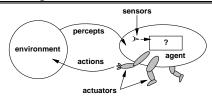
Intelligent Agents

Chapter 2

Chapter 2 1

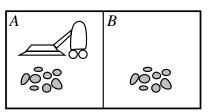

Chapter 2 4

Outline

- ♦ Agents and environments
- ♦ Rationality
- ♦ PEAS (Performance measure, Environment, Actuators, Sensors)
- ♦ Environment types
- ♦ Agent types

Chapter 2 3

Agents and environments


Agents include humans, robots, softbots, thermostats, etc.

The agent function maps from percept histories to actions:

$$f:\mathcal{P}^*\to\mathcal{A}$$

The agent program runs on the physical architecture to produce \boldsymbol{f}

Vacuum-cleaner world

Percepts: location and contents, e.g., [A, Dirty]

Actions: Left, Right, Suck, NoOp

Chapter 2

A vacuum-cleaner agent

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
	:

 $\mathbf{function} \ \mathrm{Reflex-Vacuum-Agent} \\ \mathbf{(} [\mathit{location,status}]) \\ \mathbf{returns} \ \mathsf{an} \ \mathsf{action} \\$

 $\begin{array}{l} \textbf{if } \textit{status} = \textit{Dirty} \, \textbf{then return } \textit{Suck} \\ \textbf{else if } \textit{location} = \textit{A} \, \textbf{then return } \textit{Right} \\ \textbf{else if } \textit{location} = \textit{B} \, \textbf{then return } \textit{Left} \\ \end{array}$

What is the right function?

Can it be implemented in a small agent program?

Rationality

Fixed performance measure evaluates the environment sequence

- one point per square cleaned up in time T?
- one point per clean square per time step, minus one per move?
- penalize for $\,>k$ dirty squares?

A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date

 $\mathsf{Rational} \neq \mathsf{omniscient}$

 $Rational \neq clairvoyant$

 $\mathsf{Rational} \neq \mathsf{successful}$

Rational \Rightarrow exploration, learning, autonomy

Chapter 2 7

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

Performance measure??

Environment??

Actuators??

Sensors??

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

Performance measure?? safety, destination, profits, legality, comfort, ...

<u>Environment</u>?? US streets/freeways, traffic, pedestrians, weather, ...

Actuators?? steering, accelerator, brake, horn, speaker/display, ...

 $\underline{\mathsf{Sensors}} ?? \mathsf{\ video,\ accelerometers,\ gauges,\ engine\ \mathfrak{sensors,\ keyboard,\ GPS, \dots} \\$

Chapter 2 9

Internet shopping agent

Performance measure??

Environment??

Actuators??

Sensors??

Environment	

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??				
Deterministic??				
Episodic??				
Static??				
Discrete??				
Single-agent??				

Chapter 2 10

Chapter 2 8

Chapter 2 11

Environment types

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??				
Episodic??				
Static??				
<u>Discrete</u> ??				
Single-agent??				

Environment types

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??				
Static??				
Discrete??				
Single-agent??				

Chapter 2 12

Chapter 2 13

Environment types					
	Solitaire	Backgammon	Internet shopping	Taxi	
Observable??	Yes	Yes	No	No	
Deterministic??	Yes	No	Partly	No	
Episodic??	No	No	No	No	
Static??					
Discrete??					
Single-agent??					

Environment types				
	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
<u>Discrete</u> ??				
Single-agent??				

Chapter 2 14 Chapter 2 15

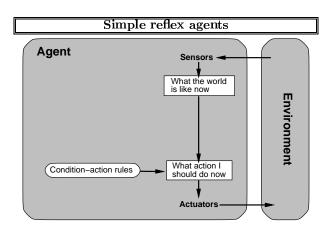
Environment types				
	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??	Yes	Yes	Yes	No
Single-agent??				

Environment types				
	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??	Yes	Yes	Yes	No
Single-agent??	Yes	No	No (except auctions)	No

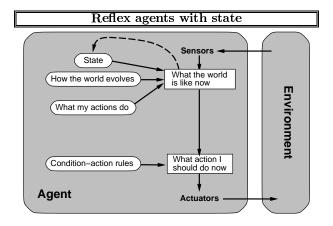
The environment type largely determines the agent design $% \left(\mathbf{r}\right) =\left(\mathbf{r}\right)$

The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi -agent

Chapter 2 17


Agent types

Chapter 2 16

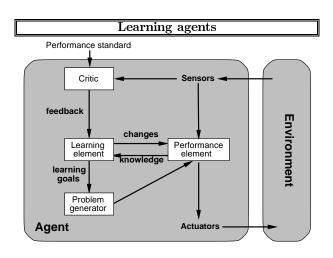

Four basic types in order of increasing generality:

- simple reflex agents
- reflex agents with state
- goal-based agents
- utility-based agents

All these can be turned into learning agents

Chapter 2 18 Chapter 2 19

Goal-based agents State What the world is like now (How the world evolves **Environment** What it will be like if I do action A (What my actions do What action I should do now Goals Agent Actuators


Chapter 2 21

Utility-based agents State What the world is like now How the world evolves Environment What it will be like if I do action A What my actions do How happy I will be in such a state Utility What action I should do now Agent

Actuators

Chapter 2 22

Chapter 2 20

AIMA code

The code for each topic is divided into four directories:

- agents: code defining agent types and programs
- algorithms: code for the methods used by the agent programs
- environments: code defining environment types, simulations
- domains: problem types and instances for input to algorithms

(Often run algorithms on domains rather than agents in environments.)

(setq joe (make-agent :name 'joe :body (make-agent-body) :program (make-dumb-agent-program)))

(defun make-dumb-agent-program () (let ((memory nil)) #'(lambda (percept) (push percept memory) 'no-op)))

Chapter 2 24