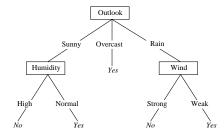
Outline

- Decision tree representation
- ID3 learning algorithm
- Entropy, Information gain
- Overfitting

Decision Tree for PlayTennis



Decision Trees

Decision tree representation:

- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

How would we represent:

- $\bullet \land, \lor, XOR$
- \bullet $(A \land B) \lor (C \land \neg D \land E)$
- \bullet M of N

9

When to Consider Decision Trees

- Instances describable by attribute-value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data

Examples:

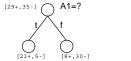
- Medical diagnosis
- \bullet Credit risk analysis
- Modeling calendar scheduling preferences

Top-Down Induction of Decision Trees

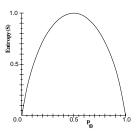
Main loop:

- 1. $A \leftarrow$ the "best" decision attribute for next node
- 2. Assign A as decision attribute for node
- 3. For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP. Else iterate over new leaf nodes

Which attribute is best?



Entropy



- \bullet S is a sample of training examples
- p_{\oplus} is the proportion of positive examples in S
- p_{\ominus} is the proportion of negative examples in S
- \bullet Entropy measures the impurity of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Entropy

 $Entropy(S) = \text{expected number of bits needed to} \\ encode \ class \ (\oplus \ \text{or} \ \ominus) \ \text{of randomly drawn} \\ \text{member of } S \ (\text{under the optimal, shortest-length} \\ \text{code})$

Why?

Information theory: optimal length code assigns $-\log_2 p$ bits to message having probability p.

So, expected number of bits to encode \oplus or \ominus of random member of S:

$$p_\oplus(-\log_2 p_\oplus) + p_\ominus(-\log_2 p_\ominus)$$

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

7

Information Gain

Gain(S,A) = expected reduction in entropy due to sorting on A

$$Gain(S,A) \equiv Entropy(S) - \sum\limits_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

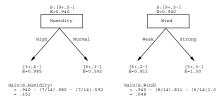
Training Examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D_5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

9

Selecting the Next Attribute

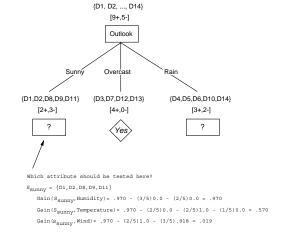
Which Attribute is the Best Classifier?



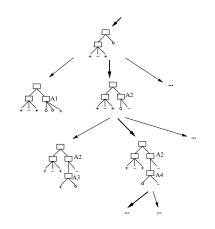
Classifying examples by Humidity provides more information gain than by Wind

Partially Learned Decision Tree

8



Hypothesis Space Search by ID3



Hypothesis Space Search by ID3

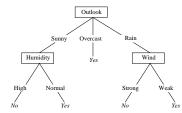
• Hypothesis space is complete!

- Target function surely in there...
- \bullet Outputs a single hypothesis (which one?)
- Can't play 20 questions...
- No back tracking
- Local minima...
- Statistically-based search choices
- $-\operatorname{Robust}$ to noisy data...
- Inductive bias: approx "prefer shortest tree"

Overfitting in Decision Trees

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No
What effect on earlier tree?



Overfitting

Consider error of hypothesis h over

- training data: $error_{train}(h)$
- entire distribution \mathcal{D} of data: $error_{\mathcal{D}}(h)$

Hypothesis $h \in H$ overfits training data if there is an alternative hypothesis $h' \in H$ such that

$$error_{train}(h) < error_{train}(h')$$

but

$$error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$$

13

14

15

Overfitting in Decision Tree Learning

