
Abbreviated Path Expressions With Iterated Wild Cards:
WYSIWYG Semantics and Efficient Recognition

Ahmed Abdelmeged Karl Lieberherr
College of Computer & Information Science

Northeastern University
Boston, MA 02115

{mohsen,lieber}@ccs.neu.edu

ABSTRACT
Abbreviating paths with iterated wild cards is an abstrac-
tion mechanism common to Adaptive Programming (AP),
eXtensible Markup Language (XML) document processing,
and Aspect Oriented Programming (AOP). Recognition of
abbreviated paths is used to for navigation in both AP and
XML, and to decide upon advice execution in AOP. Finite
state automata have been used for efficient recognition of ab-
breviated paths. In this paper, we introduce cover automata
for abbreviated path recognition. Cover automata have sig-
nificantly lower state complexity than automata used in pre-
vious approaches. One contribution of this paper is an al-
gorithm for constructing a cover automaton for abbreviated
path recognition. We also prove the correctness of our al-
gorithm. A second contribution of this paper is a succinct
formal semantics for abbreviated paths based on regular lan-
guage theory which has greatly simplified our proofs.

1. INTRODUCTION
Path expressions are used to specify a set of paths pertain-

ing to some task at hand. Path expressions are common to
Object Oriented Programming (OOP), Adaptive Program-
ming (AP), eXtensible Markup Language (XML) document
processing, and Aspect Oriented Programming (AOP). In
OOP, path expressions are used to retrieve information from
object graphs. In AP, strategies are a form of path expres-
sion used to navigate object graphs. In XML document
processing, XPath expressions are used to specify elements
in XML documents for both retrieval and update. Finally,
In AOP, pointcut designators are used to select a set of join
points during the course of program execution.

Abbreviating path expressions is an abstraction mecha-
nism that allows developers to write generic programs by
abstracting over irrelevant structural details. Abbreviated
path expression formalisms fall into two categories: explicit
and implicit. Explicit formalisms provide developers with
wild cards to replace the abbreviated path components. Wild
cards can also be iterated to replace multiple consecutive ab-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

breviated path components. Examples of explicit formalisms
is XPath where developers can use “//” as form of iterated
wild card and the AspectJ point cut language that provides
the “cflow” construct as a form of iterated wild cards. The
“.∗” in regular expressions is a third example of iterated wild
cards.

Implicit formalisms do not provide developers with wild
cards. Instead, all paths are translated into an explicit form
by inserting wild cards into certain places defined by what
we call an expansion semantics. Implicit formalisms save the
developers from writing too many wild cards to make their
methods flexible. An example of implicit formalisms is the
regular-expression-like strategy language in AP.

Naive recognition of path expressions with iterated wild
cards is inefficient. For example, retrieval of nodes specified
by the XPath expression“.//para” involves a traversal of the
entire XML tree and might visit a large number of nodes that
can never lead to a “para” element. Schema information can
be used to optimize the execution of path expressions with
wild cards so that it visits nodes from which a “para” ele-
ment is reachable. Several constructions [8, 5, 12] exist that
are based on the idea of intersecting two automata one rep-
resenting paths in the query and another representing paths
in the schema. The number of states in the intersection au-
tomaton is proportional to the product of number of states
in both automata [14].

Observing the fact that at runtime the intersection au-
tomaton is used to check paths in a document that conform
to the schema. A cover automaton for the intersection can
be used. A cover automaton can have more paths than the
intersection automaton as long as these extra paths are il-
legal according to the schema. The benefit of using a cover
automaton is that it can have a significantly lower state
complexity than intersection automaton and therefore it can
improve the overall runtime performance. One contribution
of this paper is an algorithm for constructing a cover au-
tomaton for abbreviated path recognition. We also prove
the correctness of our algorithm.

In AP, the classical interpretation of wild cards as place
holders for “anything” leads to modularity and ambiguity
problems. In this paper, we argue that a slightly restricted
interpretation of wild cards, called WYSIWYG, can solve
both problems. Furthermore, it can improve the efficiency
of recognizing abbreviated paths with wild cards. We give a
succinct formal semantics for abbreviated paths based on
regular language theory which has greatly simplified our
proofs.

The rest of this paper is organized as follows: In section

2, we introduce our notation. In section 3, we give a suc-
cinct formal semantics for abbreviated paths according to
the WYSIWYG interpretation of wild cards. In section 4,
we show that it is possible to improve the efficiency of path
recognition. In section 5, we give a construction of an ef-
ficient recognizer for abbreviated paths with iterated wild
cards, In section 6, we discuss some of the related work.
Section 7 concludes this paper. It is worth mentioning that
sections 3 and 4 are independent of each other and can be
read separately.

2. NOTATION
We use

• uppercase Greek letters to denote alphabets (e.g. ΣC),

• lowercase Greek letters to denote strings,

• uppercase Latin letters to denote regular languages
(e.g. C),

• lowercase Latin letters to denote symbols (e.g. a) as
well as functions (e.g. meta),

• Σ∗ to denote the free monoid on an alphabet Σ,

• f∗ to denote a homomorphism f∗ : Σ∗A → Σ∗B con-
structed by extending the function f : ΣA → Σ∗B the
usual way,

• C to denote the state complexity of a regular language
C. The state complexity of a regular language is the
number of states in the minimal deterministic finite
automaton that accepts it,

• R◦ to denote the prefix closure of a regular language
R. Formally, R◦ = {ω | ∃σ ∈ R : ω v σ}.

• P(S) to denote the power set of some set S.

3. STATIC SEMANTICS OF ABBREVIATED
PATHS WITH ITERATED WILD CARDS

Given:

• A regular set C ⊆ Σ∗C of concrete paths.

• A set of abbreviated paths A ⊆ (ΣA ∪ �)∗ where ΣA ⊆
ΣC and � 6∈ ΣC is a distinguished wild card symbol.

• All occurrences of � are iterated (i.e. � only shows
under the Kleene star). Formally, ∀α , β ∈ (ΣA ∪ �)∗ :
α · � · β ∈ A⇒ α · �∗ · β ⊆ A.

The meaning of a set of abbreviated paths A with respect
to a set of concrete paths C according to the WYSIWYG se-
mantics, denoted WWG(A , C), is a set containing all paths
in C that are obtainable from some path in A by replac-
ing all wild cards in it with symbols from ΣC\ΣA. Given
a concrete path ω, there can be at most one corresponding
abbreviated path α. Furthermore, α can be obtained from
ω by replacing all occurrences of symbols not in ΣA in ω by
wild cards. This observation enables us to have the follow-
ing succinct formal definition for WWG(A , C):
WWG(A , C) = C ∩ {α ∈ Σ∗C | f∗(α) ∈ A}, Where:

f(a) =

(
a , a ∈ ΣA ,

� , otherwise .

Throughout the rest of this section we shall contrast
WWG(A , C) to the classic interpretation CLASSIC(C , A)
of abbreviated paths in which wild cards can be replaced by
symbols from ΣC.

3.1 Modularity
The purpose of using abbreviated paths A in module M

to refer to some subset of concrete paths C in some struc-
ture defined in another module N is to lower the coupling
between M and N .

In the context of AP, code is attached to nodes in paths
defined in A. Therefore, the order and frequency in which
these nodes occur those concrete paths selected by paths in
A affects the overall behavior of the program. Ideally, it is
desirable to guarantee that the order and frequency these
nodes appear in the set of selected paths is the same as the
strategy.

For example, consider the“Bus Route Class Graph”shown
in Figure 1. C contains all paths in the graph shown in
Figure 1. Suppose that we are using the abbreviated path
expression A = BusRoute · �∗ ·Passenger to select paths in
the class graph. Furthermore, suppose that we have a code
block BCode attached to BusRoute and the block PCode
attached to Passenger. WWG(A , C) = BusRoute · LoB ·
LoB∗ · Bus · LoP · LoP ∗ · Passenger. CLASSIC(A , C) =
BusRoute·LoB ·LoB∗ ·Bus·LoP ·LoP ∗ ·Passenger ·(Pass·
BusRoute · LoB · LoB∗ · Bus · LoP · LoP ∗ · Passenger)∗.
All paths in WWG(A , C) have exactly one BusRoute fol-
lowed by a one Person. CLASSIC(A , C) contains all paths
in WWG(A , C) in addition to some extra paths that con-
tain more than one BusRoute followed by more than one
Passenger. In order to exclude these paths, we need to enu-
merate them. This increases the coupling between A and C
as A would have to mention more irrelevant structural de-
tails than it “needs” and furthermore, as C is evolved, A
might require updates to exclude extraneous paths.

BusRoute LoB Bus

LoP

PassengerPass

Figure 1: Bus Route Class Graph

3.2 Ambiguity
Ambiguity is not a problem for recognition. It becomes

a problem when events during the recognition process are
observed. In AP, we associate behavior with paths in an ab-
breviated path expression. Therefore, confusion can occur
when one concrete path can match more than one abbre-
viated path. As mentioned earlier, with the WYSIWYG
semantics, there can be at most one abbreviated path cor-
responding to some concrete path. With the CLASSIC se-
mantics, ambiguity can occur. For example, consider the set
A = a · �∗ · b · �∗ · d ∪ a · �∗ · c · �∗ · d, and the concrete
path ω = a · b · c · d. According to the CLASSIC semantics,

ω matches both a · b · � · d, and a · � · c · d. According to
WYSIWYG semantics, ω matches neither.

3.3 Efficiency
Another, important property of the set WWG(A , C) is

that it has a state complexity of A ∗ C. As we shall see in
the following section, the state complexity of a set of selected
paths is directly related to the efficiency of their recognition.

Theorem 3.1 (efficiency). Let W = WWG(A , C),
W ≤ A ∗ C.

Proof. Let AA = 〈Q, ΣA ∪ �, δ, q0, F 〉 be the mini-
mal DFA that recognizes A. From automata Theory, the
DFA EXP (AA, ΣC) = 〈Q, ΣC, γ, q0, F 〉, where γ(qi, a) =
δ(qi, f(a)), recognizes {α ∈ Σ∗C | f∗(α) ∈ A}. Furthermore,
EXP (AA, ΣC) has the same number of states as AA which
is A. Therefore, the state complexity of the set {α ∈ Σ∗C | f∗(α) ∈
A} is A. Therefore, the state complexity of WWG(A , C) is
A ∗ C [14].

A similar construction for CLASSIC(A , C) results in a
nondeterministic finite automaton. Therefore, the state com-
plexity of CLASSIC(A , C) can be exponentially larger than
WWG(A , C). An example illustrating this exponential com-
plexity is given in [8].

4. DYNAMIC SEMANTICS
Given:

• A schema modeled as a language C ⊆ Σ∗C. We call ΣC

the set of classes.

• A set of selected paths modeled as another regular lan-
guage S ⊆ C. Typically, S is the meaning of a set of
abbreviated paths with respect to C.

• A set of object paths modeled as a regular language
O ⊆ Σ∗O. We call ΣO the set of objects. Typically, O is
the set of all paths that were once active during some
traversal of some graph defined over the set of objects.

• A function meta : ΣO → ΣC that maps objects to
classes. We say that π ∈ Σ∗O is an instance ofmeta∗(π).
We also define a function slice(L, O) = {π ∈ O |meta∗(π) ∈
L} to return a subset of object paths that are instances
of some path in L.

• O conforms to C, denoted conforms(O, C). Formally,
conforms(O, C) means slice(C, O) = O.

The dynamic semantics of a set of paths S with respect to
an object graph O, denoted goal(S, O) is the set of object
graph paths that can be legally completed to an instance
of some path in S. Formally, goal(S, O) = slice(S◦, O). At
runtime, paths in O are checked against a recognizer for
S◦ after applying the meta∗ function to them. It is worth
mentioning that the state complexity of S◦ is the same as
the state complexity of S because a DFA recognizing S◦ can
be constructed from a DFA recognizing S by turning every
state leading to a final state into a final state.

4.1 Cover Languages
It is desirable to construct the smallest possible recog-

nizer for S◦ in order to improve the overall performance at
runtime. One approach to reduce its size is to construct

a nondeterministic finite state recognizer. This approach
was adopted in [8], and it is possible when the language S◦

has a minimal nondeterministic finite state recognizer that
is smaller than the minimal deterministic finite state recog-
nizer. This is the case with the classic interpretation of wild
cards adopted there. However, this is not the case in gen-
eral and certainly it is not the case when the WYSIWYG
interpretation of wild cards is adopted.

Fortunately, there is another approach. We can rely on
the fact that only legal object graph paths are going to be
checked against S◦ at runtime, and use a recognizer for a
cover language of S◦ that also contain some illegal paths.
The state complexity of a cover language can be significantly
lower than its base language. For example, if C = S◦, then
C = S◦∩C meaning that all legal paths are selected. Since at
runtime we are going to check only legal paths, a recognizer
for the cover language Σ∗C (whose state complexity is 1) can
be used.

A cover language cover(L, C) of the language L with re-
spect to C is formally defined as: cover(L, C) = {X ⊆
Σ∗C |X ∩ C = L}. An automata recognizing cover(L, C) is
called a cover automata for L with respect to C. We now
prove that a cover automaton cover(S, C) can be used for
recognizing paths in goal(S, O).

Theorem 4.1. ∀O, C, L ⊆ C : conforms(O, C)⇒
slice(cover(L, C), O) = slice(L, O).

Proof.
slice(cover(L, C), O)
= {ω ∈ O |meta∗(ω) ∈ cover(L, C)}
= {ω ∈ O |meta∗(ω) ∈ cover(L, C) ∩ C}
= {ω ∈ O |meta∗(ω) ∈ L}
= slice(L, O).

5. RECOGNIZING ABBREVIATED PATH EX-
PRESSIONS WITH COVER AUTOMATA

Given:

• A class graph modeled as a pair C = 〈ΣC, EC〉 where
ΣC 6= ∅ is a non empty set of nodes, called classes, and
EC ⊆ ΣC × ΣC is a set of edges. Let C be the regular
language of all paths in C. By its definition, C has the
following two properties:

– C◦ = C and

– ∀α , β ∈ Σ∗C , x ∈ ΣC : α · x ∈ C ∧ x · β ∈ C ⇒
α · x · β ∈ C.

• A DFA S = 〈Q, ΣS ∪ �, δ, q0, F 〉 representing a set of
abbreviated paths. We require S to have the following
four properties:

– S has only one stuck state denoted q⊥ 6∈ F . For-
mally, ∀a ∈ ΣS ∪ � : δ(q⊥, a) = q⊥ and ∀qi ∈
Q\q⊥ : ∃a ∈ ΣS ∪ � s.t. δ(qi, a) 6= q⊥.

– All wild card symbols appear on loops. ∀qi :
δ(qi, �) 6= q⊥ ⇒ δ(qi, �) = qi.

– S is compatible with C meaning that every tran-
sition labeled with a symbol from ΣS be part of
some path in WWG(L(S) , C). Formally, ∀qi ∈
Q, a ∈ ΣS : δ(qi, a) 6= q⊥ ⇒ ∃β ∈ Σ∗C s.t. a · β ∈
C ∧ δ∗(qi, f

∗(a · β)) ∈ F .

– WWG(L(S) , C) 6= ∅. Or, ∃β ∈ Σ∗C s.t. β ∈ C ∧
δ∗(q0, f

∗(β)) ∈ F .

We show how to construct a an automata for recognizing
a cover language for WWG(L(S) , C)◦. We also prove the
constructed automata correct and show that the constructed
automata has the same number of states as S.
RR(S, C) ≡ 〈Q, ΣC, η, q0, Q \ {q⊥}〉

where :

η(qi, a) =

(
δ(qi, f(a)) if a ∈ ΣS ∪∆qi ,

q⊥ otherwise .

∆qi ={a ∈ (ΣC\ΣS) | ∃β ∈ Σ∗C s.t.
a · β ∈ C ∧ δ∗(qi, f

∗(a · β)) ∈ F}

Lemma 5.1. ∀qi ∈ Q, a ∈ ΣC : η(qi, a) 6= q⊥ ⇔ ∃β ∈
Σ∗C s.t. a · β ∈ C ∧ δ∗(qi, f

∗(a · β)) ∈ F .

The automaton RR(S, C) gets into a stuck state if and only
if there is no way to achieve a fruitful path, i.e., a path that
is both in C is selected by S.

Proof. ⇒ direction:
case a ∈ ΣS: Immediate, from the definition of η and the
compatibility condition.
case a ∈ ∆qi : Immediate, from the definition of ∆qi .
case otherwise: from the definition of η, η(qi, a) = q⊥.

⇐ direction:
By the definition of ∆qi and the compatibility condition,
a ∈ ΣS ∪∆qi . Therefore, from the definition of η, η(qi, a) =
δ(qi, f(a)). But, δ(qi, f(a)) 6= q⊥ because δ∗(qi, f

∗(a · β)) =
δ∗(δ(qi, f(a)), f∗(β)) ∈ F and by definition of q⊥, q⊥ 6∈ F
and ∀α ∈ Σ∗C : δ∗(q⊥, α) = q⊥.

Lemma 5.2. ∀qi ∈ Q, α ∈ Σ∗C : η∗(qi, α) 6= q⊥ ⇒ η∗(qi, α) =
δ∗(qi, f

∗(α)).

Proof. Immediate, by simple induction on |α|.

Theorem 5.3 (correctness).
L(RR(S, C)) ∈ cover(WWG(L(S) , C)◦, C).

Proof. We show that:

1. L(RR(S, C)) ∩ C ⊆WWG(L(S) , C)◦C.

2. WWG(L(S) , C)◦C ⊆ L(RR(S, C)) ∩ C.

1. L(RR(S, C)) ∩ C ⊆WWG(L(S) , C)◦C.
Which reduces to:
L(RR(S, C)) ∩ C◦ ⊆ (C ∩ {ω ∈ Σ∗C | δ∗(q0, f∗(ω)) ∈ F})◦
Which, by the definition of prefix closure, reduces to:
L(RR(S, C)) ∩ C◦ ⊆ {α ∈ Σ∗C s.t. ∃β ∈ Σ∗C s.t. α · β ∈
(C ∩ {ω ∈ Σ∗C | δ∗(q0, f∗(ω)) ∈ F})}
Which further reduces to: ∀α ∈ Σ∗C s.t. η

∗(q0, α) 6= q⊥∧α ∈
C : ∃β ∈ Σ∗C s.t. α · β ∈ C ∧ δ∗(q0, f∗(α · β)) ∈ F

We proceed by induction on |α|:
Base case: (|α| = 0)
α = ε and therefore, η∗(q0, ε) = q0. By the definition of
S, ∃β ∈ Σ∗C s.t. β ∈ C ∧ δ∗(q0, f

∗(β)) ∈ F . Therefore,
α · β ∈ C, and δ∗(q0, f

∗(α · β)) ∈ F .
Induction step: Let α = ω · a

Therefore, η∗(q0, ω · a) 6= q⊥. But, η∗(q0, ω · a) = η(qi, a),
where qi = η∗(q0, ω). Therefore, qi 6= q⊥, and by lemma 5.2,
δ∗(q0, f

∗(ω)) = qi. Furthermore, η(qi, a) 6= q⊥. Therefore,
by lemma 5.1, ∃β ∈ Σ∗C s.t. a ·β ∈ C ∧ δ∗(qi, f

∗(a · β)) ∈ F .

But, ω ·a ∈ C, therefore, by the definition of C, ω ·a ·β = α ·
β ∈ C. And, δ∗(qi, f

∗(a · β)) = δ∗(δ∗(q0, f
∗(ω)), f∗(a · β)) =

δ∗(q0, f
∗(ω · a · β)) = δ∗(q0, f

∗(α · β)), therefore,
δ∗(q0, f

∗(α · β)) ∈ F .
2. WWG(L(S) , C)◦C ⊆ L(RR(S, C)) ∩ C.

Which reduces to:
(C ∩ {ω ∈ Σ∗C | δ∗(q0, f∗(ω)) ∈ F})◦ ⊆ L(RR(S, C))
Which, by the definition of prefix closure, reduces to: {α ∈
Σ∗C s.t. ∃β ∈ Σ∗C s.t. α · β ∈ (C ∩ {ω ∈ Σ∗C | δ∗(q0, f∗(ω)) ∈
F})} ⊆ L(RR(S, C))
Which further reduces to: ∀α ∈ Σ∗C s.t. ∃β ∈ Σ∗C s.t. α · β ∈
C ∧ δ∗(q0, f∗(α · β)) ∈ F : η∗(q0, α) ∈ Q\{q⊥}
Which, by the definition of RR(S, C), reduces to: ∀α ∈
C s.t. ∃β ∈ C s.t. α · β ∈ C ∧ δ∗(q0, f∗(α · β)) ∈ F :
η∗(q0, α) 6= q⊥

We proceed by induction on |α|:
base case: (|α| = 0)
α = ε and therefore, η∗(q0, ε) = q0 6= q⊥.
induction step: Let α = ω · a
η∗(q0, α) = η∗(q0, ω · a) = η(qi, a), where qi = η∗(q0, ω).
By induction hypothesis, qi 6= q⊥. By lemma 5.2, δ∗(q0, f

∗(ω)) =
qi. But, δ∗(q0, f

∗(α · β)) = δ∗(q0, f
∗(ω · a · β)) =

δ∗(δ∗(q0, f
∗(ω)), f∗(a · β)) = δ∗(qi, f

∗(a · β)), therefore,
δ∗(qi, f

∗(a · β)) ∈ F . And α · β ∈ C, therefore, a · β ∈ C.
By lemma 5.1, we can conclude η(qi, a) 6= q⊥. Hence,
η∗(q0, α) 6= q⊥.

Theorem 5.4 (efficiency). RR(S, C) has the same
number of states as S.

Proof. Immediate from the definition of RR(S, C)

Although, it is possible to search for a cover automata for
WWG(L(S) , A) with a smaller state complexity. RR(S, C)
has an another attractive feature in the context of AP. There
is a one-to-one correspondence between the states of S and
the states of RR(S, C). Therefore, code blocks attached to
the states of S can be easily be attached to the states of
RR(S, C).

6. RELATED WORK
The WYSIWYG expansion idea was introduced from a

complexity perspective in [9] under the name of pure paths.
WYSIWYG semantics was further explored in [13, 2] which
provide a first glimpse at the treatment provided in this
paper. But the proofs are long. The solution provided in this
paper is clearly better and provides a nice demonstration of
the power of regular languages.

Disambiguation techniques for matching a single string
against a regular expression are discussed in [6, 3]. In this
work, we deal with a set of strings. Mendelzon and Wood
analyzed the complexity of finding regular paths in graphs
[10]. They showed that finding simple regular paths in a
graph is NP-complete problem while finding regular paths
is a polynomial time problem. Sereni and de Moor study
the static determination of cflow pointcuts in AspectJ [12].
They reason also in terms of sets of paths, and they use reg-
ular expressions as pointcut language. They model pointcut
designators as automata. They do whole program analy-
sis on the call graph of the program and try to determine
whether a potential join point fits into one of the following
three cases: (1) it always matches a cflow pointcut; (2) it
never matches a cflow pointcut; (3) it maybe matches a cflow

pointcut. In case (3), there is still a need to have dynamic
matching code.

Automata are widely used to evaluate XPath Queries on
XML documents [7, 4]. Some use schemata to speed up the
processing [5] while others do not [4]. Simple, but very ef-
fective techniques, such as the Stream Index [7] are used to
skip over irrelevant document parts. None of the papers in
the XML literature use our idea of cover automata to sig-
nificantly simplify the deterministic automata. Our notion
of cover languages is more general than than [1] as we deal
with infinite regular languages.

7. CONCLUSION
This paper brings a line of work, called the Theory of

Traversals for Adaptive Programming [11, 8, 2, 13] to a
natural conclusion. The paper simplifies the model to its
essence which allows a very elegant derivation of provably
correct algorithms for implementing basic tools useful for
numerous applications, e.g., XML, AOP and AP. Correct-
ness arguments that used to fill many pages are reduced to
just a few lines.

8. REFERENCES
[1] Minimal cover-automata for finite languages. Theor.

Comput. Sci., 267(1-2):3–16, 2001.

[2] A. Abdelmeged, T. Skotiniotis, and K. Lieberherr.
Navigating Object Graphs Using Incomplete
Meta-Information. Technical Report NU-CCIS-10-2,
CCIS/PRL, Northeastern University, Boston, March
2010.

[3] C. Brabrand and J. G. Thomsen. Typed and
unambiguous pattern matching on strings using
regular expressions. 2010.

[4] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and
P. Fischer. Path sharing and predicate evaluation for
high-performance xml filtering. ACM Trans. Database
Syst., 28(4):467–516, 2003.

[5] M. F. Fernandez and D. Suciu. Optimizing regular
path expressions using graph schemas. In ICDE ’98:
Proceedings of the Fourteenth International
Conference on Data Engineering, pages 14–23,
Washington, DC, USA, 1998. IEEE Computer Society.

[6] A. Frisch and L. Cardelli. Greedy regular expression

matching. In Proc. of ICALPÕ04, pages 618–629,
2004.

[7] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and
D. Suciu. Processing xml streams with deterministic
automata and stream indexes. ACM Trans. Database
Syst., 29(4):752–788, 2004.

[8] K. Lieberherr, B. Patt-Shamir, and D. Orleans.
Traversals of object structures: Specification and
efficient implementation. ACM Trans. Program. Lang.
Syst., 26(2):370–412, 2004.

[9] K. J. Lieberherr and B. Patt-Shamir. The refinement
relation of graph-based generic programs. In
M. Jazayeri, R. Loos, and D. Musser, editors, 1998
Schloss Dagstuhl Workshop on Generic Programming,
pages 40–52. Springer, 2000. LNCS 1766.

[10] A. O. Mendelzon and P. T. Wood. Finding regular
simple paths in graph databases. In VLDB, pages
185–193, 1989.

[11] J. Palsberg, C. Xiao, and K. Lieberherr. Efficient
implementation of adaptive software. ACM
Transactions on Programming Languages and
Systems, 17(2):264–292, Mar. 1995.

[12] D. Sereni and O. de Moor. Static analysis of aspects.
In AOSD ’03: Proceedings of the 2nd international
conference on Aspect-oriented software development,
pages 30–39, New York, NY, USA, 2003. ACM.

[13] T. Skotiniotis. Modular Adaptive Programming. PhD
thesis, Northeastern University, 2010. 190 pages.

[14] S. Yu. State complexity of regular languages. J.
Autom. Lang. Comb., 6(2):221–234, 2001.

