
1

May 19, 2003© 2003, Ronald J. Williams

Genetic Algorithms and
Genetic Programming

Ronald J. Williams
COM3480, Spring 2003

© 2003, Ronald J. Williams Evolutionary Computation: Slide 2

Evolutionary Computation
• Genetic Algorithms and Genetic Programming are

prototypical examples of what is called Evolutionary
Computation

• Evolutionary computation characterized by
• Population consisting of multiple “individuals”
• Fitness function evaluating individuals
• Reproduction strategy for generating new generations of individuals

• Ideally, fitness increases (on average) over successive generations

• Ultimately just a focused random search strategy for
finding maximum-fitness individuals

2

© 2003, Ronald J. Williams Evolutionary Computation: Slide 3

Pseudo-code
Initialize generation counter
Initialize a (usually random) population of individuals
Evaluate fitness of all individuals of population
While not done (based on fitness, # generations, etc.)

Increment the generation counter
Select a sub-population for generating new offspring
Generate new individuals using

• replication of individuals
• crossover using 2 parents
• mutation of resulting individuals

Evaluate fitness of all new individuals

© 2003, Ronald J. Williams Evolutionary Computation: Slide 4

Genetic Algorithms
• Prototypical representation: fixed length bit

strings
• “chromosomes”

• To create new individuals, select 2 “parents”
• Combine the bit strings of the 2 parents in

some way to create one or more (often 2)
new individuals
• Crossover

• Also, apply small random perturbations to
the “children”
• Mutation

3

© 2003, Ronald J. Williams Evolutionary Computation: Slide 5

Crossover Operators
• Single-point
11101001000 11101010101
00001010101 00001001000

• Two-point
11101001000 00101000101
00001010101 11001011000

• Uniform
11101001000 10001000100
00001010101 01101011001

© 2003, Ronald J. Williams Evolutionary Computation: Slide 6

Mutation Operator

11101001000 11101011000

With some probability, a bit is flipped.

4

© 2003, Ronald J. Williams Evolutionary Computation: Slide 7

GA Representations
• Bit strings

• Fixed length
• Variable length

• Strings of more general kinds of data
• Integers
• Reals

© 2003, Ronald J. Williams Evolutionary Computation: Slide 8

Representation Issues
• What if some chromosomes don’t represent

valid objects in the domain of the search
space? Possible approaches:
• Give meaningless chromosomes very low fitness
• Limit crossover or other operators so that only

valid chromosomes generated
• Follow generation of any new chromosome with

a step that modifies it to make it valid

5

© 2003, Ronald J. Williams Evolutionary Computation: Slide 9

Selecting Most Fit Individuals
• Fitness proportionate selection

• Tournament selection
• Pick a random subset of individuals (often 2)
• With fixed probability p, select the most fit

• Rank selection
• Sort individuals by fitness
• Prob. of selection based on rank

∑
=

j
j

i
i xFitness

xFitnessxP
)(
)()(

© 2003, Ronald J. Williams Evolutionary Computation: Slide 10

Selecting Most Fit Individuals
Another interesting way

• Have individuals compete head-to-head
• Appropriate where fitness defined in terms of

competitive ability
• Used to evolve neural networks for evaluating

checkers board positions (Fogel)

6

© 2003, Ronald J. Williams Evolutionary Computation: Slide 11

Applications
• Timetabling (e.g., exam scheduling)
• Discovering successful policies in simple

dynamical systems (e.g., pole-balancing)
• Neural networks

• Finding weights
• Finding topology

• Other combinatorial optimization problems
• Traveling salesman

© 2003, Ronald J. Williams Evolutionary Computation: Slide 12

Where do GAs fit?
• Perhaps more of a machine discovery

method
• A way to search spaces for “fit” individuals
• Can be used to search for good hypotheses in

more traditional machine learning applications
• Weights/topology in neural networks
• Rules
• Decision trees

7

© 2003, Ronald J. Williams Evolutionary Computation: Slide 13

+

sin

x

√

+

x

^

2

y

Genetic Programming
Population of programs

represented by trees

E.g.

(+ (sin x) (sqrt (+ (expt x 2) y)))

yxx ++ 2)sin(

© 2003, Ronald J. Williams Evolutionary Computation: Slide 14

+

sin

x

*

x

+

1

y

+

sin

x

√

+

x

^

2

y

Crossover

x

^

2

+

sin

x

√

+

y*

x

+

1

y

+

sin

x

8

© 2003, Ronald J. Williams Evolutionary Computation: Slide 15

Block Stacking Problem (Koza)

Goal: Spell UNIVERSAL vertically
Terminals:
• CS (“current stack”) = name of the top block on

the stack, or F
• TB (“top correct block”) = name of topmost

correct block on stack
• NN (“next necessary”) = name of the next block

needed above TB in the stack

n u l ev i
r
s

a

© 2003, Ronald J. Williams Evolutionary Computation: Slide 16

Block Stacking: Primitive Functions
• (MS x): (“move to stack”), if block x is on the

table, moves x to the top of the stack and returns
T. Otherwise, does nothing and returns F.

• (MT x): (“move to table”), if block x is somewhere
in the stack, moves the block at the top of the
stack to the table and returns T. Otherwise,
returns F.

• (EQ x y): (“equal”), returns T if x equals y, and F
otherwise.

• (NOT x): returns T if x = F and returns F if x=T
• (DU x y): (“do until”), executes x repeatedly until y

returns T

9

© 2003, Ronald J. Williams Evolutionary Computation: Slide 17

Learned Program
• Trained to fit 166 test problems
• Using population of 300 programs, found

this after 10 generations:

(EQ (DU (MT CS) (NOT CS))
(DU (MS NN) (NOT NN)))

Use of EQ here just a syntactically valid
way to perform sequential execution

© 2003, Ronald J. Williams Evolutionary Computation: Slide 18

Another Example: Electronic Circuit Design

(Koza)

• Individuals are programs that transform
beginning circuit to final circuit by adding or
subtracting components and connections

• Use population of 640,000, run on 64 node
parallel processor

• Discovers filter circuits competitive with best
human designs

10

© 2003, Ronald J. Williams Evolutionary Computation: Slide 19

Evolutionary Methods: Upside
• Simple to implement
• Easily parallelized
• Less subject to local optima than more local

search techniques
• Very general-purpose framework

© 2003, Ronald J. Williams Evolutionary Computation: Slide 20

Evolutionary Methods: Downside
• Often extremely large search spaces

• Need to carefully handcraft
• Fitness function
• Representation of individuals
• Operators

• Can be impractically slow

• Very little theory

