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What is reinforcement learning?
• A reinforcement learning agent

• interacts with its environment

• is goal-seeking

• The term reinforcement learning is used to   
characterize tasks having these properties

• A reinforcement learning algorithm is any 
algorithm for addressing such tasks

© 2003, Ronald J. Williams Reinforcement Learning: Slide 3

Historical background
• Original motivation: animal learning
• Early emphasis: neural net implementations 

and heuristic properties
• Now appreciated that it has close ties with

• optimal control
• dynamic programming
• AI state-space search

• Best formalized as a set of techniques to 
handle Markov Decision Processes
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a(0) a(1) a(2)
s(0) s(1) s(2) . . .

r(0) r(1) r(2)

Goal: Learn to choose actions that maximize the cumulative reward

r(0) + γ r(1) + γ 2 r(2) + . . .

where  0 ≤ γ ≤ 1.             

Reinforcement learning task

Agent

Environment

Sensation Reward Action

γ = discount factor
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a(0) a(1) a(2)
s(0) s(1) s(2) . . .

r(0) r(1) r(2)

Goal: Learn to choose actions that maximize the cumulative reward

r(0) + γ r(1) + γ 2 r(2) + . . .

where  0 ≤ γ ≤ 1.             

Reinforcement learning task

Agent

Environment

Sensation Reward Action

γ = discount factor

Here we assume sensation = state 
(“observable state”); otherwise, have more 
difficult partially observable state problem.
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Markov Decision Process
• Finite set of states S
• Finite set of actions A *
• Immediate reward function

• Transition (next-state) function

• More generally, R and T are treated as stochastic
• We’ll stick to the above notation for simplicity
• In general case, treat the immediate rewards and next 

states as random variables, take expectations, etc.
* The theory easily allows for the possibility that there are different sets of actions 

available at each state.  For simplicity we use one set for all states.

Reals: →× ASR

SAST →×:
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Markov Decision Process
• If no rewards and only one action, this is 

just a Markov chain
• Sometimes also called a Controlled Markov 

Chain
• Overall objective is to determine a policy

such that some measure of cumulative 
reward is optimized

AS →:π
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What’s a policy?

a3s4

a1s3

a7s2

a3s1

Then a good action isIf agent is in this state

. . . . . .

Note: To be more precise, this is called a stationary policy because it depends only 
on the state.  The policy might depend, say, on the time step as well.  Such 
policies are sometimes useful; they’re called nonstationary policies.
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A Markov Decision Process
You run a 
startup 
company.

In every 
state you 
must 
choose 
between 
Saving 
money or 
Advertising.

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
3

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

Here the reward 
shown inside any 
state represents the 
reward received upon 
entering that state.

Illustrates that 
the next-state 
function really 
determines a 
probability 
distribution over 
successor states 
in the general 
case.

© 2003, Ronald J. Williams Reinforcement Learning: Slide 10

Applications of MDPs
Many important problems are MDPs….

… Robot path planning
… Travel route planning
… Elevator scheduling
… Bank customer retention
… Autonomous aircraft navigation
… Manufacturing processes
… Network switching & routing

And many of these have been successfully handled 
using RL methods
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From a situated agent’s perspective
• At time step t

• Observe that I’m in state s(t)
• Select my action a(t)
• Observe resulting immediate reward r(t)

• Now time step is t+1
• Observe that I’m in state s(t+1)
• etc.
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Cumulative Reward
• Objective: Find a policy

maximizing, for every state s, the return

where
• s(0) = s
• each action a(t) is chosen according to
• each subsequent s(t+1) arises from the transition function 

T
• each immediate reward r(t) is determined by the 

immediate reward function R
• is a discount factor in [0, 1]

AS →:*π

∑
∞

=0
)(

t

t trγ

*π

γ
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Technical remarks
• If the next state and/or immediate reward 

functions are stochastic, then the r(t) values 
are random variables and the return is 
defined as the expectation of this sum

• If the MDP has absorbing states, the sum 
may actually be finite
• We stick with this infinite sum notation for the 

sake of generality
• The discount factor can be taken to be 1 in 

absorbing-state MDPs
• The formulation we use is called infinite-horizon
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Why the discount factor?
• Models idea that future rewards are not 

worth quite as much the longer into the 
future they’re received
• used in economic models

• Also models situations where there is a 
nonzero fixed probability of termination at 
any time

• Makes the math work out nicely
• with bounded rewards, sum guaranteed to be 

finite even in infinite-horizon case
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Interesting fact
For every MDP there exists an optimal policy.

It’s a policy such that for every possible start 
state there is no better option than to follow 
the policy.

Can you see why this is true?

© 2003, Ronald J. Williams Reinforcement Learning: Slide 16

Computing an Optimal Policy
Idea One:

Run through all possible policies.
Select the best.

What’s the problem ??
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Where’s the learning?
• Standard MDP theory starts with knowledge 

of R and T and tries to solve for an optimal 
policy
• can be viewed as planning using a known model
• however, can be intractable for various reasons
• even with R and T known, there may be 

reasons to use techniques developed in RL 
research to compute good policies

• What if R and/or T are not known?
• this is basis of most RL research
• look at this a lot more later
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What about directly learning a policy?
• One possibility: Use supervised learning

• Where do training examples come from?
• Need prior expertise
• What if set of actions is different in different states? 

(e.g. games)

• Another possibility: Generate and test
• Search the space of policies, evaluating many 

candidates
• Genetic algorithms, genetic programming, e.g.
• Policy-gradient techniques
• Upside: can work even in non-MDP situations (e.g., 

POMDPs)
• Downside: the space of policies may be way too big
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Back to MDP theory ...
• It turns out that

• RL theory
• MDP theory
• AI game-tree search

all agree on the idea that evaluating states is 
a useful thing to do.

• A (state) value function V is any function 
mapping states to real numbers:

Reals: →SV
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State Value Functions
• For any policy   , define the state value 

function       by

where the initial state is s and all 
subsequent states, actions, and rewards 
arise from the transition, policy, and reward 
functions, respectively.

• Define             , where      is an optimal 
policy. 

*π

π

∑
∞

=

=
0

)()(
t

t trsV γπ

πV

** πVV =

Reminder: Use expected 
values in the 
stochastic case.
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Return from a policy
• is the return (cumulative reward) 

obtained by following policy    (as a function 
of the start state)

• is the optimal return (i.e., the return 
obtained by following an optimal policy)

• Recall that the return is the quantity we 
want to maximize

πV
π

*V

It can be shown that an optimal policy maximizes the return from
all starting states.  I.e., there is no policy that gives a higher 
return than the optimal policy when starting from some states 
but not when starting from others.
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Bellman equations
For any state s and policy

For any state s,

Extremely important and useful 
recurrence relations
Can be used to compute the return from a given policy or 
to compute the optimal return (Dynamic Programming)

)))(,(())(,()( ssTVssRsV πγπ ππ +=

π

))},((),({max)( ** asTVasRsV
a

γ+=
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Bellman equations: general form
For completeness, here are the Bellman equations 

for stochastic MDPs:

where now represents                 and

probability that the next state is s’ given         
that action a is taken in state s.

)())(())(,()( sVsPssRsV
s

ss ′+= ∑
′

′
ππ πγπ

)}()(),({max)( ** sVaPasRsV
s

ssa
′+= ∑

′
′γ

=′ )(aPss

),( asR ),|( asrE
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From values to policies
• Given any state value function V, define a 

policy    to be greedy for V if, for all s,

• The right-hand side can be viewed as a
1-step lookahead estimate of the return 
from    based on the estimated return from 
successor states

π
))},((),({maxarg)( asTVasRs

a
γπ +=

π
Yet another reminder: In the general 

case, this is a shorthand for the 
appropriate expectations as spelled 
out in detail on the previous slide.
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Facts about greedy policies
• An optimal policy is greedy for

• Follows from Bellman equation

• If    is not optimal then a greedy policy for
will yield a larger return than

• Not hard to prove
• Basis for policy iteration method

*V

π
ππV
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Finding an optimal policy
Value Iteration Method
Choose any initial state value function V0

Repeat for all n ≥ 0
For all s

Until convergence

This converges to     and any greedy policy with respect to it 
will be an optimal policy

Just a technique for solving the Bellman equations for 
(system of |S| nonlinear equations in |S| unknowns)

*V

))},((),({max)(1 asTnVasRasnV γ+←
+

*V
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Finding an optimal policy
Policy Iteration Method
Choose any initial policy 
Repeat for all n ≥ 0

Compute 
Choose        greedy with respect to 

Until 

Can you prove that this terminates with an optimal policy?

1+nπ

0π

nV π

nV π

nn VV ππ =+1
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Finding an optimal policy
Policy Iteration Method
Choose any initial policy 
Repeat for all n ≥ 0

Compute 
Choose        greedy with respect to 

Until 

Can you prove that this terminates with an optimal policy?

1+nπ

0π

nV π

nV π

nn VV ππ =+1

Policy Evaluation Step

Policy Improvement Step
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Evaluating a given policy
• There are at least 2 distinct ways of 

computing the return for a given policy
• Solve the corresponding system of linear 

equations (the Bellman equation for      )
• Use an iterative method analogous to value 

iteration but with the update

• First way makes sense from an offline 
computational point of view

• Second way relates to online RL

π

πV

)))(,(())(,()(1 ssTnVssRsnV πγπ +←
+
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Deterministic MDP to Solve

3 actions at each state:

a1, a2, a3

Numbers on arcs denote 
immediate reward 
received

3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Find optimal policy when γ = 0.9
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Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Arbitrary initial value function V0

0 0

0 0

© 2003, Ronald J. Williams Reinforcement Learning: Slide 32

Value Iteration
3

2
2

s1 s2

s3 s4

Arbitrary initial value function V0

0 0

0 0

Computing a new value for s1 
using 1-step lookahead with 
previous values:

For action a1 lookahead value is
2 + (.9)(0) = 2

For action a2 lookahead value is
3 + (.9)(0) = 3

For action a3 lookahead value is
2 + (.9)(0) = 2

3}2,3,2max{)( 11 ==sV

232

a3a2a1
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Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Arbitrary initial value function V0

0 0

0 0

4242s4

3131s3

4412s2

3232s1

maxa3a2a1

Lookahead value
along action
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Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

New value function V1 after one step of value iteration

3 4

3 4

4)(
3)(
4)(
3)(

41

31

21

11

=
=
=
=

sV
sV
sV
sV

Updated 
approximation 
to V*:
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Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Keep doing this until it converges to V*

34.7 35.3

34.7 35.3

14.813.914.813.9V5

35.334.735.334.7V*

12.111.912.111.9V4

9.99.09.99.0V3

6.76.66.76.6V2

4343V1

0000V0

s4s3s2s1

.  .  .
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Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

V*

34.7 35.3

34.7 35.3
a233.835.233.8s4

a232.834.832.2s3

a335.232.233.2s2

a233.234.833.8s1

besta3a2a1

Lookahead value
along action

Determining a greedy 
policy for V*
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Value Iteration
3

4

3

4

s1 s2

s3 s4

Optimal policy
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Policy Iteration

4

2 1

2

s1 s2

s3 s4

Start with this policy π
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Policy Iteration

4

2 1

2

s1 s2

s3 s4

Start with this policy 

20
9.1

2)(

7.14)()9(.1)(
7.17)()9(.4)(

3.15
81.1
9.2

])9(.)9(.1)[9.2(
)9(.2)9(.19.2)(

4

13

12

1

42

32

=
−

=

=⋅+=
=⋅+=

=
−

=

++++=
++⋅+⋅+=

sV

sVsV
sVsV

sV

π

ππ

ππ

π

L

L

π

Compute its return:
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Policy Iteration

4

2 1

2

s1 s2

s3 s4

Start with this policy 

20
9.1

2)(

7.14)()9(.1)(
7.17)()9(.4)(

3.15
81.1
9.2

])9(.)9(.1)[9.2(
)9(.2)9(.19.2)(

4

13

12

1

42

32

=
−

=

=⋅+=
=⋅+=

=
−

=

++++=
++⋅+⋅+=

sV

sVsV
sVsV

sV

π

ππ

ππ

π

L

L

π
Really just solving a system 

of linear equations

Compute its return:
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Policy Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

15.3 17.7

14.7 20

a320.017.217.9s4

a319.018.914.8s3

a317.814.215.8s2

a115.218.920.0s1

besta3a2a1

Lookahead value
along action

Determining a greedy 
policy for πV
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Policy Iteration

4

2

1 2

s1 s2

s3 s4

New policy after one step of policy iteration
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Policy Iteration vs. Value Iteration: 
Which is better?

It depends.
Lots of actions?  Choose Policy Iteration
Already got a fair policy? Policy Iteration
Few actions, acyclic?   Value Iteration

Best of Both Worlds:
Modified Policy Iteration   [Puterman]

…a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming
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Backups
• Term used in the RL literature for any 

updating of V(s) by replacing it by

where a is some action, which also includes 
the possibility of replacing it by

• Closely related to notion of backing up 
values in a game tree 

)),((),( asTVasR γ+

))},((),({max asTVasRa γ+
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Backups
• Term used in the RL literature for any 

updating of V(s) by replacing it by

where a is some action, which also includes 
the possibility of replacing it by

• Closely related to notion of backing up 
values in a game tree 

)),((),( asTVasR γ+

))},((),({max asTVasRa γ+

Sometimes call 
this a backup
along action a

Sometimes call 
this a max-
backup
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Backups
• The operation of backing up values is one of 

the primary links between MDP theory and 
RL methods

• Some key facts making these classical MDP 
algorithms relevant to online learning 
• value iteration consists solely of  (max-)backup 

operations
• policy evaluation step in policy iteration can be 

performed  solely with backup operations (along 
the policy)

• backups modify the value at a state solely based 
on the values at successor states
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Synchronous vs. asynchronous
• The value iteration and policy iteration algorithms 

demonstrated here use synchronous backups, but 
asynchronous backups (implementable by 
“updating in place”) can also be shown to work

• Value iteration and policy iteration can be seen as 
two ends of a spectrum

• Many ways of interleaving backup steps and policy 
improvement steps can be shown to work, but not 
all (Williams & Baird, 1993)
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Generalized Policy Iteration
• GPI coined to apply to the wide range of RL 

algorithms that combine simultaneous 
updating of values and policies in intuitively 
reasonable ways

• It is known that not every possible GPI 
algorithm converges to an optimal policy

• However, only known counterexamples are 
contrived

• Remains an open question whether some of 
the ones implemented in practice can be 
guaranteed to work
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Learning – Finally!
• Suppose a situated agent doesn’t know the 

reward function R and/or the transition 
function T but only interacts with its 
environment

• What then?
• One possibility: Learn the MDP through 

exploration, then solve it using offline methods
• Another intriguing way: Never represent 

anything about the MDP itself, just try to learn 
the values directly – model free

• These are 2 extremes in an interesting spectrum 
of possibilities

© 2003, Ronald J. Williams Reinforcement Learning: Slide 50

Temporal 
Difference 
Learning

Only maintain a V array…
nothing else

So you’ve got
V (s1), V (s2), ··· V(sn)

and you observe
s    r s’

what should you do?
Can You Guess ?

[Sutton 1988]

A transition from s that receives 
an immediate reward of r and 
jumps to s’
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TD Learning
After making a transition from s to s’ and receiving reward r, 

we nudge V(s) to be closer to the estimated return based on 
the observed successor, as follows:

( ) ( )( ) ( ) ( )
  

s1ss
α

αγα VVrV −+′+←
is called a “learning rate” parameter. 

For            this represents a partial backup.

Furthermore, if the rewards and/or transitions are stochastic, as in a 
general MDP, this is a sample backup.

The reward and next-state values are only noisy estimates of the 
corresponding expectations, which is what offline DP would use in 
the appropriate computations (full backup).

Nevertheless, this converges to the return for a fixed policy (under the 
right technical assumptions, including decreasing learning rate)

1 <α
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TD(λ)
• Updating the value at a state based on just the 

succeeding state is actually the special case TD(0) 
of a parameterized family of TD methods

• TD(1) updates the value at a state based on all
succeeding states

• For 0 < λ < 1, TD(λ) updates a state’s value base 
on all succeeding states, but to a lesser extent the 
further into the future

• Implemented by maintaining decaying eligibility 
traces at each state visited (decay rate = λ)

• Helps distribute credit for future rewards over all 
earlier actions Can help mitigate effects of violation of Markov property
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Model-free RL

Why not use  TD?
Observe

update
S a S’

r

( ) ( )( ) ( ) ( )sVsVrsV ′−+′+← αγα 1  
What’s wrong with this?
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Model-free RL

Why not use  TD?
Observe

update
S a S’

r

( ) ( )( ) ( ) ( )sVsVrsV ′−+′+← αγα 1  
What’s wrong with this?

1. Still can’t choose actions without knowing what next state (or 
distribution over next states) results: requires an internal model of T

2. The values learned will represent the return for the policy we’ve 
followed, including any suboptimal exploratory actions we’ve taken: 
won’t help us act optimally
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State-Action Value Functions
• For any policy    , define

by

where the initial state s(0) = s, the initial action
a(0) = a, and all subsequent states, actions, and 
rewards arise from the transition, policy, and 
reward functions, respectively.

• Just like      except that action a is taken as the 
very first step and only after this is policy
followed

π

∑
∞

=

=
0

)(),(
t

t trasQ γπ

Reals: →× ASQπ

πV
π

Once again, the correct expression 
for a general MDP should use 
expected values here
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State-Action Value Functions
• Define                , where      is an optimal policy. 
• There is a corresponding Bellman equation for

since

• Given any state-action value function Q, define a 
policy     to be greedy for Q if

for all s.
• An optimal policy is greedy for  

** πQQ = *π
*Q

),(max)( ** asQsV a=

π
),(maxarg)( asQs a=π

*Q
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Q-learning
(Watkins, 1988)
• Assume no knowledge of R or T.
• Maintain a table-lookup data structure Q 

(estimates of Q*) for all state-action pairs 

• When a transition s    r s’ occurs, do

• Essentially implements a kind of asynchronous 
Monte Carlo value iteration, using sample backups

• Guaranteed to eventually converge to Q* as long 
as every state-action pair sampled infinitely often

( ) ( )( ) ( ) ( )asQasQrasQ
a

,1,max, αγα −+′′+←
′
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Q-learning
• This approach is even cleverer than it looks:  the

Q values are not biased by any particular 
exploration policy.  It avoids the credit assignment
problem.

• The convergence proof extends to any variant in 
which every Q(s,a) is updated infinitely often, 
whether on-line or not.

© 2003, Ronald J. Williams Reinforcement Learning: Slide 59

Q-Learning: Choosing Actions
• Don’t always be greedy
• Don’t always be random (otherwise it will take a long time 

to reach somewhere exciting)

• Boltzmann exploration  [Watkins]

Prob(choose action a) 

• With some small probability, pick random action; else pick 
greedy action (called ε-greedy policy)

• Optimism in the face of uncertainty  [Sutton ’90, Kaelbling 
’90]

Initialize Q-values optimistically high to encourage exploration
Or take into account how often each (s,a) pair has been tried

( )








−∝

t

as
K

,Qexp
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Two-component RL systems
• One of the earliest RL systems (pole balancer of Barto, 

Sutton & Anderson, 1983) had 2 components:
• Adaptive Search Element (ASE)
• Adaptive Critic Element (ACE)

• ASE essentially represents the policy
• ACE essentially represents the state value estimates –

updated using TD(λ)
• Both components adapted on-line simultaneously
• Overall approach is a prime example of Generalized Policy 

Iteration
• No good mathematical analysis yet available for such

2-component systems
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Learning or planning?
• Classical DP emphasis for optimal control

• Dynamics and reward structure known
• Off-line computation

• Traditional RL emphasis
• Dynamics and/or reward structure initially 

unknown
• On-line learning

• Computation of an optimal policy off-line 
with known dynamics and reward structure 
can be regarded as planning
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Integrating learning & planning
• Sutton’s 1990 Dyna system introduced a 

seamless integration of RL and planning
• Stores a collection of transitions experienced
• Backups applied to

• current on-line transition
• plus a fixed number of other randomly chosen 

stored transitions
• Improvement on this idea

• add a priority queue to prioritize backups along 
transitions in parts of state space most likely to 
improve performance fastest (Moore & Atkeson, 
1993; Williams & Peng, 1993)
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A toy problem
• The RL literature contains numerous 

examples of toy problems designed to shed 
light on the use of various techniques

• Here’s one ...  
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Maze Learning Task

S

G

Reward = -1 at every step                           γ = 1

G is an absorbing state, terminating any single trial

Effect of actions is deterministic

4 actions
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Maze Learning Task

-5-6-7-8-9-10-11-12-13

-4-5-6-8-9-10-11-12

-3-4-5-6-7-8-12-13

-2-6-7 -8-9-13-14

-1-7-8-9-10-14-15

G 0-8-9-10-11-12-13-14

V* What’s the optimal 
path from S to G?
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Another Maze Learning Task

S

G

Everything else same as before, except:

With some nonzero probability, a small wind gust might displace the agent one cell to the 
right or left of its intended direction of travel on any step

Entering any of the 4 patterned cells at the southwest corner yields a reward of -100

Now what’s the 
optimal path 
from S to G?
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Challenges
• How do we apply these techniques to infinite (e.g., 

continuous), or even just very large, state spaces?
• Pole-balancer
• Mountain car
• Acrobot
• Multi-jointed snake
• Bioreactor

• Two basic approaches for continuous state spaces
• Quantize (to obtain a finite-state approximation)

• One promising approach: adaptive partitioning

• Use function approximators (nearest-neighbor, neural 
networks, radial basis functions, tile codings, etc.)

Together with mazes of various 
kinds, these tasks have 
become benchmark test 
problems for RL techniques
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Dealing with large numbers of states

S15122189

:

S2

s1

VALUESTATE

Don’t use a Table…

use…
(Generalizers)                                                  (Hierarchies)

Splines

A Function 
Approximator

Variable Resolution

Multi Resolution

Memory
BasedSTATE VALUE

[Munos 1999]
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Function approximation
for value functions

Polynomials               [Samuel, Boyan, Much O.R.
Literature]

Neural Nets               [Barto & Sutton, Tesauro,    
Crites, Singh, Tsitsiklis]

Splines Economists, Controls

Downside:     All convergence guarantees disappear.

Backgammon, Pole 
Balancing, Elevators, 
Tetris, Cell phones

Checkers, Channel 
Routing, Radio Therapy
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Memory-based Value Functions
V(s) = V (most similar state in memory to s ) 

or
Average of V (20 most similar states)

or
Weighted Average of V (20 most similar states)
[Jeff Peng, Atkenson & Schaal,
Geoff Gordon,        proved stuff
Scheider, Boyan & Moore  98]

“Planet Mars Scheduler”
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Hierarchical Methods
Continuous State Space: “Split a state when statistically 

significant that a split would 
improve performance”

e.g. Simmons et al 83, Chapman 
& Kaelbling 92, Mark Ring 94 …, 
Munos 96

with interpolation!
“Prove needs a higher 
resolution”

Moore 93, Moore & 
Atkeson 95

Discrete Space:
Chapman & Kaelbling 92, 
McCallum 95 (includes 
hidden state)

A kind of Decision 
Tree Value Function

Multiresolution

A hierarchy with high level “managers” abstracting low level “servants”
Many O.R. Papers, Dayan & Sejnowski’s Feudal learning, Dietterich 1998 (MAX-Q 
hierarchy) Moore, Baird & Kaelbling 2000 (airports Hierarchy)

Continuous Space
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Open Issues
• Better ways to deal with very large state and/or 

action spaces
• Theoretical understanding of various practical GPI 

schemes
• Theoretical understanding of behavior when value 

function approximators used
• More efficient ways to integrate learning of 

dynamics and GPI
• Computationally tractable approaches when 

Markov property violated
• Better ways to learn and take advantage of 

hierarchical structure and modularity
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Valuable References
• Books

• Bertsekas, D. P. & Tsitsiklis, J. N. (1996).  
Neuro-Dynamic Programming.  Belmont, MA: 
Athena Scientific

• Sutton, R. S. & Barto, A. G. (1998).  
Reinforcement Learning: An Introduction.  
Cambridge, MA: MIT Press

• Survey paper
• Kaelbling, L. P., Littman, M. & Moore, A. (1996). 

“Reinforcement learning: a survey,” Journal of 
Artificial Intelligence Research, Vol. 4, pp. 237-
285.  (Available as a link off the main Andrew 
Moore tutorials web page.)
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If we had time…
• Value function approximation

Use a Neural Net to represent  V [e.g. Tesauro]
Use a Neural Net to represent Q [e.g. Crites]
Use a decision tree

…with Q-learning  [Chapman & Kaelbling ’91]
…How to split up continuous space?

• Significance test on Q values  [Chapman & 
Kaelbling ‘91]

• Execution accuracy monitoring  [Moore ’91]
• Game Theory  [Moore & Atkeson ’95]

[Al-Ansari & Williams ’98]


