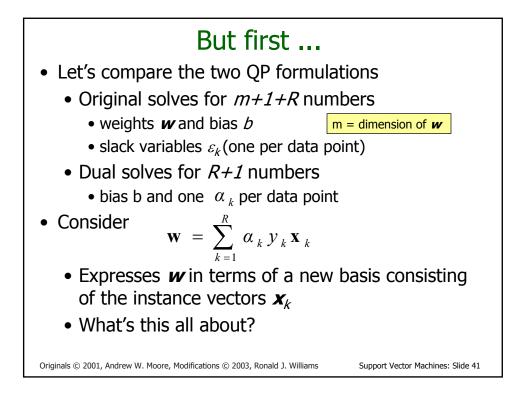


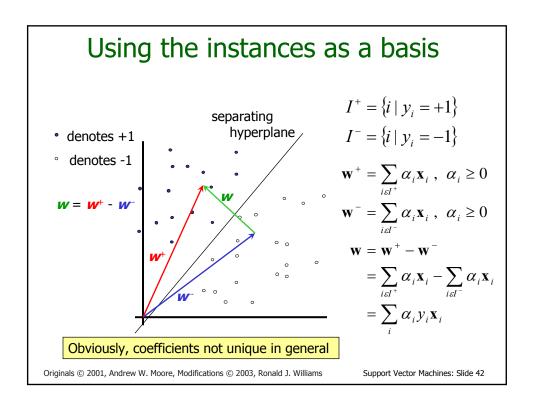


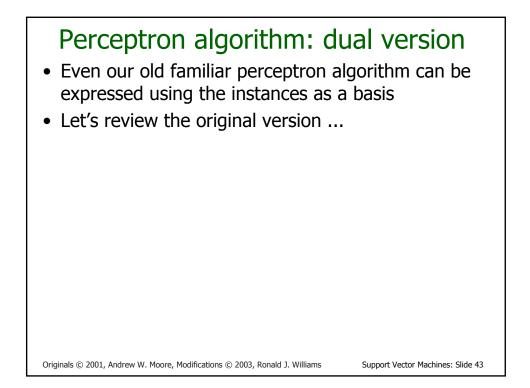


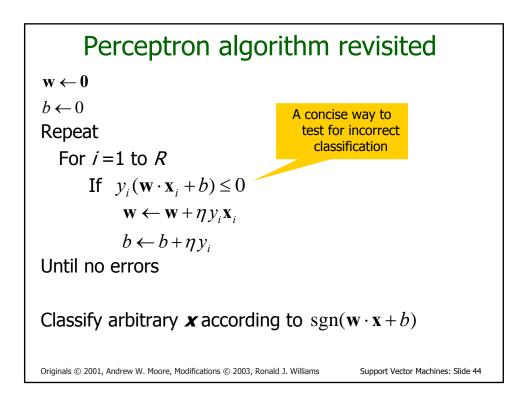


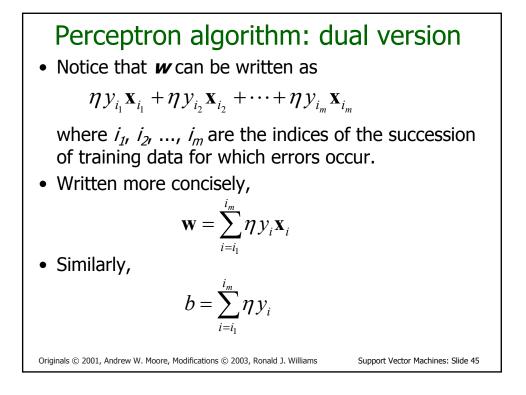












Perceptron algorithm: dual form Note that the same *i* may occur multiple times among the indices *i*₁, *i*₂, ..., *i*_m representing the succession of training data causing weight changes (i.e., one training pattern may lead to multiple weight changes as the algorithm

• Regrouping the sums according to the indexing of the training data, we get

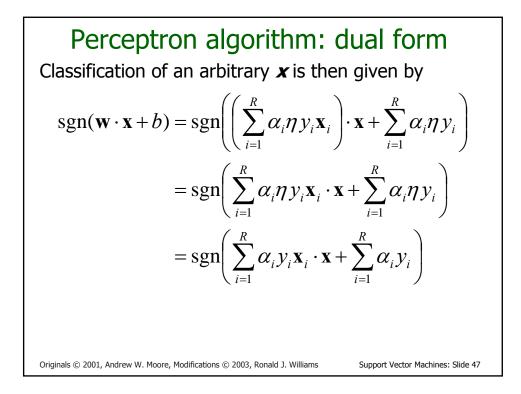
$$\mathbf{w} = \sum_{i=1}^{R} \alpha_i \eta y_i \mathbf{x}_i \quad \text{and} \quad b = \sum_{i=1}^{R} \alpha_i \eta y_i$$

where α_i is a nonnegative integer counting the number of times the training pattern $(\mathbf{x}_i, \mathbf{y}_i)$ contributed to a weight correction

Originals \odot 2001, Andrew W. Moore, Modifications \odot 2003, Ronald J. Williams

proceeds).

Support Vector Machines: Slide 46



Learning the dual form directly

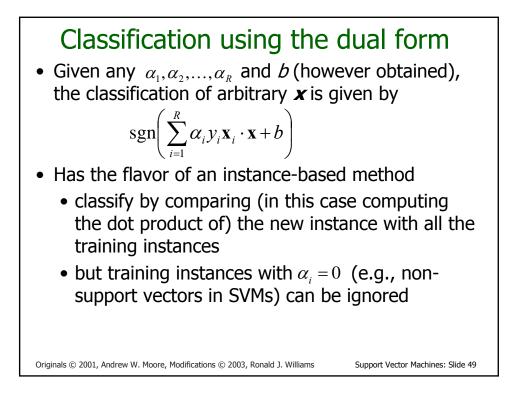
• To learn the quantities $\alpha_1, \alpha_2, ..., \alpha_R$ and *b* directly, replace the body of the inner loop by

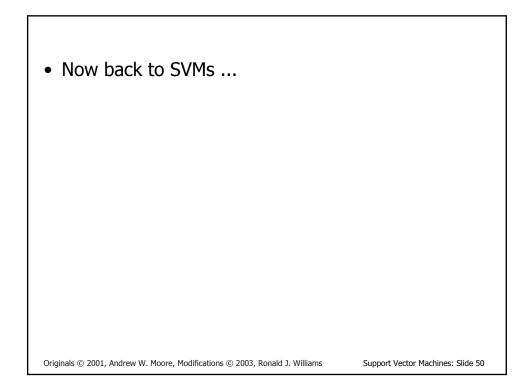
 $\alpha_i \leftarrow \alpha_i + 1$ $b \leftarrow b + y_i$

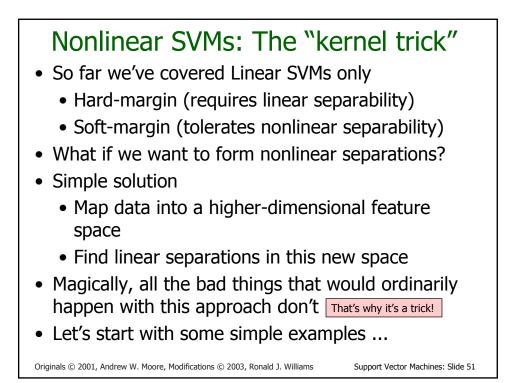
- If the data are not linearly separable, the α_i values grow without bound for misclassified points
- Each α_i is a measure of how much the instance x_i contributes to the classification
- Thus the familiar perceptron algorithm provides one example of how linear classifiers can be expressed in terms of the data vectors themselves

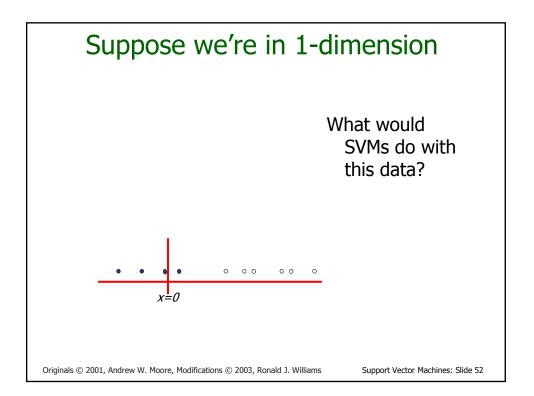
Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams

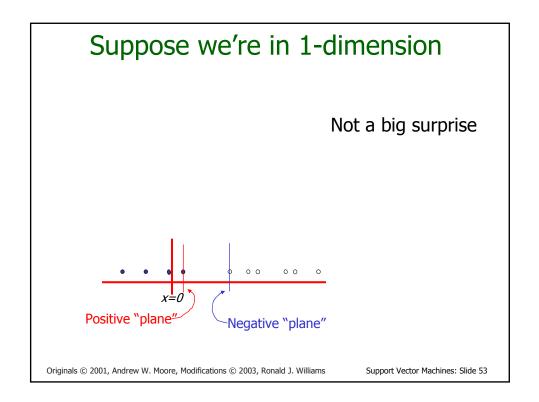
Support Vector Machines: Slide 48

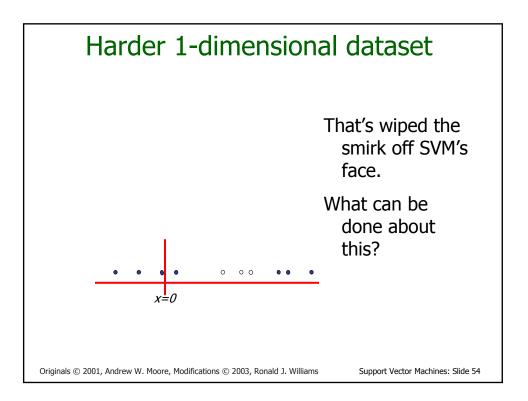


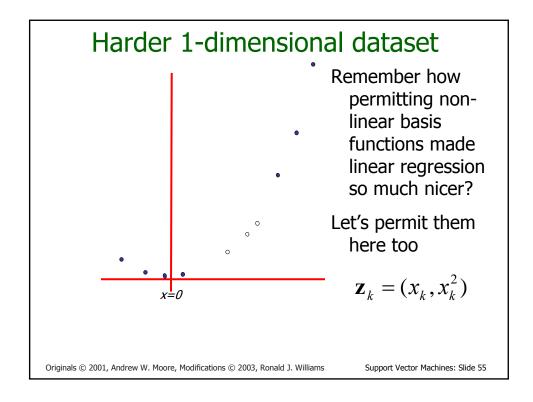


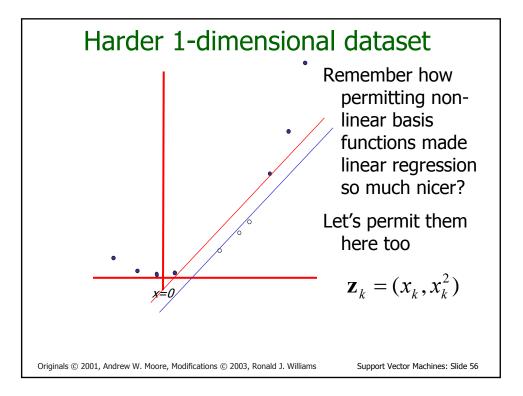


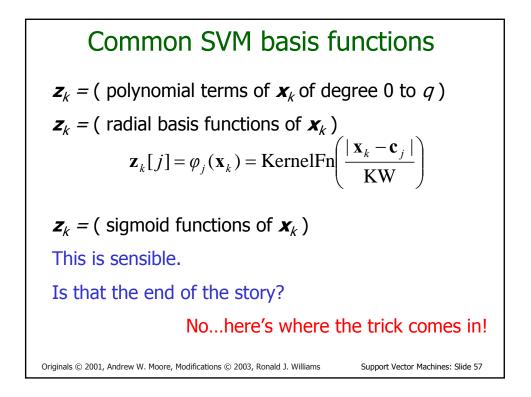


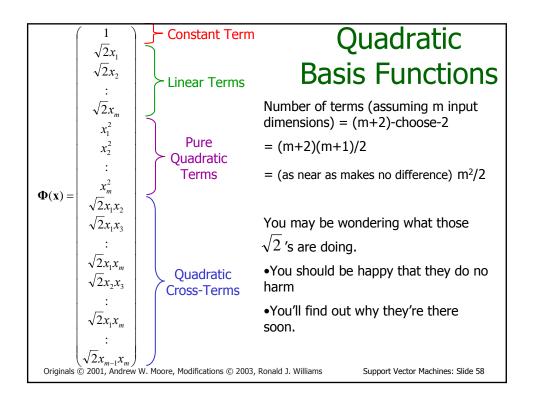


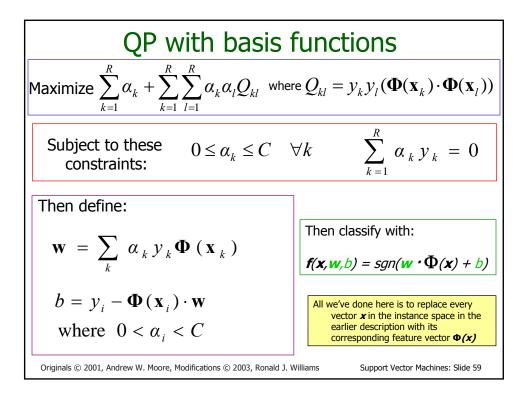


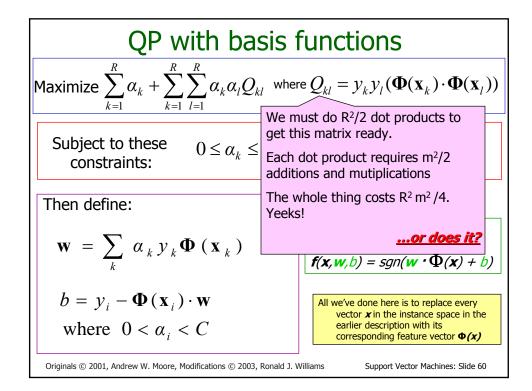


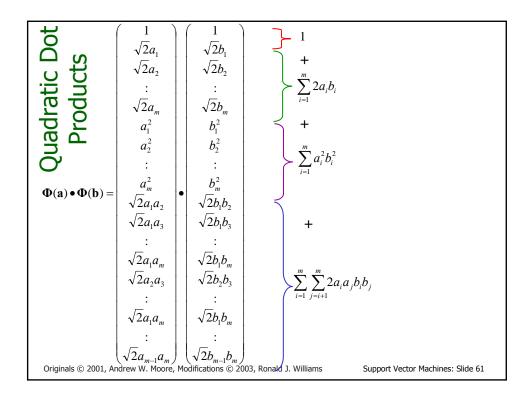


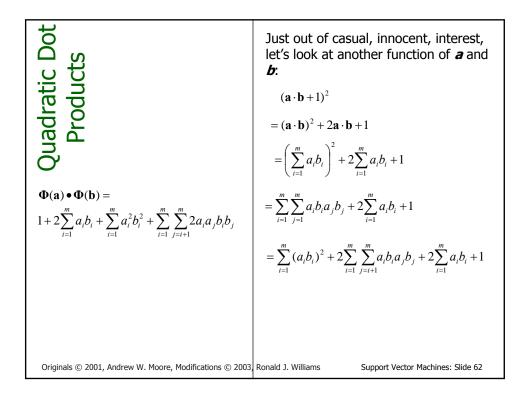


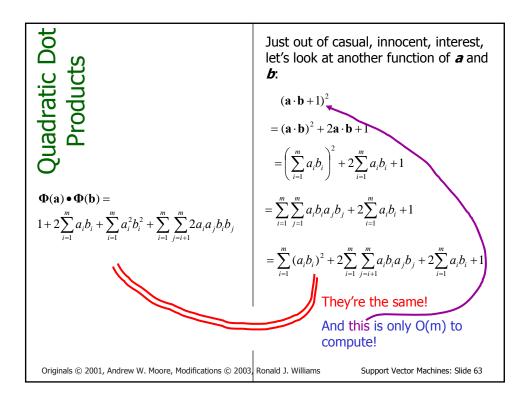






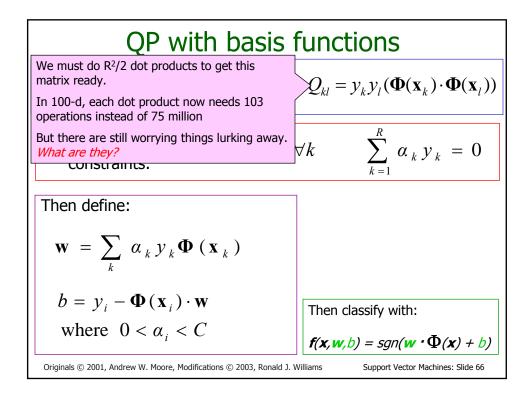


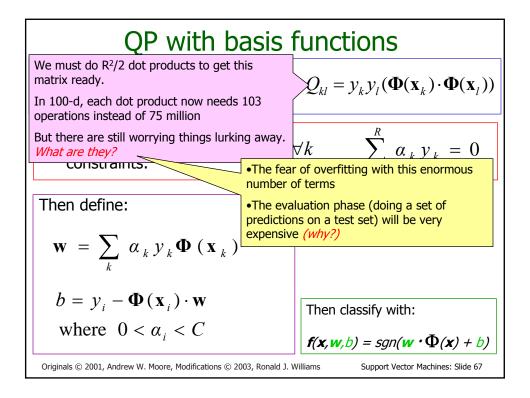


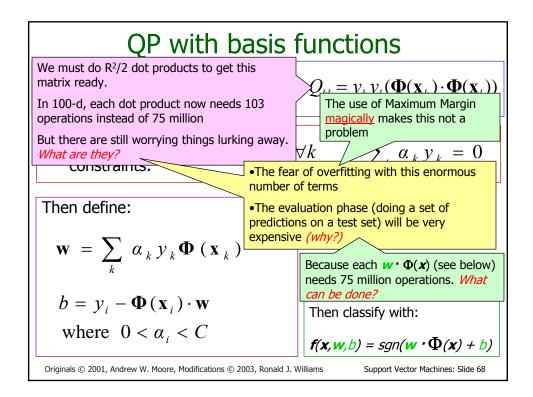


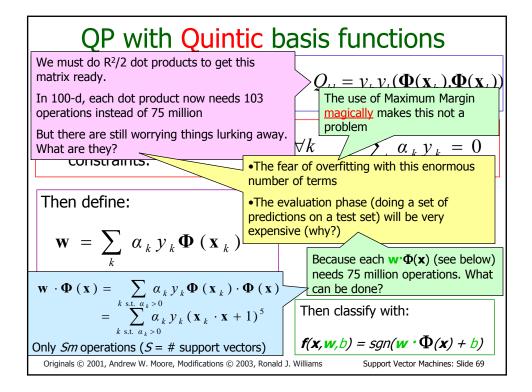
QP with bas	sis functions
Maximize $\sum_{k=1}^{R} \alpha_k + \sum_{k=1}^{R} \sum_{l=1}^{R} \alpha_k \alpha_l Q_k$	where $Q_{kl} = y_k y_l (\mathbf{\Phi}(\mathbf{x}_k) \cdot \mathbf{\Phi}(\mathbf{x}_l))$ We must do R ² /2 dot products to
Subject to these $0 \le \alpha_k \le$ constraints:	get this matrix ready. Each dot product now only requires <i>m</i> additions and multiplications
Then define:	
$\mathbf{w} = \sum_{k} \alpha_{k} y_{k} \boldsymbol{\Phi} (\mathbf{x}_{k})$	Then classify with: $f(\mathbf{x}, \mathbf{w}, b) = sgn(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)$
$b = y_i - \mathbf{\Phi}(\mathbf{x}_i) \cdot \mathbf{w}$ where $0 < \alpha_i < C$	All we've done here is to replace every vector \boldsymbol{x} in the instance space in the earlier description with its corresponding feature vector $\boldsymbol{\Phi}(\boldsymbol{x})$
Originals © 2001, Andrew W. Moore, Modifications © 2003,	Ronald J. Williams Support Vector Machines: Slide 64

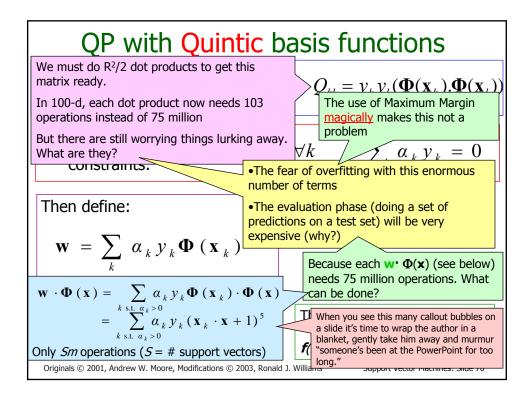
Poly- nomial	$\Phi(\mathbf{x})$	Cost to build Q_{kl} matrix traditionally	Cost if 100 inputs	$\Phi(a) \cdot \Phi(b)$	Cost to build Q_{kl} matrix sneakily	Cost if 100 inputs
Quadratic	All <i>m²/2</i> terms up to degree 2	m² R² /4	2,500 <i>R</i> ²	(a·b +1)²	m R² / 2	50 <i>R</i> ²
Cubic	All <i>m³/6</i> terms up to degree 3	m ³ R ² /12	83,000 <i>R</i> ²	(a`b+1)³	m R ² / 2	50 <i>R</i> ²
Quartic	All <i>m⁴/24</i> terms up to degree 4	m ⁴ R ² /48	1,960,000 <i>R</i> ²	(a`b+1)⁴	m R² / 2	50 <i>R</i> ²

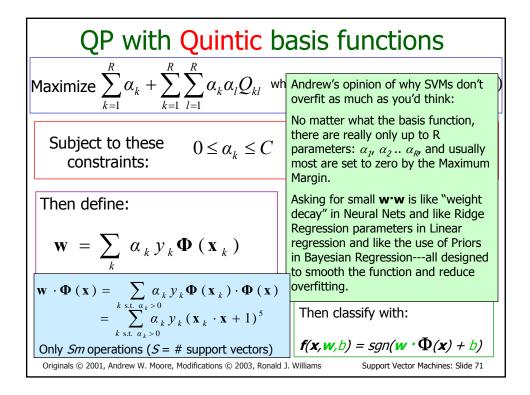


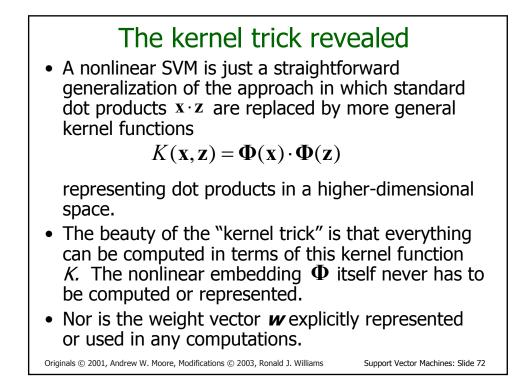












The kernel trick revealed (cont.)

The bias weight *b* is computed as follows, where *i* is any index for which 0 < α_i < C:

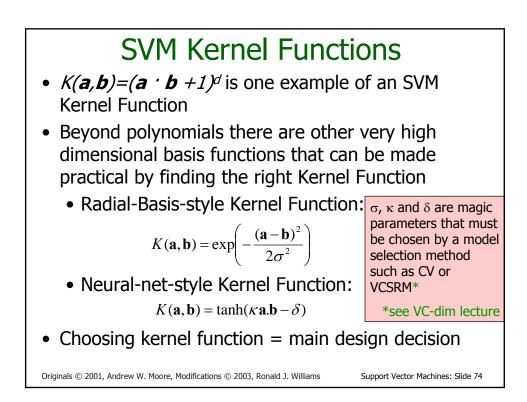
$$b = y_i - \Phi(\mathbf{x}_i) \cdot \mathbf{w}$$

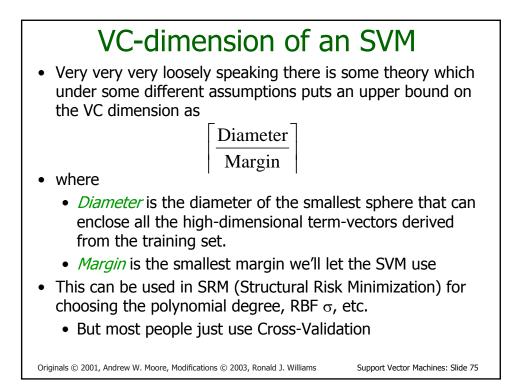
= $y_i - \Phi(\mathbf{x}_i) \cdot \sum_k \alpha_k y_k \Phi(\mathbf{x}_k)$
= $y_i - \sum_k \alpha_k y_k \Phi(\mathbf{x}_k) \cdot \Phi(\mathbf{x}_i)$
= $y_i - \sum_k \alpha_k y_k K(\mathbf{x}_k, \mathbf{x}_i)$

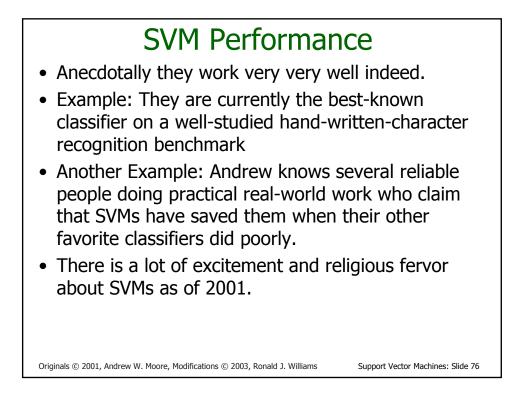
• In practice, for numerical stability, this computation is done for all such *i* and *b* is then taken to be the average.

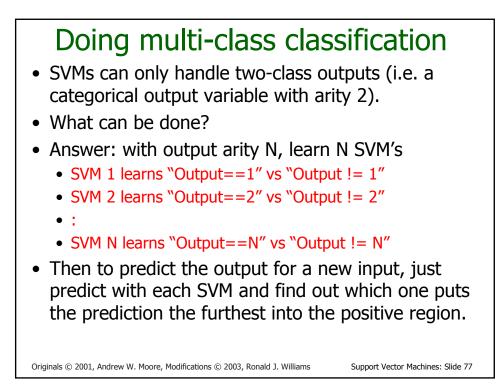
Support Vector Machines: Slide 73

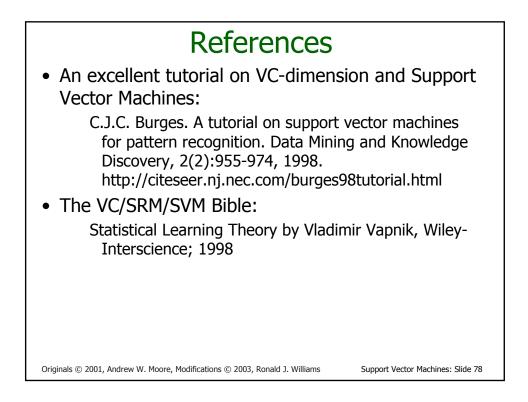
Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams











What You Should Know

- Linear SVMs
- The definition of a maximum margin classifier
- What QP can do for you (but not how QP solutions are computed)
- How Maximum Margin can be turned into a QP problem
- How we deal with noisy (non-separable) data
- How we permit non-linear boundaries
- How SVM Kernel functions permit us to pretend we're working with ultra-high-dimensional basis-function terms

Support Vector Machines: Slide 79

Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams