Outline

- Neural network learning
- \bullet Perceptrons/Linear threshold functions
- Gradient descent

Connectionist Models

Consider humans:

- Neuron switching time .001 second
- \bullet Number of neurons $\bar{}$ 10^{10}
- Connections per neuron 10⁴⁻⁵
- Scene recognition time .1 second
- 100 inference steps doesn't seem like enough
- \rightarrow much parallel computation

Properties or artificial neural nets (ANN's):

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- \bullet Highly parallel, distributed process
- ullet Emphasis on tuning weights automatically

Example Applications

NETtalk [Sejnowski]

- Inputs: english text
- Output: spoken phonemes

Phoneme recognition [Waibel]

- Inputs: waveform features
- Outputs: b,c,d,...

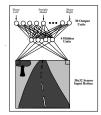
Robot control [Pomerleau]

- Inputs: perceived features
- Outputs: steering control

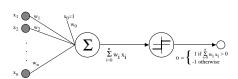
3

1

ALVINN drives 70 mph on highways



Perceptron

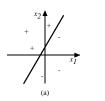


$$o(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \cdots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Sometimes we'll use simpler vector notation:

$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Decision Surface of a Perceptron



Represents some useful functions

• What weights represent $g(x_1, x_2) = AND(x_1, x_2)$?

But some functions not representable

- e.g., not linearly separable
- \bullet Therefore, we'll want networks of these...

Perceptron training rule

 $w_i \leftarrow w_i + \Delta w_i$

where

$$\Delta w_i = \eta(t - o)x_i \tag{1}$$

Where:

- $t = c(\vec{x})$ is target value
- \bullet o is perceptron output
- η is small constant (e.g., .1) called learning rate

Make sense?

- What if output o is too big?
- and x_i positive, negative?

7

Perceptron training rule

Can prove it will converge

- If training data is linearly separable
- \bullet and η sufficiently small

8

Gradient Descent

To understand, consider simpler linear unit, where

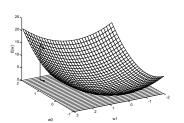
$$o = w_0 + w_1 x_1 + \dots + w_n x_n$$

Let's learn w_i 's that minimize the squared error

$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Where D is set of training examples

Gradient Descent



Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Gradient Descent

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d 2 (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \sum_d (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d}) \\ \frac{\partial E}{\partial w_i} &= \sum_d (t_d - o_d) (-x_{i,d}) \end{split}$$

Gradient Descent

Gradient-Descent $(training_examples, \eta)$

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
- Initialize each Δw_i to zero.
- For each $\langle \vec{x}, t \rangle$ in $training_examples$, Do
 - * Input the instance \vec{x} to the unit and compute the output o
 - * For each linear unit weight w_i , Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t-o)x_i$$

- For each linear unit weight w_i , Do

$$w_i \leftarrow w_i + \Delta w_i$$

Summary

Linear unit training rule uses gradient descent

- Guaranteed to converge to hypothesis with minimum squared error
- Given sufficiently small learning rate η
- \bullet Even when training data not describable in H

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- \bullet Sufficiently small learning rate η

Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:

Do until satisfied

1. Compute the gradient $\nabla E_D[\vec{w}]$

$$2. \vec{w} \leftarrow \vec{w} - \eta \nabla E_D[\vec{w}]$$

Incremental mode Gradient Descent:

Do until satisfied

- \bullet For each training example d in D
- 1. Compute the gradient $\nabla E_d[\vec{w}]$

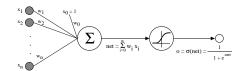
2.
$$\vec{w} \leftarrow \vec{w} - \eta \nabla E_d[\vec{w}]$$

$$E_D[\vec{w}] \equiv rac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$E_d[\vec{w}] \equiv \frac{1}{2}(t_d - o_d)^2$$

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η made small enough

Sigmoid Unit



 $\sigma(x)$ is the sigmoid function

$$\frac{1}{1 + e^{-x}}$$

Nice property: $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$

We can derive gradient decent rules to train

- One sigmoid unit

13

14

15

Error Gradient for a Sigmoid Unit

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_{d} 2 (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \sum_{d} (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right) \\ &= -\sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i} \end{split}$$

But we know:

$$egin{aligned} rac{\partial o_d}{\partial net_d} &= rac{\partial \sigma(net_d)}{\partial net_d} = o_d(1-o_d) \ rac{\partial net_d}{\partial w_i} &= rac{\partial(ec{w}\cdotec{x}_d)}{\partial w_i} = x_{i,d} \end{aligned}$$

So

$$\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{i,d}$$