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ABSTRACT
We consider the problem of information retrieval evaluation
and the methods and metrics used for such evaluations. We
propose a probabilistic framework for evaluation which we
use to develop new information-theoretic evaluation metrics.
We demonstrate that these new metrics are powerful and
generalizable, enabling evaluations heretofore not possible.

We introduce four preliminary uses of our framework: (1)
a measure of conditional rank correlation, information τ ,
a powerful meta-evaluation tool whose use we demonstrate
on understanding novelty and diversity evaluation; (2) a
new evaluation measure, relevance information correlation,
which is correlated with traditional evaluation measures and
can be used to (3) evaluate a collection of systems simultane-
ously, which provides a natural upper bound on metasearch
performance; and (4) a measure of the similarity between
rankers on judged documents, information difference, which
allows us to determine whether systems with similar perfor-
mance are in fact different.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance evaluation (efficiency and ef-
fectiveness)

General Terms
Experimentation; Theory; Measurement

Keywords
Information Retrieval, Search Evaluation

1. INTRODUCTION
In order to improve search engines, it is necessary to ac-

curately measure their current performance. If we cannot
measure performance, how can we know whether a change
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was beneficial? In recent years, much of the work on infor-
mation retrieval evaluation has focused on user models [7,
18] and diversity measures [1, 10, 24] which attempt to accu-
rately reflect the experience of the user of a modern internet
search engine. However, these measure are not easily gener-
alized. In this work, we introduce a probabilistic framework
for evaluation that encompasses and generalizes current eval-
uation methods. Our probabilistic framework allows us to
view evaluation using the tools of information theory [11].
While our framework is not designed to coincide with user
experience, it provides immediate access to a large number
of powerful tools allowing for a deeper understanding of the
performance of search engines.

Our framework for evaluation is based on the observa-
tion that relevance judgments can also be interpreted as
a preference between those documents with different rele-
vance grades. This implies that relevance judgments can be
treated as a retrieval system, and that evaluation can be
considered as the “rank” correlation between systems and
relevance judgments. To this end, we develop a probabilis-
tic framework for rank correlation based on the expecta-
tion of random variables, which we demonstrate can also
be used to compute existing evaluation metrics. However,
the true value of our framework lies in its extension to new
information-theoretic evaluation tools.

After a discussion of related work (Section 2), we intro-
duce our framework in Section 3. In Section 4, we demon-
strate that our framework allows for an information theoretic
understanding of Kendall’s τ [17], information τ , which we
use to define a conditional version of the rank correlation be-
tween two lists conditioned on a third. In Section 5, we de-
fine a new evaluation measure based on our framework: rel-
evance information correlation. We validate our measure by
showing that it is highly correlated with existing measures
such as average precision (AP) and normalized discounted
cumulative gain (nDCG). As a demonstration of the versa-
tility of our framework when compared to, for example, user
models, we show that our measure can be used to evaluate a
collection of systems simultaneously (Section 6), creating an
upper bound on the performance of metasearch algorithms.
Finally, in Section 7, we introduce information difference, a
powerful new tool for evaluating the similarity of retrieval
systems beyond simply comparing their performance.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. IIS-1256172.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation (NSF).
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2. RELATED WORK
Search systems are typically evaluated against test collec-

tions which consist of a corpus of documents, a set of top-
ics, and relevance assessments—whether a subset of those
documents are relevant with respect to each topic.1 For
example, the annual, NIST-sponsored Text REtrieval Con-
ference (TREC) creates test collections commonly used in
academic research. The performance of systems is assessed
with regards to a specific task. A traditional search task is
to attempt to rank all relevant documents above any non-
relevant documents. For this task, systems are evaluated in
terms of the average trade-off between their precision and
recall with respect to multiple topics. For a given topic, Let
gi ∈ {0, 1} be the relevance grade of the document at rank
i, and let R be the number of relevant documents in the
collection. At rank k,

precision@k =

k∑
i=1

gi

k
(1)

recall@k =

k∑
i=1

gi

R
(2)

The trade-off between the two is measured by average preci-
sion, which can be interpreted as the area under the precision-
recall curve.

AP =

∞∑
i=1

gi × precision@i

R
(3)

Average precision does not include information about docu-
ment quality and degrees of relevance, and is an inherently
recall-oriented measure. It is therefore not suitable for eval-
uating commercial web search engines.

With the growth of the World Wide Web, test collec-
tions began to include graded, non-binary relevance judg-
ments, e.g. G = {non-relevant, relevant, highly relevant}
or G = {0, . . . , 4}. To make use of these graded assess-
ments, Järvelin and Kekäläinen developed normalized dis-
counted cumulative gain (nDCG) [15]. nDCG also has the
advantage that it can be evaluated at arbitrary ranks, and
can therefore be used for precision-oriented tasks like web
search.

Unlike average precision, which has a technical interpre-
tation, nDCG can be best understood in terms of a model
of a hypothetical user. In this model, a user will read the
first k documents in a ranked list, deriving utility from each
document. The amount of utility is proportional to the doc-
ument’s relevance grade and inversely proportional to the
rank at which the document is encountered. We first define
discounted cumulative gain (DCG).

DCG@k =

k∑
i=1

2gi − 1

log2(i+ 1)
(4)

Since the range of DCG will vary from topic to topic, it is
necessary to normalize these scores so that an average can

1For historical reasons, the set of relevance assessments is
often referred to as a QREL.

be computed. Normalization is performed with regard to an
ideal ranked list. If DCG′@k is the maximum possible DCG
of any ranked list of documents in the collection then

nDCG@k =
DCG@k

DCG′@k
(5)

However, one does not always know how many documents
are relevant at each level, and therefore the ideal list used
for normalization is only an approximation. Moffat and Zo-
bel [18] introduced a measure, rank-biased precision (RBP),
that addresses this issue. In RBP, the probability that a
user will read the document at rank k is drawn from a geo-
metric distribution, whose parameter, β ∈ [0, 1), models the
user’s persistence. Given a utility function u : G → [0, 1],
commonly defined as

u(g) =
2g − 1

2d
(6)

where d is the maximum possible relevance grade, RBP is
defined as the expected utility of a user who browses accord-
ing to this model.

RBP = (1− β)

∞∑
i=1

u(gi)× βi−1 (7)

Since RBP is guaranteed to be in the range [0,1) for any
topic and β, it does not require normalization.

Craswell et al. [12] introduced the Cascade model of user
behavior. In this model, a user is still assumed to browse
documents in order, but the probability that a user will view
a particular document is no longer assumed to be indepen-
dent of the documents that were viewed previously, i.e. a
user is not assumed to stop at a particular rank, or at each
rank with some probability. Instead, the user is assumed to
stop after finding a relevant document. This implies that
if a user reaches rank k, then all of the k − 1 documents
ranked before it were non-relevant. Craswell et al. demon-
strated empirically that this model corresponds well to ob-
served user behavior in terms of predicting the clickthrough
data of a commercial search engine.

Chapelle et al. [7] developed an evaluation measure, ex-
pected reciprocal rank (ERR), based on the Cascade model.
Let Ri denote the probability that a user will find the doc-
ument at rank i to be relevant. Then in the Cascade model,
the likelihood that a user will terminate his or her search at
rank r is

Rr

r−1∏
i=1

(1−Ri). (8)

If we interpret the previously defined utility function (Equa-
tion 6) as the probability that a user will find a document
relevant, i.e. Ri = u(gi), then we can computed the ex-
pected reciprocal rank at which a user will terminate his or
her search as

ERR =

∞∑
r=1

1

r
Rr

r−1∏
i=1

(1−Ri). (9)

In this work, we propose an alternative, information-theoretic
framework for evaluation. The first step is to reformulate
these measures as the expected outcomes of random exper-
iments. Computing evaluation measures in expectation is
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not uncommon in the literature, and we are not the first to
suggest that reformulating an evaluation measure as an ex-
pectation allows for novel applications. For example, Yilmaz
and Aslam [30] formulated average precision as the expec-
tation of the following random experiment:

1. Pick a random relevant document,

2. Pick a random document ranked at or above the rank
of the document selected in step 1.

3. Output 1 if the document from step 2 is relevant, oth-
erwise output 0.

Their intention was to accurately estimate average precision
while collecting fewer relevance judgments (a process also
applied to nDCG [32]). However, this formulation led to new
uses, such as defining an information retrieval-specific rank
correlation measure, τAP [31], and a variation of average
precision for graded relevance judgments, Graded Average
Precision (GAP) [21].

Our work uses pairwise document preferences rather than
absolute relevance judgments. The use of preferences is
somewhat common in IR. For example, many learning-to-
rank algorithms, such as LambdaMart [3] and RankBoost [13],
use pairwise document preferences in their objective func-
tions. Carterette et al. [4, 5] explored the collection of prefer-
ence judgments for evaluation, showing that they are faster
to collect and have lower levels of inter-assessor disagree-
ment. More recently, Chandar and Carterette [6] crowd-
sourced the collection of conditional document preferences
to evaluate the standard assumptions underlying diversity
evaluation, for example that users always prefer novel doc-
uments. Relative document preferences can also be inferred
from the clickthrough data collected in the logs of commer-
cial search engines [16]. These preferences can be used for
evaluation without undertaking the expense of collecting rel-
evance judgments from assessors.

3. A PROBABILISTIC FRAMEWORK FOR
EVALUATION

Mathematically, one can view the search system as pro-
viding a total ordering of the documents ranked and a partial
ordering of the entire collection, where all ranked documents
are preferred to unranked documents but the relative prefer-
ence among the unranked documents is unknown. Similarly,
one can view the relevance assessments as providing a par-
tial ordering of the entire collection: in the case of binary
relevance assessments, for example, all judged relevant docu-
ments are preferred to all judged non-relevant and unjudged
documents, but the relative preferences among the relevant
documents and among the non-relevant and unjudged doc-
uments is unknown. Thus, mathematically, one can view
retrieval evaluation as comparing the partial ordering of the
collection induced by the search system with the partial or-
dering of the collection induced by the relevance assessments.

To formalize and instantiate a framework for comparing
such partial orderings, consider the simplest case where we
have two total orderings of objects, i.e., where the entire
“collection” of objects is fully ranked in both “orderings.”
While such a situation does not typically arise in search sys-
tem evaluation (since not all documents are ranked by the
retrieval system nor are they fully ranked by relevance as-
sessments), it does often arise when comparing the rankings

of systems induced by two (or more) evaluation metrics; here
Kendall’s τ is often the metric used to compare these (total
order) rankings.

In what follows, we define a probabilistic framework within
which to compare two total orderings, and we show how tra-
ditional metrics (such as Kendall’s τ) are easily cast within
this framework. The real power of such a framework is
shown in subsequent sections: (1) the framework can be
easily generalized to handle the comparison of two partial
orderings, such as arise in search system evaluation, and
(2) well-studied, powerful, and general information-theoretic
metrics can be developed within this generalized framework.

Consider two total orderings of n objects. There are
(
n
2

)
(unordered) pairs of such objects, and a pair is said to be
concordant if the two orderings agree on the relative rankings
of the objects and discordant if the two orderings disagree.
Let c and d be the number of concordant and discordant
pairs, respectively. Then Kendall’s τ is defined as follows:

τ =
c− d
c+ d

. (10)

If we let C and D denote the fraction of concordant and
discordant pairs then Kendall’s τ is defined as

τ = C −D. (11)

Note that c+ d 6=
(
n
2

)
if there are ties.2

To define a probabilistic framework, we must specify three
things: (1) a sample space of objects, (2) a distribution over
this sample space, and (3) random variables over this sample
space. Let our sample space Ω be all possible 2 ·

(
n
2

)
ordered

pairs of distinct objects, and consider a uniform distribution
over this sample space. For a given ranking R, define a
random variable XR : Ω → {−1,+1} that outputs +1 for
any ordered pair concordant with R and −1 for any ordered
pair discordant with R.

XR [(di, dj)] =

{
1 if di appears before dj in R.

−1 otherwise.
(12)

We thus have a well-defined random experiment : draw an
ordered pair of objects at random and output +1 if that or-
dered pair agrees with R’s ranking and −1 otherwise. Since
all ordered pairs of objects are considered uniformly, the
expected value E[XR] of this random variable is zero.

Given a second ranked list S, one can similarly define an
associated random variable XS . Now consider the random
experiment of multiplying the two random variables: the
product XR ·XS will be +1 precisely when the pair is con-
cordant—i.e. both lists agree that the ordering of the objects
is correct (+1) or incorrect (−1), and the product will be −1
when the pair is discordant—i.e. the lists disagree. In this
probabilistic framework, Kendall’s τ is the expected value

2Kendall defined two means by which τ can account for ties,
depending on the desired behavior. Imagine comparing two
ranked lists, one of which is almost completely composed of
ties. τA, defined above, approaches 1. τB includes the num-
ber of ties in the denominator, and therefore approaches
0. We believe that the former approach is appropriate in
this context. Since QRELs are almost exclusively composed
of ties (recall that all pairs of unjudged documents in the
corpus are considered to be tied), using the latter would
mean that effect of the relatively rare meaningful compar-
isons would be negligible.
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of the product of these random variables:

τ = E[XR ·XS ]. (13)

The real power of this framework is in the definition of
these random variables: (1) the ability to generalize them to
compare partial orderings as arise in system evaluation, and
(2) the ability to measure the correlation of these random
variables using information-theoretic techniques.

4. INFORMATION-THEORETIC RANK
CORRELATION

In Section 3, we defined Kendall’s τ as the expected prod-
uct of random variables. The following theorem allows us to
restate Kendall’s τ equivalently as the mutual information
between the random variables.

Theorem 1. I(XR;XS) = 1+τ
2

log(1+τ)+ 1−τ
2

log(1−τ).

(For a proof of Theorem 1, see Appendix). Unlike Kendall’s
τ , the mutual information between ranked lists ranges from
0 on lists that are completely uncorrelated to 1 on lists that
are either perfectly correlated or perfectly anti-correlated.

If we restrict our attention to pairs of lists that are not
anti-correlated, then the relationship is bijective. Given this
fact, we define a variant of Kendall’s τ , information τ :

τI(R,S) = I(XR;XS) (14)

whereXR is the ranked list random variable defined in Equa-
tion 12 observed with respect to the uniform probability
distribution over all pairs of distinct objects. By refram-
ing Kendall’s τ equivalently in terms of mutual information,
we immediately gain access to a large number of powerful
theoretical tools. For example, we can define a conditional
information τ between two lists given a third. For lists R
and S given T ,

τI(R,S | T ) = I(XR;XS | XT ). (15)

Kendall’s τ can tell you whether two sets of rankings are
similar, but it cannot tell you why. Information τ can be
used as a meta-evaluation tool to find the underlying cause
of correlation between measures. We demonstrate the use
of information τ as a meta-evaluation tool by using it to an-
alyze measures of the diversity of information retrieval sys-
tems. In recent years, several diversity measures (e.g. [1, 10,
24]) have been introduced to evaluate how well systems per-
form in response to ambiguous or underspecified queries that
have multiple interpretations. These measures conflate sev-
eral factors [14], including: a diversity model that rewards
novelty and penalizes redundancy, and a measure of ad hoc
performance that rewards systems for retrieving highly rel-
evant documents. We wish to know not only whether two
diversity measures are correlated, but also the similarity be-
tween their component diversity models. Using Kendall’s
τ , we can observe whether the rankings of systems by each
measure are correlated. But even if they are correlated, this
could still be for one of two reasons: either both the di-
versity and the performance components evaluate systems
similarly; or else one of the components is similar, and its
effect on evaluation is dominant. However, if the measures
are correlated when conditioned on their underlying perfor-
mance components, then this must be due to similarities in
their models of diversity.

Figure 1: Per-query information τ (conditional rank
correlation) between the TREC and NTCIR gold
standard diversity measures conditioned on their
underlying performance measures.

We measured this effect on the the TREC 2011 and 2012
Web collections [8, 9]. Note that the performance measures
are evaluated using graded relevance, while the diversity
measures use binary judgments for each subtopic. All eval-
uations are performed at rank 20. Figure 1 shows the rank
correlation between ERR-IA and D#-nDCG, the primary
measures reported by TREC and NTCIR [26], when condi-
tioned on their underlying performance models. Each query
is computed separately, with each datapoint in the figure
corresponding to a different query. Table 1 shows the re-
sults of conditioning additional pairs of diversity measures
(now averaged over queries in the usual way) on their per-
formance models. The results in Figure 1 are typical of all
pairs of measures on a per-query basis.

Our results confirm that while diversity measures are very
highly correlated, most of this correlation disappears when
one conditions on the underlying performance model. This
indicates that most of the correlation is due to the similar-
ity between the performance components and not the di-
versity components. For example, in TREC 2010, ERR-IA
and α-nDCG have an information τ of almost 0.9. How-
ever, when conditioned on ERR, the similarity falls to only
0.25. This means that while these two measures are mostly
ranking systems for the same reason, that reason is simply
ERR. However, of the 0.9 bits that are the same, 0.25 are
due to some factor other than ERR. This other factor must
presumably be the similarity in their diversity models.
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TREC 2010 TREC 2011

τI(ERR-IA ; α-nDCG) 0.8290 0.8375

τI(ERR-IA ; α-nDCG | nDCG) 0.4860 0.4434

τI(ERR-IA ; α-nDCG | ERR) 0.2499 0.3263

τI(ERR-IA ; α-nDCG | nDCG, ERR) 0.2451 0.2805

τI(ERR-IA ; D#-nDCG) 0.6390 0.5545

τI(ERR-IA ; D#-nDCG | nDCG) 0.3026 0.1728

τI(ERR-IA ; D#-nDCG | ERR) 0.1222 0.1442

τI(ERR-IA ; D#-nDCG | nDCG, ERR) 0.1239 0.1003

Table 1: TREC 2010 and 2011 information τ (condi-
tional rank correlation) between diversity measures
conditioned on ad hoc performance measures.

5. EVALUATION MEASURE
In this section, we demonstrate an extension of our prob-

abilistic framework for evaluation to measuring the corre-
lation between a system and the incomplete ranking gener-
ated by a set of relevance judgments. This allows us to de-
fine an information-theoretic evaluation measure, relevance
information correlation. While our measure has novel appli-
cations, we will demonstrate that the evaluations produced
are consistent with those of existing measures.

To compute mutual information, we must define a sam-
ple space, a probability distribution, and random variables.
Let the sample space, Ω = {(di, dj)}, be the set of all or-
dered pairs of judged documents. This means that we are
ignoring unjudged documents, rather than considering them
non-relevant. This is equivalent to computing an evaluation
measure on the condensed list [23] created by removing all
non-judged documents from the list. We define the proba-
bility distribution in terms of the QREL to ensure that all
ranked lists will be evaluated using the same random experi-
ment. Let P = U |I(gi 6=gj), where gi represents the relevance
grade of document di, be the uniform probability distribu-
tion over all pairs of documents whose relevance grades are
not equal. We define a QREL variable Q over ordered pairs
of documents as

Q [(di, dj)] =

{
1 if gi > gj

0 otherwise.
(16)

Note that this definition can be applied to both graded and
binary relevance judgments.

We now turn our attention to defining a ranked list ran-
dom variable over ordered pairs of documents (di, dj). If
both document di and dj appear in the ranked list, than
our output can simply indicate whether di was ranked above
dj . If document di appears in the ranked list and dj does
not, then we will consider di as having been ranked above
dj , and vice versa. If neither di nor dj is ranked, we will
output a null value. If we were to instead restrict our at-
tention only to judged document pairs where at least one
document is ranked, then a ranked list consisting of a single
relevant document followed by some number of non-relevant
documents would have perfect mutual information with the
QREL—all of the ranked relevant documents appear before
all of the ranked non-relevant documents. However, this
system must be penalized for preferring all of the ranked
non-relevant documents to all of the unranked relevant doc-
uments. If we instead use a null value, our example ranked

list would almost always output null. This behavior would
be independent of the QREL, meaning the two variables will
have almost no mutual information. In effect, the null value
creates a recall component for our evaluation measure; no
system can have a large mutual information with the QREL
unless it retrieves most of the relevant documents.

Another problem we must consider is that mutual infor-
mation is maximized when two variables are completely cor-
related or completely anti-correlated. Consider an example
ranked list consisting of a few non-relevant documents fol-
lowed by several relevant documents and then many more
non-relevant documents. Since this example ranked list will
disagree with the QREL on almost all document pairs, its
random variable will have a very high mutual information
with the QREL variable. The system is effectively being
rewarded for finding the subset of non-relevant documents
that happen to be present in the QREL. To address this,
we truncate the list at the last retrieved relevant document
prior to evaluation.

Let ri represent the rank of document di in the list S.
Then the ranked list variable RS is defined as

RS [(di, dj)] =


1 if ri < rj

0 if neither di nor djwere retrieved

−1 otherwise.

(17)

We define our new measure, Relevance Information Cor-
relation, as the mutual information between the QREL vari-
able Q and the truncated ranked list variable R

RIC(System) = I(RSystem;Q). (18)

RIC is computed separately for each query, and then aver-
aged, as with mean average precision.

In order to compute RIC we must estimate the joint prob-
ability distribution of document preferences over Q and R.
This could be done in various ways. In this work, we use
the maximum likelihood estimate computed separately for
each query. Since the MLE requires a large number of ob-
servations, RIC is only accurate for recall-oriented evalu-
ation. In future work, we intend to explore other means
of estimating P (Q,R) that will allow RIC to be used for
precision-oriented evaluation as well.

We also note that RIC has no explicit rank component,
and would therefore seem to treat all relevant documents
equally independent of the rank at which they were ob-
served. However, there is an implicit rank component in that
a relevant document that is not retrieved early in the list
must be incorrectly ranked below many non-relevant docu-
ments. This argument is similar in spirit to Bpref [2].

Our measure is quite novel in its formulation, and makes
many non-standard assumptions about information retrieval
evaluation. Therefore it is necessary to validate experimen-
tally that our measure prefers the same retrieval systems as
existing measures. Note that for two evaluation measures to
be considered compatible, it is sufficient that they rank sys-
tems in the same relative order; it is not necessary that they
always assign systems similar absolute scores. For example,
a system’s nDCG is often higher than its average precision.

To show that RIC is consistent with AP and nDCG, we
computed the RIC, AP, and nDCG of all systems submit-
ted to TRECs 8 and 9. Figure 2 shows the output of RIC
plotted against AP (top) and nDCG (bottom) on TRECs 8
(left) and 9 (right) [28, 29]. TREC 8 uses binary relevance
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Figure 2: Correlation between RIC and AP (top) and nDCG (bottom). TREC 8 (left) uses binary relevance
judgments. TREC 9 (right) uses graded relevance judgments.

TREC 8 TREC9

(G)AP 0.716 0.648

nDCG 0.713 0.757

MI 0.719 0.744

Table 2: Discriminative power of (graded) AP and
nDCG vs. RIC

judgments. TREC 9 uses graded relevance judgments, re-
quiring the use of graded average precision. Inset into each
plot is the output of the measures on the top ten systems.
For each experiment, we report the Kendall’s τ and Spear-
man’s ρ [27] rank correlations for all systems, and for the
top ten systems. With Kendall’s τ values of at least 0.799
on all systems and 0.644 on top ten systems, the ranking of
systems by RIC is still highly correlated with those of both
AP and nDCG. However, RIC is not as highly correlated
with either AP or nDCG as AP and nDCG are with each
other. Note that the correlation between RIC and GAP on
TREC 9 is highly monotonic, even if is not particularly lin-
ear. This implies that the two measures do rank systems in
a consistent relative order, even if RIC is a biased estimator
of GAP.

To further validate our measure, we also compute the dis-
criminative power [22] of the various measures. Discrimina-
tive power is a widely used tool for evaluating a measure’s
sensitivity i.e. how often differences between systems can be

detected with high confidence. A high sensitivity can be
seen as a necessary, though not sufficient, condition for a
good evaluation measure. Discriminative power is defined
as the percentage of pairs of runs that are found to be sta-
tistically significantly different by some significance test. As
per Sakai, we use a two-tailed paired bootstrap test with
1000 bootstrap samples per pair of systems. Our results are
displayed in Table 2. As measured by discriminatory power,
we see that RIC is at least as sensitive, if not more so, than
AP and nDCG.

6. UPPER BOUND ON METASEARCH
In Section 5, we defined an evaluation measure in terms of

mutual information. One advantage of this approach is that
collections of systems can be evaluated directly by consid-
ering the output of their random variables jointly, without
their needing to be combined. For a collection of systems,
denoted S1 through Sn, the relevance information correla-
tion can be defined as

RIC(S1, . . . , Sn) = I(RS1 , . . . , RSn ;Q) (19)

In this section, we will show that this produces a natural
upper bound on metasearch performance that is consistent
with other upper bounds appearing in the literature.

We compare our upper bound against those of Montague [19].
Montague describes metasearch algorithms as sorting func-
tions whose comparators, as well as the documents to be
sorted, are defined in terms of collections of input systems.
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By also using the QREL as input, these algorithms can es-
timate upper bounds on metasearch performance. These
bounds range from the ideal performance that cannot pos-
sibly be exceeded by any metasearch algorithm, to descrip-
tions of reasonable metasearch behavior that should be sim-
ilar to the performance of any quality metasearch algorithm.

Montague defines the following upper bounds on metasearch:

1. Naive: Documents are sorted by comparison of rele-
vance judgments, i.e. the naive upper bound is cre-
ated by returning all relevant documents returned by
any system in the collection above any non-relevant
document. Relevant documents not retrieved by any
system are not ranked.

2. Pareto: If document A is ranked above document B by
all systems, then document A is considered “greater”
than document B. Otherwise, the documents are sorted
by comparison of relevance judgments.

3. Majoritarian: If document A is ranked above docu-
ment B by at least half of the systems, then document
A is considered“greater” than document B. Otherwise,
the documents are sorted by comparison of relevance
judgments.

We will compare our direct joint evaluation with these up-
per bounds, and several metasearch algorithms commonly
used as baselines in the IR literature: the CondorcetFuse
metasearch algorithm [20], and the comb family of metasearch
algorithms [25].

Figure 3: RIC of systems output by metasearch
algorithms (Fusion System) versus RIC of systems
computed directly (S1, . . . , S10) without combining.

We examined the direct evaluation and metasearch per-
formance of collections of ten randomly selected systems.
Experiments were performed on TREC 8 and 9, with both
binary and graded relevance judgments. To conserve space,
we only show the results from TREC 8. The results from
TREC 9 were highly similar, both when using binary and
graded relevance judgments.

Figure 3 shows the RIC of the system output by a metasearch
algorithm plotted against the joint RIC of the input sys-
tems, and Table 3 shows various measures of their corre-
lation. Montague found that combANZ is inferior to Con-
dorcetFuse and combMNZ, CondorcetFuse and combMNZ

TREC 8 τ ρ RMSE

ANZ 0.221 0.330 0.481

MNZ 0.587 0.764 0.351

Condorcet 0.519 0.689 0.362

Majoritarian 0.552 0.735 0.340

Pareto 0.657 0.836 0.044

Naive 0.788 0.931 0.039

Table 3: Correlation between joint distribution and
metasearch algorithms (Kendall’s τ , Spearman’s ρ,
root mean square error).

perform comparably to the Majoritarian bound, and the
Naive bound is not appreciably better than the Pareto bound.
If direct evaluation and the Naive bound are both reason-
able estimates of the actual upper bound, then these re-
sults should be confirmed by Figure 3 and Table 3, as in-
deed they are. Note that there is almost no correlation be-
tween the joint evalution and the weakest metasearch al-
gorithm, combANZ: combANZ does not approximate the
upper bound on metasearch. The correlation improves as
the quality of the metasearch algorithm improves, and it
does so in a manner consistent with Montague. The cor-
relations between the joint evaluation and the output of
combMNZ, CondorcetFuse, and the Majoritarian bound are
similar; while they are still biased as estimators, the corre-
lation is beginning to approach monotonicity. Finally, with
a root mean square error of 0.039, the joint evaluation esti-
mation of the upper bound is essentially identical to that of
the Naive upper bound. If the Naive upper bound is a rea-
sonable estimate of the upper bound on metasearch perfor-
mance, then so is the joint evaluation of the input systems.

7. INFORMATION DIFFERENCE
In this section, we introduce a novel application of our

probabilistic framework. Imagine that you are attempting
to improve an existing ranker. On what basis do you decide
whether or not your changes are beneficial? One typically
evaluates both systems on a number of queries, and mea-
sures the difference in average performance. If one system
outperforms the other, whether you have made an improve-
ment is clear. But what happens when the systems perform
similarly? It could be that your new system is essentially
unchanged from your old system, but it is also possible that
the two systems chose highly different document and just
happened to have very similar evaluation scores. In the lat-
ter case, it may be possible to create a new, better system
based on a combination of the two existing systems.

We propose to measure the magnitude of the difference
between systems in their ranking of documents for which
we have relevance information, rather than the magnitude
of the difference between their performance. We denote this
new quantity as the information difference between systems.
Our definition of information difference is inspired by the
Boolean Algebra symmetric difference operator as applied
to information space (see Figure 4).

id(S1, S2) = I(S1;Q | S2) + I(S2;Q | S1) (20)
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System 1 System 2

QREL

Figure 4: Information difference corresponds to the
symmetric difference between the intersections of
the systems with the QREL in information space
(red portion of the Venn diagram).

As a preliminary validation of information difference, we
analyzed the change in AP and information difference be-
tween pairs of systems submitted to TREC 8, selected at
random. We expect the two to be somewhat directly cor-
related, since, in general, if two systems rank documents
similarly, we would expect them to have similar AP. How-
ever, we expect that they will not be highly correlated, since
we believe that information difference is much more infor-
mative. Our intuition is supported by Figure 5, which shows
the magnitude of the change in AP on the horizontal axis,
and the information difference on the vertical axis.

Figure 5: Scatter plot of information difference and
the magnitude of change in AP of random pairs of
TREC 8 systems.

To demonstrate the utility of information difference, we
sorted all the systems submitted to TREC 8 by AP and
separated them into twenty equal-sized bins. By construc-
tion, each bin contained systems with small differences in
performance. Our goal is to distinguish between similar and
dissimilar systems within each bin. To this end, all systems
within each bin were compared with one other (see Table 4).
When the system pairs were sorted by their information dif-
ference, both systems in the first 27 pairs were submitted
by the same group, whereas sorting by |∆ AP| produced no
discernible pattern. It is reasonable to assume that these
systems were different instantiations of the same underlying

technology. We can therefore conclude that information dif-
ference is able to determine whether systems with the same
underlying performance are in fact similar, as desired.

Rank System 1 System 2 id |∆ AP|
1 UB99T UB99SW 0.010 0.005
2 unc8al32 unc8al42 0.012 0.002
3 fub99tt fub99tf 0.017 0.000
4 nttd8al nttd8alx 0.023 0.002
5 ibmg99a ibmg99b 0.027 0.012

...

28 isa25t cirtrc82 0.084 0.004
29 CL99SD CL99SDopt2 0.086 0.000
30 ok8amxc ok8alx 0.086 0.006
31 tno8d4 MITSLStd 0.088 0.016
32 uwmt8a2 uwmt8a1 0.089 0.002

Table 4: The systems from TREC 8 were binned by
average precision. Information difference and ∆ AP
were computed for all system pairs within each bin.
Sorting by information difference, both systems in
the first 27 pairs were submitted by the same group.

8. CONCLUSION
In this work, we developed a probabilistic framework for

the analysis of information retrieval systems based on the
correlation between a ranked list and the preferences induced
by relevance judgments. Using this framework, we devel-
oped powerful information theoretic tools for better under-
standing information retrieval systems. We introduced four
preliminary uses of our framework: (1) a measure of condi-
tional rank correlation, information τ , which is a powerful
meta-evaluation tool whose use we demonstrated on under-
standing novelty and diversity evalution; (2) a new evalu-
ation measure, relevance information correlation, which is
correlated with traditional evaluation measures and can be
used to (3) evaluate a collection of systems simultaneously,
which provides a natural upper bound on metasearch perfor-
mance; and (4) a measure of the similarity between rankers
on judged documents, information difference, which allows
us to determine whether systems with similar performance
are actually different.

Our framework is based on the choice of sample space,
probability distribution, and random variables. Throughout
this work, we only used a uniform distribution on appropri-
ate pairs of documents. However, not all document pairs
are equal. The use of additional distributions is an imme-
diate avenue for improvement that we intend to explore in
future work. For example, a geometric distribution may be
employed to force our evaluation tools to concentrate their
attention at the top of a ranked list.

The primary limitation of our evaluation measure as im-
plemented in this work is that it is only applicable to recall-
oriented retrieval tasks. In future work, we intend to develop
a precision-oriented version that is applicable to web search.
Given such a measure, judgments can be combined in the
way systems were in our upper bound on metasearch. In that
way, a small number of expensive to produce nominal rel-
evance judgments, a somewhat larger number of somewhat
less expensive preference judgments, and a gold-stander ranker
could all be used simultaneously to evaluate systems.
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Finally, we intend to explore the application of informa-
tion difference to the understanding of information retrieval
models. For example, BM25 and Language Models have long
been used as baselines in information retrieval experiments.
On the surface, these two models appear to be completely
different. And yet, the two share deep theoretical connec-
tions [33]. Using information difference, we can determine
whether their theoretical similarities outweigh their superfi-
cial differences in terms of how they rank documents.
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10. APPENDIX

Theorem 1. I(XR;XS) = 1+τ
2

log(1+τ)+ 1−τ
2

log(1−τ).

Proof. Denote XR and XS as X and Y . Consider the
following joint probability distribution table.

Y

X
−1 1

−1 a b

1 c d

Observe that: a+ b+ c+ d = 1; C = a+ d, D = b+ c, and
therefore τ = a+d− b− c; and since document pairs appear
in both orders, a = d and b = c.

The joint probability distribution can be rewritten as fol-
lows.

Y

X
−1 1

−1 C
2

D
2

1 D
2

C
2

Observe that the marginal probability P (X) = P (Y ) =(
C
2

+ D
2
, C

2
+ D

2

)
=
(
1
2
, 1
2

)
.

I(X;Y ) = KL(P (X,Y )||P (X)P (Y ))

=
∑
x,y

p(x, y) lg
p(x, y)

p(x)p(y)

=
∑
x,y

p(x, y) lg p(x, y) +
∑
x,y

p(x, y) lg
1

p(x)p(y)
.

Since P (X,Y ) =
(
C
2
, D

2
, C

2
, D

2

)
and P (X)P (Y ) =

(
1
4
, 1
4
, 1
4
, 1
4

)
,

I(X,Y ) = 2 · C
2

lg
C

2
+ 2 · D

2
lg
D

2
+ 2 · C

2
lg 4 + 2 · D

2
lg 4

= C lg
C

2
+D lg

D

2
+ 2C + 2D

= C lgC − C +D lgD −D + 2C + 2D

= C lgC +D lgD + 1

= C lgC + (1− C) lg(1− C) + 1

Since C +D = 1 and τ = C −D, we have that τ = 2C − 1,
C = 1+τ

2
and D = 1− C = 1−τ

2
.

In terms of C, if H2 represents the entropy of a Bernoulli
random variable ,3

I(X;Y ) = −H2(C) + 1

= −H2

(
1 + τ

2

)
+ 1

=
1 + τ

2
lg

1 + τ

2
+

1− τ
2

lg
1− τ

2
+ 1

=
1 + τ

2
lg(1 + τ)− 1 + τ

2
+

1− τ
2

lg(1− τ)

−1− τ
2

+ 1

=
1 + τ

2
lg(1 + τ) +

1− τ
2

lg(1− τ)

Corollary 1. For two ranked lists R and S, I(XR;XS) =
1 − H2(K) where K = 1−τ

2
is the normalized Kendall’s τ

distance between R and S.

3H2(p) = −p lg p − (1 − p) lg(1 − p). Note that H2(p) =
H2(1− p).
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