
SCG Example Labs

Ahmed Abdelmeged

Karl Lieberherr

Structures of SCG

• These examples are to be read with the SCG
paper as background.

• The best way to represent Domain, Lab and
Claim is to have Domain and Lab as top-level
classes and Claim nested inside Lab. Lab has a
Domain as field to give all claims access to
Domain functionality.

• Instance and Solution are nested inside
Domain.

Structures of SCG

• We use a Java-like syntax but the goal is to use
only one or two lines per item for those
simple introductory labs.

Domain
 Instance
 Solution
 valid(i: Instance, s: Solution)
 quality(i: Instance, s: Solution)

Structures of SCG

Lab
 d : Domain
 proto: Protocol
 Claim
 claim parameters
 isp(i:d.Instance)
 p(I:d.Instance[],S:d.Solution[])
 stronger(c2: Claim)
 distance(c2: Claim)

Calculus Lab

• Have your students mastered calculus
(minimizing and maximizing functions)?

• The next lab shows a lab to test their skills.

Lab
 d: Domain
 proto: Protocol
 Claim
 claim parameters
 isp(i:d.Instance)
 p(I:d.Instance[],S:d.Solution[])
 stronger(c2: Claim)
 distance(c2: Claim)

Domain
 Instance
 Solution
 valid(i: Instance, s: Solution)
 quality(i: Instance, s: Solution)

Structures of SCG

new SaddlePointLab.Claim(q=0.6)

SaddlePoint
 Instance = [0,1]
 Solution = [0,1]
 valid(i,s) = true
 quality(i,s) = i*s + (1-i)*(1-s2)

SaddlePointLab
 SaddlePoint
 O:I[0], P:S[1] of I[0]
 SaddlePointLabClaim
 q: [0,1]
 isp(i)=true
 p(I,S)=d.quality(I[0],S[1])> =q
 stronger(c2) = q>c2.q
 distance(c2) = q-c2.q

Example: calculus problem NEW

Programming an Algorithm

• Have your students understood the Gale-
Shapley algorithm?

• Next come two labs where they can
demonstrate their skills through their avatar in
a full-round-robin tournament.

– In the first lab they test each other’s programs to
see whether they match each other’s best
solution.

– In the second lab, they find worst-case inputs.

Domain
 Instance
 Solution
 valid(i: Instance, s: Solution)
 quality(i: Instance, s: Solution)

Structures of SCG

NEW GSAtLeastAsGoodAsYouClaim()

GaleShapleyBasic
 Instance = Preferences
 Solution = Assignment
 valid(i,s) = s is syntactically correct for i
 quality(i,s) = s is semantically correct for i
 1 if true, 0 if false.

GaleShapleyBasicLab
 GaleShapleyBasic
 O:I[0], P:S[1] of I[0], O:S[2] of I[0]
 GSAtLeastAsGoodAsYouClaim
 none
 isp(i)=true
 p(I,S)=d.quality(I[0],S[1])>=d.quality(I[0],S[2])
 stronger(c2) = false
 distance(C2) = 0

Example: GS algorithm

Lab
 d: Domain
 proto: Protocol
 Claim
 claim parameter definitions
 isp(i:d.Instance)
 p(I:d.Instance[],S:d.Solution[])
 stronger(c2: Claim)
 distance(c2: Claim)

Domain
 Instance
 Solution
 valid(i: Instance, s: Solution)
 quality(i: Instance, s: Solution)

Structures of SCG

GaleShapley (GS)
 Instance = Nat //number of people
 Solution = Preferences
 valid(i,s) = s is syntactically correct for i
 quality(i,s) = GS iterations for s and i

GaleShapleyWorstCaseLab
 GaleShapley
 O:I[0], P:S[1] of I[0]
 GSWCLClaim
 n:Nat, q:Nat
 isp(i)=(i=n) //singleton
 p(I,S)=d.quality(I[0],S[1])>= q
 stronger(c2)=this.q>c2.q
 distance(c2)=this.q-c2.q

Example: Worst-Case of GS algorithm

Lab
 d: Domain
 proto: Protocol
 Claim
 claim parameters
 isp(i:d.Instance)
 p(I:d.Instance[],S:d.Solution[])
 stronger(c2: Claim)
 distance(c2: Claim)

new GSWCLClaim(n=10,q=30)

Maximum Satisfiability

• The next lab is about a paper by David
Johnson in the 1970’s which is covered now in
some algorithm text books, like Kleinberg and
Tardos.

• The following MaxSat lab covers several skills,
such as working with randomized algorithms
and then derandomizing them.

Domain
 Instance
 Solution
 valid(i: Instance, s: Solution)
 quality(i: Instance, s: Solution)

Structures of SCG

Satisfiability
 CNF
 Assignment
 valid(i,s) = all variables in i assigned once
 quality(i,s) = fraction of satisfied clauses in i

MaxSatLab
 Satisfiability
 O:I[0], P:S[1] of S[0]
 MSLClaim
 q:[0,1], k:Nat (clause length)
 isp(i)=clauses in i have length >=k
 p(I,S)=d.quality(I[0],S[1])>=q
 stronger(c2)=q>c2.q
 distance(c2)=q-c2.q

Example: MaxSat

Lab
 d: Domain
 proto: Protocol
 Claim
 claim parameters
 isp(i:d.Instance)
 p(I:d.Instance[],S:d.Solution[])
 stronger(c2: Claim)
 distance(c2: Claim)

new MSLClaim(q=1-(1/23), k=3)

Generalized MaxSat

• The next lab is based on a paper by Lieberherr
and Specker (2012).

Domain
 Instance
 Solution
 valid(i: Instance, s: Solution)
 quality(i: Instance, s: Solution)

Structures of SCG

BooleanCSP
 Sequence of Boolean constraints
 Assignment
 valid(i,s) = all variables in i assigned once
 quality(i,s) =fraction of sat. constraints in i

BooleanMaxCSPLab
 BooleanCSP
 O:I[0], P:S[1] of I[0]
 GenBooleanMaxSatClaim
 q:[0,1], r:{R1,R2,…}
 isp(i)=constraints in i use only r
 p(I,S)=d.quality(I[0],S[1])>=q
 stronger(c2)=q>c2.q
 distance(c2)=q-c2.q

Example: Boolean GeneralizedMaxSat = BMaxCSP

Lab
 d: Domain
 proto: Protocol
 Claim
 claim parameters
 isp(i:d.Instance)
 p(I:d.Instance[],S:d.Solution[])
 stronger(c2: Claim)
 distance(c2: Claim)

new GenBooleanMaxSatClaim(q=0.618, r={R1,R2})

Local to Global

• The next lab is based on several papers
inspired by a JACM paper by Lieberherr and
Specker in 1981.

• The lab is about studying how local properties
of a conjunctive normal form translate into
global properties.

Domain
 Instance
 Solution
 valid(i: Instance, s: Solution)
 quality(i: Instance, s: Solution)

Structures of SCG

BooleanCSP
 Sequence of Boolean constraints
 Assignment
 valid(i,s) = all variables in i assigned once
 quality(i,s) =fraction of sat. constraints in i

BooleanMaxCSPLab
 BooleanCSP
 O:I[0], P:S[1] of I[0]
 BMCLClaim
 q:[0,1], r:{R1,R2,…}, k:Nat
 isp(i)=(constraints in i use only r)
 and (any k constraints in i are satisfiable)
 p(I,S)=d.quality(i[0],s[1])> =q
 stronger(c2)=q>c2.q
 distance(c2)=q-c2.q

Example: BooleanMaxCSPLocalGlobal

Lab
 d: Domain
 proto: Protocol
 Claim
 claim parameters
 isp(i:d.Instance)

 p(I:d.Instance[],S:d.Solution[])
 stronger(c2: Claim)
 distance(c2: Claim)

new BMCLClaim(q=0.618, r={R1,R2,R3,R4}, k=2)

Manufacturing Lab

• The next lab is about an efficient
manufacturing problem where raw materials
are turned into a product.

• The lab is underspecified in that the details
about the isp function are missing.

Domain
 Instance
 Solution
 valid(i: Instance, s: Solution)
 quality(i: Instance, s: Solution)

Structures of SCG

SolarCells
 RawMaterials
 Product
 valid(i,s) = only raw materials used
 quality(i,s) = energy efficiency of s for i

SollarCellsLab
 SollarCells
 O:I[0], P:S[1] of I[0]
 SCLClaim
 q:[0,1], k:Nat (raw material parameter)
 isp(i)= …
 p(I,S)=d.quality(I[0],S[1])> q
 stronger(c2)=q>c2.q
 distance(c2)=q-c2.q

Example: Solar Cells

Lab
 d: Domain
 proto: Protocol
 Claim
 claim parameters
 isp(i:d.Instance)
 p(I:d.Instance[],S:d.Solution[])
 stronger(c2: Claim)
 distance(c2: Claim)

new SCLClaim(q=0.7,k=3)

Lab Reductions

• With the next example we show the
usefulness of lab reductions. A lab L1 reduces
to a lab L2 (L1 < L2) if a defense strategy for
the claims in L2 guarantees a defense strategy
for the claims in L1. Ideally, the claims in L2
are simpler.

• L1 reduces to L2 if we can use a black box for
L2 to solve L1. The black box makes all perfect
decisions, including claims it can defend.

Lab Reductions

• A mapping from L1 to L2 is a computable
function f Domain Claim such that for any

– L1.Domain L2.Domain

– L1.Claim L2.Claim

– propose

– oppose/agree

– provideInstance

– solveInstance

– refute

expression in a,d,n using multiplication, addition and division.
To simplify, replace (1+2+ … +n) by n*(n+1)/2.

Domain with name
 Instance
 Solution
 valid(i: Instance, s: Solution)
 quality(i: Instance, s: Solution)

Structures of SCG

ArithmeticSequences2
 triple a,d,n: Nat
 expression in a,d,n
 valid(i,s) = s uses +,*,/ and vars in i
 quality(i,s) = 1 if s is correct for i

Example: Arithmetic Sequences Sum

Lab with name
 d: Domain
 claim parameter definitions
 instance set predicate
 refutation predicate
 protocol
 stronger(c1,c2: Claim)
 distance(c1,c2: Claim)

Claim with name
 lab : Lab
 claim parameter values

Domain with name
 Instance
 Solution
 valid(i: Instance, s: Solution)
 quality(i: Instance, s: Solution)

Structures of SCG

ASLClaim(
 ArithmeticSequencesLab,
) //none

ArithmeticSequences
 expression in a,d,n: Nat uses +,*,/
 assignment to a,d,n
 valid(i,s) = s assigns all 3 variables
 quality(i,s) = 1 iff i gives correct sum for s

ArithmeticSequencesLab
 ArithmeticSequences
 none
 singleton
 quality(i[0],s[1])=1 true
 O:i[0], P:s[1] of s[0]
 false
 0

Example: Arithmetic Sequences Sum

Lab with name
 d: Domain
 claim parameter definitions
 instance set predicate
 refutation predicate
 protocol
 stronger(c1,c2: Claim)
 distance(c1,c2: Claim)

Claim with name
 lab : Lab
 claim parameter values

Domain with name
 Instance
 Solution
 valid(i: Instance, s: Solution)
 quality(i: Instance, s: Solution)

Structures of SCG

ASLClaim3(
 Alice,
 ArithmeticSequencesInductionLab,
 sum[k=1..n] 2+3k = 2n+3(n(n+1))/2)

ArithmeticSequencesInduction
 sum[k=1..n] 2+3k = 2n+3(n(n+1))/2
 sequence of steps: induction proof
 valid(i,s) = proof s is syntactically correct
 quality(i,s) = 1 iff proof is correct

ArithmeticSequencesInductionLab
 ArithmeticSequencesInduction
 equation
 singleton
 quality(i[0],s[1])=1
 O:i[0], P:s[1] of s[0]
 false
 0

Example: Arithmetic Sequences Sum

Lab with name
 d: Domain
 claim parameter definitions
 instance set predicate
 refutation predicate
 protocol
 stronger(c1,c2: Claim)
 distance(c1,c2: Claim)

Claim with name
 lab : Lab
 claim parameter values

Domain with name
 Instance
 Solution
 valid(i: Instance, s: Solution)
 quality(i: Instance, s: Solution)

Structures of SCG

HSRClaim(
 HighestSafeRungLab,
 n->25,k->2,k->5)

HighestSafeRung
 pair(n,k)
 decision tree
 valid(i,s) = s is correct for (n,k)
 quality(i,s) = depth(s)

HighestSafeRungLab
 HighestSafeRung
 n->Nat,k->Nat,q->Nat
 singleton {(n,k)}
 quality(i[0],s[1])<=q
 O:i[0], P:s[1] of s[0]
 c1.q<c2.q
 c1.q-c2.q

Example: HighestSafeRung

Lab with name
 d: Domain
 claim parameter definitions
 instance set predicate
 refutation predicate
 protocol
 stronger(c1,c2: Claim)
 distance(c1,c2: Claim)

Claim with name
 lab : Lab
 claim parameter values

lower quality
is better

Domain with name
 Instance
 Solution
 valid(i: Instance, s: Solution)
 quality(i: Instance, s: Solution)

Structures of SCG

LeafCovering
 Set of trees. Set M=subset of GCP of trees.
 witness (leaf in GCP) of non-coverage by M
 valid(i,s) = s is correct for i
 quality(i,s) = unused

Example: LeafCovering

Lab with name
 d: Domain
 claim parameter definitions
 instance set predicate
 refutation predicate
 protocol
 stronger(c1,c2: Claim)
 distance(c1,c2: Claim)

Claim with name
 proponent: Scholar
 lab : Lab
 claim parameter values

Domain with name
 Instance
 Solution
 valid(i: Instance, s: Solution)
 quality(i: Instance, s: Solution)

Structures of SCG

HSRClaim(
 Alice,
 HighestSafeRungLab,
 25,2,5)

LeafCovering
 LeafCoveringProblem : Set of trees. Set M=subset of GCP of trees. witness (leaf in GCP) of non
 Program
 valid(i,s) = s is correct for i
 quality(i,s) = unused

LeafCoveringLab
 LeafCovering
 m: Nat (size of M)
 instanceSetP(i,m)= |i.M|=m
 quality(i[0],s[1])<=q
 O:i[0], P:s[1] of s[0]
 c1.q>c2.q
 c1.q-c2.q

Example: LeafCovering

Lab with name
 d: Domain
 claim parameter definitions
 instance set predicate
 refutation predicate
 protocol
 stronger(c1,c2: Claim)
 distance(c1,c2: Claim)

Claim with name
 proponent: Scholar
 lab : Lab
 claim parameter values

claim action outcome P O cB aB oB np

F * a sO 0 0 P O P P

T a sO 0 0 - - -

F * d sP 1 -1 P - O O

T d sP 1 -1 - O O

F a rP -1 -1 P O O

T * a rP -1 -1 - - O O

F d rO -1 1 P - P

T * d rO -1 1 1 - O P P

O not per

O not per

P not per

P not per

SCG Truth Table Interpretation

• no competition: P 0 and O 0 everywhere

• not fair: the player different from the “not
perfect” player loses a point

claim dec out P O cB aB oB Blame Justification

F * a sO 0 0 P O -

T a sO 0 0 - - -

F * d sP 1 -1 P - O O did not refute a
claim it disputed

T d sP 1 -1 - O O

F a rP 1 -1 P O O O failed to support a
claim it agreed with

T * a rP 1 -1 - - O

F d rO -1 1 P - P P failed to support a
claim it proposed

T * d rO -1 1 - O P

claim dec out P O cB aB oB Blame Justification

F * a sO paso oaso P O -

T a sO - - -

F * d sP pdsp odsp P - O O did not refute a
claim it disputed

T d sP - O O

F a rP parp oarp P O O O failed to support a
claim it agreed with

T * a rP - - O

F d rO pdro odro P - P P failed to support a
claim it proposed

T * d rO - O P

