Lecture 3

Pete Manolios
Northeastern

Computer Aided Reasoning, Lecture 3



Invariants

> A key concept: invariants (definec 1-len (1 :tl) :nat
» What is an invariant? Gf éle”dp D
> A property that is always satisfied in all (+ 1 (l-len (tail 1)))))

executions of a program is an invariant

> Properties are associated with program
locations

> For example let I = (ne-tlp 1)
(definec l-len (1 :tl) :nat
» Then I is an invariant because at that (if (lendp 1)

location in the program it always holds 0
(+ 1 (l1-1en {I}Ctail 1)))))
> Why?

> The input contract & test require it

Slides by Pete Manolios for CS4820



Contracts

> A simple, useful class of invariants that you

should always check are contracts (definec 1-len (1 :t1) :nat
(if (lendp 1)
> Every function has an input contract 0

(+ 1 (1-len (tail 1)))))
» For every function call, we must be able to

» statically establish that the input contract of
the function is satisfied

» In ACL2s we can specify contracts All elite programmers | know
> ACL2s checks them for us think in terms of invariants

Slides by Pete Manolios for CS4820



Contracts

»1. lendp: (top 1) (definec 1-len (1 :tl) :nat
»2. tail: (ne-tlp 1) (if (lendp 1)
»3. 1-len: (tlp (tail 1)) 0

(+ 1 (1-1en Ctail 1)))))
»4. +: (acl2-numberp 1)

(acl2-numberp (1-len (tail 1)))

»5. if: t
» Function contract (defunctl—le: (12 £63Ct1p 13
:input-contrac p
*(tlp 1) => (natp (l-len 1)) :output-contract {8}(natp {7}(l-len 1))
» Contract contracts {5}(if {1}(lendp 1)
0

»6.tlp: t (tlpis arecognizer) 430+ 1 {33C1-len {2}Ctail 1))
»7.1-len: (tlp 1) (input contract!)
» 8. natp: t (natp is a recognizer)
» Every time you write a program, (not just for for this class), check body and function contracts!
» You can think of invariants as assertions

> {i} means that every time program execution reaches this point then {i} is true

Slides by Pete Manolios for CS4820



Static Checking

> Body contracts (defunc 1-len (1)

»1. lendp: (tlp 1) :input-contract {6}(tlp 1)
) :output-contract {8}(natp {7}(1l-len 1))
»2. tail: (ne-tlp 1) {5}Cif {1}(lendp 1)
: )

»4. +: (aclZ2-numberp 1)
(aclZ2-numberp (1-len (tail 1)))
»5. 1f: t
» Function contract, contract contracts ...
» Static checking of contracts
» Before the definition is accepted we prove all the contracts
» During execution, only top-level input contracts are checked
» We have assurance that, at the language level, code will run without any runtime errors

» Static checking of contracts is hard, which is why it is not supported in most PLs

Slides by Pete Manolios for CS4820



Dynamic Checking

» Dynamic checking of contracts
» We generate code to check the contracts at run-time
» This code can incur a significant performance penalty
» Contract violations are possible and will lead to an exception

» Dynamic checking is supported via mechanisms such as assertions;
typically used only in development

(defunc 1-1len (1)
:input-contract {6}(tlp 1)
:output-contract {8}(natp {7}(l-len 1))
{5}(if {1}(lendp 1)
0
{4}(+ 1 {3}(1-1en {2}(tail 1)))D))

Slides by Pete Manolios for CS4820



Invariants & Properties

The best programmers are not marginally better than merely good ones.
They are an order-of-magnitude better, measured by whatever standard:
conceptual creativity, speed, ingenuity of design, or problem-solving ability.

Randall E. Stross

First learn computer science and all the theory. Next develop a
programming style. Then forget all that and just hack.

George Carrette

A great lathe operator commands several times the wage of an average
lathe operator, but a great writer of software code is worth 10,000 times the
price of an average software writer.

Bill Gates

Slides by Pete Manolios for CS4820



Definitional Principle

» The definitions

(defunc f (x1 ... xn) (definec f (x1 :t1 ... xn :tn) :tf
:input-contract ic :input-contract ic
:output-contract oc routput-contract oc
body) body)

is admissible provided:
> f is a new function symbol
» the xi are distinct variable symbols

» body is a term, possibly using f recursively as a function symbol, mentioning
no variables freely other than the xi

» the function is terminating

®ic = oc is a theorem (definec gets turned into defunc)

» the body contracts hold under the assumption that ic holds

Slides by Pete Manolios for CS4820



Definitional Axioms

> When we admit a function, we get the following axiom and theorem
»1Cc = (f x1 ... xn) = body (Definitional axiom)
»1c = oc (Contract theorem)

> In proofs we will not explicitly mention input contracts when using a
function definition because contract completion (test?!)

> Why termination? (f x) = 1 + (f x) leads to inconsistency

> Why no free vars? (f x) = y leads to inconsistency

Slides by Pete Manolios for CS4820



Measure Functions

> WWe use measure functions to prove termination.

® m is a measure function for f if all of the following hold.
» m is an admissible function defined over the parameters of f;
» m has the same input contract as f;

® m has an output contract stating that it always returns a natural
number; and

® on every recursive call, m applied to the arguments to that recursive
call decreases, under the conditions that led to the recursive call.

Slides by Pete Manolios for CS4820



Measure Function Example

(definec drop-last (x :tl) :tl
(match x

(Cior O &) O)
((f . r) (cons f (drop-last r)))))

» What is a measure function?
> (len x)

Slides by Pete Manolios for CS4820



Measure Function Example

(definec prefixes (1 :tl) :tl
(match 1

CO "CO I
(& (cons 1 (prefixes (drop-last 1))))))

> |s prefixes admissible?
* Yes. Use (len 1)

» But, our main proof obligation is:
(property (1 :ne-tl)
(< (len (drop-last 1)) (len 1)))

» This needs a proof by induction
» Common pattern: f’s definition uses g

> to prove termination of f, we often need “size” theorems about g

Slides by Pete Manolios for CS4820



ACL2s-size

A very useful, built-in function, since ACL2s uses this function to
build measure functions.

(definec aclZ2s-size (x :all) :nat
(match x
((1L . r) (+1 (aclZ2s-size 1) (aclZs-size r)))
(:rational (integer-abs (numerator x)))
(:string (length x))
(& 0)))

Slides by Pete Manolios for CS4820



Observation

» We require a measure function to return a natural number

> But sometimes need more than a natural number to prove termination
> We need infinite numbers!

> An example is the "weird" function below (Ackermann)

> Try proving that is terminating and you’ll see what | mean

(definec weird (x :nat y :nat) :pos
(match (list x y)
(0 &) (1+ y))
((& @) (weird (1- x) 1))
(& (weird (1- x) (weird x (1- y))))D))

Slides by Pete Manolios for CS4820



Observation

> There are simple programs for which no one knows whether they
terminate

» And no one has any good idea on how to prove that they do or don’t

> Here is a simple, famous example

(definec ¢ (nh :nat) :nat
(match n
(C:or @ 1) n)
(:even (c (/' n 2)))
@& (c (+1C*3n))))

» The claim that it terminates is called the “Collatz conjecture.”

» Paul Erdos: “Mathematics may not be ready for such problems.”

Slides by Pete Manolios for CS4820



DEMO

Slides by Pete Manolios for CS4820



?
S
stion

e

u

Q

i



