The Scientific Community Game:
A Lens to Focus the Global Brain

Karl Lieberherr
Northeastern University
CCIS

_ Boston
lieber@ccs.neu.edu

ABSTRACT

We define the Scientific Community Game (SCG, formerly called
the Specker Challenge Game) and we show basic game properties
which are key to making the game interesting. An example illus-
trates the concepts. SCG, the first generic model of the Popperian
Scientific Method on the web, models scientific communities and
has broad applications in teaching and research organization.

SCG is designed to be both educational for scholars, and to solve
problems that we don’t know how to solve yet. SCG provides a
systematic framework to develop and disseminate the world’s con-
structive claims in formal scientific domains. The development of
claims is both collaborative and self-evaluating, and SCG is an ef-
fective lens to focus the global brain on solving a specific problem.

A key contribution of the paper is the design of SCG, including
a CSP-model of payoff function design. The CSP-model allows us
to state and prove key properties of the game across all its instanti-
ations.

12/19/2012 v4

Keywords

Human computation, STEM innovation and education, epistemol-
ogy, dialogic games, Karl Popper, mechanism design, social wel-
fare, logic, defense strategies, games and quantifiers, virtual com-
munities.

1. INTRODUCTION

Popper, one of the most prominent philosophers of science of the
previous century, promoted in “Conjectures and Refutations” the
idea that each hypothesis should have a description how it could be
refuted, and that scientific knowledge grows through the introduc-
tion of refutable hypothesis followed by intensive testing of their
correctness.

We designed the Scientific Community Game (SCG) to encour-
age scholars to put as much effort and intelligence as possible into
proposing falsifiable claims as well as into disputing those claims.
The gamification of science that we propose has several benefits:
(1) We make scientific activity available to a wider audience. Try-
ing to refute a claim is a simple activity. (2) We get psychological

To be submitted for review to the Serious Games track of the conference
Foundations of Digital Games, 2013, Crete.

Ahmed Abdelmeged
Northeastern University
CCIS
Boston
mohsen@ccs.neu.com

advantages: playing the game is fun and leads to the discovery of
what is known within the current group of players. (3) We make it
easy to expose claims to refutation attempts, which leads to better
science in the long run [?]. (4) The lab definition mechanism of the
SCG makes it easy to focus a group of people on a specific prob-
lem. (5) Popper’s ideas become applicable to claims in any formal
science not only to complex scientific theories.

1.1 SCG in a Nutshell

In the SCG, a lab consists of a set of refutable claims [?]. Schol-
ars take on the roles proponents and opponents of the claims in
the lab. Opponents attempt to refute claims against proponents. A
refutation attempt initiates an orderly dialog between the proponent
and opponent, which induces collaborative behavior. In the SCG,
successfully refuting a claim against the claim’s proponent does not
mean that the claim is false. It only means that the proponent might
not have the skills to defend the claim. The labs are self-evaluating
in that there is no need of a third party to evaluate the contributions
of the scholars: the proponent and opponent evaluate each other
fairly.

There are two classes of SCG users, lab designers and scholars
(players).

e Lab designers have a problem they want to focus scholars on
solving through specializing SCG. The role of lab designer
can be played by a researcher who needs a specific prob-
lem solved or an educator who wants her students to practice
what they were taught. Lab designers define a few sets and
functions that define the problem to be solved. As return on
their investment they get a lab where scholars are invited to
participate to solve the problem. Defining a lab can be viewd
as writing a program for the global brain [?].

e Scholars inhabit a lab, either because they are enticed by an
educator or because they have good skills to solve the prob-
lem defined by the lab. A scholar has the opportunity to influ-
ence the quality of the knowledge base and the quality of the
lab procedures. Scholars are evaluated in the lab based on the
quality of their contributions compared to the contributions
of their peers.

The role of scholar can be played by a human or an avatar
(software). The avatar variant works only for labs that are
sufficiently well understood.

1.2 SCG Applications
SCG has several applications, including:

1. problem solving and research in formal science. Funding
agencies, such as NSF, define, in collaboration with inter-
ested researchers, labs that define the problem to be solved.

Through playing the game, NSF builds a knowledge base of
refutable claims and refutation attempts. Furthermore, the
self-evaluating nature of SCG will fairly evaluate the contri-
butions of scholars and the collaborative nature will lead to
productive team work. Newcomers can contribute by partic-
ipating in a long-running lab (dozens of years).

2. teaching (traditional, online and massively open online) courses

in STEM areas. To teach a particular problem solving skill,
we design a lab for the problem. Playing SCG challenge the
students’ self-image abought their ability to solve the lab’s
problem. Thus, encouraging students to acquire the desired
problem solving skill. The self-evaluating nature of SCG
helps lifting much of the evaluation from the teacher and al-
lows stronger students to give precisely targeted feedback to
weaker students.

3. software development for computational problems. A com-
putational task is defined by a lab where the role of a scholar
is played by an avatar (software). Competitions are held, and
the winning avatars will contain the best (within this group
of competing avatars) algorithms for the computational task.

1.3 Contributions

The main contribution of this paper is a definition of SCG, a
generic game for the Popperian Scientific Method [?]. A secondary
contribution of the paper is a formalization of refutations based on
earlier work in logic (predicate logic and its generalizations). We
also show that the SCG has several desirable properties (see sec-
tion ??).We have developed an implementation of the SCG which
is available on SourceForge [?]. The SCG definition in this paper
presents an abstraction of our implementation.

1.4 Organization
TBD.

2. BINARY GAME DEFINITION

We first define the binary SCG which is the building block for
competitions. The game is played between two scholars (players),
Alice and Bob, disputing the correctness and optimality of claims
about a particular domain. We define the binary SCG through its
extensive-form (or tree-form) representation which is a common
representation in game theory [?]. We start by giving some auxil-
iary definitions for Domain, Refutation Protocol, Lab, Claim and
Refutation Game that we eventually use for defining the Binary
SCG.

2.1 Domain
A Domain consists of:

1. a set Instance of (problem) instances,
2. aset Solution of (problem) solutions,

3. a predicate valid(i : Instance, s : Solution) : Boolean that
holds when the solution s is valid for the instance i, and

4. a function quality(i : Instance, s : Solution) : Real that re-
turns a real number representing the quality of the solution s
to the instance i.

When designing a domain the valid function should be as lax as
possible such that valid solutions for any problem can be found with
minimal to no intelligence. The reason is that failing to provide a
valid solution is used as an indicator that a player (which can be

an avatar) is out of order and that it should be kicked out of the
lab immediately. It should also be kept in mind when designing
the quality function that the game interprets higher quality as being
better.

Examples of domains include, the domain of CNF Satisfiability
where Instance is the set of CNF formulae, Solution is the set of
variable assignments to booleans. A solution s is valid for an in-
stance i if and only if s provides a boolean value for all variables
mentioned in i. A potential definition of quality(i,s) is the fraction
of clauses in i satisfied by s.

When there are multiple valid solutions for a given problem,
the quality function is used to discriminate between them. For
example, for the domain where Instance is the set of sequence
alignment and Solution is the set of all sequence alignment al-
gorithms such as Smith-Waterman and BLAST....etc, we could
be concerned with full sequence alignment in which case, Smith-
Waterman might have a higher quality. If we are interested in trad-
ing some accuracy for speed, BLAST might be of a Higher quality.

2.2 Refutation Protocol

A refutation protocol is a sequence of actions to be taken by two
players, a proponent and an opponent of a particular claim, in order
to resolve a dispute about whether the claim holds or not. The
actions can be either to provide an instance or to provide a solution
to a particular instance. Protocols can be defined by the following
grammar:

ProtocolSpec = <steps> CommalList (Step).

Step = <actor> Actor <action> Action.

Actor = Proponent | Opponent.

Proponent = "P".

Opponent = "O".

Action = ProvideAction | SolveAction.
ProvideAction = "I" "[" <instanceId> int "]".
SolveAction = "S" "[" <solutionId> int "]"

"of" <instance> ProvideAction.

An example of a protocol is P : I[0],O : S[1] ofI[0] in which
the proponent provides an instance named 1[0] and the opponent

provides a solution named S[1] for the instance I[0].

2.3 Lab and Claim

Labs play a central role in SCG. SCG games are played in the
context of a particular lab. A lab focuses the scientific discourse
of games played in it through defining a family of claims about a
particular domain. The claims in a lab have the same structure and
only differ in the claim parameter values. Labs require a great care
to define and effectively resemble a declarative specification of a
(human) computation [?] that separates true from false claims in
the lab and also finds the optimal claims in optimization labs.

A Lab consists of:

1. a Domain : d that gives a context for claims defined in the
lab;

2. arefutation protocol proto : Protocol, used to resolve dis-
putes regarding the correctness of claims;

3. aclaim structure Claim consisting of:

(a) anumber of claim parameters;

(b) aninstance set predicate isp(i : d.Instance) : Boolean
defining a family of instance sets. Each set in the fam-
ily is a subset of d.Instance and is chosen by claim pa-
rameter values. The intuition is that a claim c asserts a
property about the set Vi € d.Instance : c.isp(i).

(c) arefutation predicate p(I : d.Instancel], S : d.Solution[]) : tion. When a scholar provides a solution she does not know about

Boolean defines the property that the claim asserts about

the family of sets defined by isp. The protocol together
with the refutation predicate are well-formed, if every
ProvideAction is used by at least one later SolveAc-
tion or the refutation predicate and every SolveAction
refers (through the step number) to a ProvideAction.
The output of every SolveAction must be used in the
refutation predicate.

(d) a predicate stronger(cz : Claim) : Boolean defin-
ing a partial order on claims in the lab.

(e) a function distance(cz : Claim) : Real defining the
distance between two claims in the lab provided that
the one of the claims is stronger than the other.

Consider a lab with the following protocol instance P : I[0], O :
S[1] of I]0]. A claim c in this lab intuitively means: “I, the propo-
nent, can give an instance I[0] where c.isp(Z[0]) holds, such that
for any solution S/1] of I[0] given by you, the opponent, where
valid(I[0],S[1]) holds, the refutation predicate p(I, S) holds.”. This
claim can also be expressed as a mathematical statement about
the underlying domain as: “There exists an instance /[/0] where
c.isp(I[0]) holds, such that for all solutions S/1] of I/0] where
valid(1{0],S[1]) holds, the refutation predicate p(, .S) holds.”. In
order to support this claim, the proponent has to deliver 7[0] and
opponent has to deliver S//] in a resource constrained environment.

If we append the following protocol step to the end of the above
protocol P : S[2] of I[0] and define the refutation predicate to
be: p(I, S) = (Lab.d.quality(S[2], I[0]) > Lab.d.quality(S[1],
1[0])), we get a very different kind of claim. It says that proponent
is at least as good as opponent in solving instances in the given lab.
Which is a statement about the performance of players rather than
about the underlying domain.

2.3.1 Classification of Claims and Labs

We define a claim to be true if it has a support strategy for the
proponent. This means that, for true claims, the proponent can
always avoid refutations. We define a claim to be false if it has a
refutation strategy for the opponent, i.e., the opponent can always
succeed in refuting. We define a claim to be indeterminate if it has
neither a defense nor a refutation strategy.

We classify labs into optimization, standard,and bivalent labs.
Optimization labs have no restrictions. Standard labs are where
claims are not comparable for strength (i.e. the stronger predicate
is defined to be false). Bivalent labs are a special case of standard
labs with no indeterminate claims.

2.4 Refutation Game

To attempt a refutation of a given claim ¢, both the proponent
pro and the opponent opp of the claim enter into a refutation game
refute(c: Claim, pro : Scholar,opp : Scholar).

The refutation game consists of an exchange of instances and
solutions as defined by the protocol c. Lab.proto where the propo-
nent P and opponent O in the protocol are bound to the scholars
pro and opp respectively. The exchanged instances must be in the
set Vi € c.d.Instance : c.isp(i). A solution S[n] for instance
I[m] must be valid for that instance. i.e. c.d.walid(I[n], S[m])
must hold. The refutation predicate is used to decide the winner
of the refutation game. If the c.p(I,S) holds, the proponent has
successfully supported the claim and wins. Otherwise, the oppo-
nent has successfully refuted the claim and wins. I, S refer to the
instances and solutions exchanged during the refutation game. As
a general rule, solutions are all kept secret until protocol evalua-

solutions provided by the other scholar.

2.5 Binary SCG

The first move is performed by the scholar taking the role of the
proponent, and it is to propose a claim ¢ from the claims in the lab.
By doing so, the proponent asserts that c is a true claim that there
is no other claim in the lab that is stronger. In Figure 1, the first
move is denoted by a thick dashed blue line to indicate that it is a
multi-edge, an edge for each possible claim c.

The second move is performed by the opponent, and it is to de-
cide whether to:

1. dispute the correctness of ¢, denoted disputeD(c), or to

2. dispute the optimality of c. In this case, the opponent must
provide a stronger claim ¢’. This decision is denoted strength-
enD(c, ¢’), or to

3. agree with ¢, denoted agreeD(c).

Based on the second move, the proponent and the opponent en-
ter into a different refutation game, which is denoted by a thick
solid red line to indicate that it is a path. If the second move is
disputeD(c), the refutation game is refute(C, proponent , oppo-
nent). If the second move is strengthenD(c, ¢’), the refutation
game is refute(C’, opponent , proponent). If the second move
is agreeD(c), the refutation game is re fute(C, opponent , propo-
nent). Even though, there is no dispute, the two players engage
in a refutation game to test whether the opponent is indeed able to
support c or it is only trying to avoid entering into a dispute with
the proponent over c.

Scholars must make their moves within a given resource (time,
space, ...etc) limit. The winner of the binary SCG, is the scholar
that achieve the highest payoff. Payoff is disscussed in section 2.5.1.

Proponent

i

1 propose claim C from Claim

| Opponent
refuteD (C) /

refute(C,Proponent, any
Opponent)

|p(C, (L)L) |

_I<

agreeD (C)

v strengthenD (C,C")

refute(C’,Opponent,
Proponent)

\ p(C, ..)?2(-1,1):(1,-1) \ \ p(C, ..)?(0,0):(1,-1)

Figure 1: SCG Binary Game Tree.

2.5.1 Payoff function

Payoff is determined by: (1) the decision of the opponent in the
second move. (2) the value of a refutation predicate which has
as parameters the values collected along the current path back to

refute(C,Opponent,
Proponent)

the root. Including either the proposed claim c or the strengthened
claim ¢/, as well as instances I and solutions S provided during the
refutation game.

We use the following notation to describe the payoff function:
c.p(1,8)?(Pt, Ot), (Pf, Of) If c.p(I, S) is true, Pt is the payoff
for the proponent and Ot is the payoff for the opponent. If c.p(, S)
is false, Pf is the payoff for the proponent and Of is the payoff for
the opponent.

1. If the opponent decision is disputeD(c), the payoff is c.p(1,
S)?(1,—=1): (=1, 1). The rationale is that if the predicate
holds, the proponent has successfully supported ¢ and gets
a point for that. The proponent failed to refute ¢ and loses
a point. If the predicate is false, the opponent has failed to
support ¢ and loses a point. The opponent has successfully
refuted the c and gets a point.

2. If the opponent decision is strengthenD(c, ¢’), the payoff is
d.p(I, S)? (—d, d) : (1, —1). where d = c.distance(c,
c'). The rationale is that if the predicate holds, the opponent
gets rewarded because she successfully supported her pro-
posed stronger claim ¢’. The payoff is proportional to the
amount of strengthening as specified by the distance func-
tion to encourage more strengthening. If the predicate does
not hold, the proponent has successfully refuted the stronger
claim and gets rewarded with a point. The strengthening was
not successful.

3. If the opponent decision is agreeD(c), the payoff is c.p(I,
S)? (0, 0) : (1, —1). The rationale is that if the predi-
cate holds, the opponent has successfully supported the claim
and nobody gets a point because no dispute has taken place.
Agreement is successful. If the predicate does not hold, the
opponent has failed to support the claim and loses a point.
Agreement is not successful.

2.6 Example

Fig. 2 (top left) provides a summary of the Domain structure.
Fig. 2 (top right) provides an example of a Domain, the Gale-
Shapely worst case domain. In this domain, Instance is the set
of natural numbers, Solution is the set of preferences which is the
input to the Gale-Shapely matching algorithm. A solution s is valid
for an instance i if and only if s is syntactically well formed and it
gives preferences for i men and women. The quality of a solution s
to an instance s is the number of iterations of the while loop in the
Gale-Shapely matching algorithm when supplied the preferences s
as input.

Fig. 2 (middle left) provides a summary of the Lab structure and
provides an example Lab (middle right), the Gale-Shapley worst
case lab. Claims in this lab have two parameters n and ¢. n is
the number of men and women. ¢ is the number of iterations of
the Gale-Shapely matching algorithm that can be achieved by giv-
ing a preference for n men and women. The instance set predicate
of the claim selects only one instance, namely the instance where
the number of men and women is the same as the claim parame-
ter n. The refutation protocol is that the opponent should provide
an instance I[0] satisfying the instance set predicate of the claim
(there is only a singleton instance) and the proponent should pro-
vide a preference S[1] for I[0]. The refutation predicate holds if
S[1] causes the Gale-Shapley matching algorithm to iterate at least
q times. The stronger predicate holds if the current claim has a
heigher value for the ¢ parameter. The distance function distance
is defined as the difference between the ¢ parameter of the current
and the given claim. Several other examples in the style of Fig. 2
are in the supplementary materials [?].

Structures of SCG Example: worst-case of algorithm

Domainwith name GaleShapley (GS)

Instance Nat

Solution Preferences

valid(i: Instance, s: Solution valid(i,s) = s syntactically correct
quality(i: Instance, s: Solution quality(i,s) = GS iterationsfor s and i

Lab with name

d: Domain

claim parameter definitions
instance set predicate instanceSetP(i,n)=(i=n) //singleton
refutation predicate quality(i[0],s[1])>=q

protocol 0:i[0], P:s[1] of i[0]

GaleShapleyWorstCaselab
GaleShapley
n:Nat, g: Nat

stronger(cl,c2: Claim) cl.g>c2.q
distance(cl,c2: Claim) cl.g-c2.q
Claim with name GSWCLClaim(
proponent: Scholar Alice
lab : Lab GaleShapleyWorstCaselab,
claim parameter values 10, 30)

Figure 2: SCG Structure.

3. BEYOND BINARY SCG

3.1 Matches and Tournaments

To alleviate potential first-move-advantage in binary SCG, we
propose that players engage in matches rather than binary games.
A match consists of a number of rounds of binary SCG where play-
ers switch the roles of opponent and proponent. Tournaments (e.g.
round-robin, knock-out, Swiss-style) enable more than two play-
ers to engage in a single competition. Round-robin tournaments
are more suitable for avatars playing SCG because they involve
n.(n — 1) matches where n is the number of players. Swiss-style
tournaments are more suitable for humans playing SCG because it
involves fewer number of games.

3.2 Reputation Score

In real scientific communities, scientists build up their reputation
based on their work and the breakthroughs they achieve. Likewise,
in SCG, we propose to compute reputation scores, achieved in a
particular lab, for scholars based on their performance in competi-
tions held in that lab as well as on their breakthroughs.

3.2.1 Breakthroughs

Being the first in a scientific community is crucial for the rep-
utation of a scholar. Therefore, the SCG as a faithful model of a
scientific community, also deals with being the first.

The breakthrough metric is computed after a competition or a
series of competitions as a retrospective. For each important event,
a time stamp is stored. Important events are: refutation, support
and strengthening. We assume that we have the set of claims be-
lieved to be true (BelievedTrue) or false (BelievedFalse) or optimal
(BelievedOptimal).

For each claim in BelievedTrue or BelievedOptimal, we find the
first scholar who proposed the claim and supported it. That scholar
gets one point added to the breakthrough component of their repu-
tation.

For each claim in BelievedFalse, we find the first scholar who
successfully refuted the claim. That scholar gets one point added
to the breakthrough component of their reputation.

For each claim in BelievedTrue, but not in BelievedOptimal, we

find the first scholar who successfully strengthened the claim and
supported the strengthened claim. That scholar gets amount of
strengthening in points added to the breakthrough component of
their reputation.

3.3 Histories and Open Publication

By publishing number of times a particular claim gets supported
and refuted and the reputations of players supporting or refuting
these claims, SCG creates social welfare.

When a lab gets into a stable state (a sub-optimal equilibrium
where breakthroughs cease to happen for particular period of time),
it is time to publish the current, maybe imperfect refutation and
support strategies. If the scholars are avatars, their software is pub-
lished. If the scholars are humans, an informal description of their
techniques is published.

This levels the playing field and sets the stage for the next ad-
vancements. It is important to reward the scholars for their previous
investment and not force them too early to publish their techniques.

4. DISCUSSION

In this section we show how binary SCG can be seen from the
prespective of current game design models.

4.1 Five Element Game Ontology

Using the five element game ontology by Jose Zagal and Michael
Mateas et al. [?]: interface, rules, goals, entities, and entity manip-
ulation to give an overview of the SCG. The entities manipulated
by the scholars are instances in Instance, solutions in Solution and
claims in Claim in the context of a Lab and the reputation (payoff
points) that a scholar accumulates. The interface for a scholar con-
sists of the actions: propose a claim, decide to refute, strengthen or
agree with a claim, to provide an instance and to solve an instance.
The rules of the SCG are the rules of the Scientific Method: you
must follow the refutation approach defined by Lab. You also must
follow the scientific discourse prescribed by the extensive form rep-
resentation of the game. The goal of the game is to make the refuta-
tion protocol predicate true or false, depending on the role you play
(proponent or opponent of a claim). The entity manipulation in-
cludes solving instances with a certain quality and creating claims
and instances. Gameplay is segmented into binary games and com-
petitions and into increasingly more complex claims which become
harder and harder to defend.

4.2 Triadic Game Design

Using the model of Triadic Game Design [?] by Casper Harteveld,
we break down the SCG into a Reality, Meaning and Play com-
ponent. Triadic Game Design describes an approach to serious
game design and the SCG defines a large family of serious games.
The Reality component of the SCG models a scientific commu-
nity based on the Popper-style Scientific Method [?]. The Mean-
ing component consists of cleaning the knowledge base of false
or non-optimal claims by developing new constructions which are
better than the constructions of others. The Play component of the
SCG consists of competition, collaboration and finding a treasure
(a new construction).

4.3 Exploratory-Performatory Games

According to Jonas Linderoth [?] games challenge two aspects
of human nature: our ability to choose appropriate actions and our
ability to perform appropriate actions. [?] views gaming as a cycle
between interrelated exploratory and performatory actions.

What are the exploratory and performatory actions in the SCG?
Exploratory actions are: (1) proposing a claim which means choos-

ing from a set of claims. (2) Choosing an action: refute, agree or
strengthen a given claim. Performatory actions are: (1) the propo-
nent should defend the proposed claim. (2) If an opponent decides
to refute, he should succeed in refuting, etc. In the SCG we also
have a cycle of interrelated exploratory and performatory actions.
Indeed, this cycle is the dominant activity in the SCG.

S. BINARY SCG ANALYSIS

In this section, we characterize blameable moves in the binary
SCG game tree. We argue that blame is consistent with the design
goal of encouraging scholars to put as much effort and intelligence
as possible into proposing claims that are hard to falsify as well
as into disputing those claims. We show that the payoff is sound,
fair, and competitive with respect to the blameable actions. These
three properties are important for SCG to be interesting. For space
reasons, we deal in this subsection only with bivalent labs.

5.1 Blame Assignment

First, we divide the branches of the SCG game tree into 8 dif-
ferent sets based on 3 properties. Then, we assign blame to these
sets. Table 3 presents summarizes these sets. The three properties
are: (1) whether the proponent proposed a true claim or not. This
is represented in Table 3 by the column claim. A value of T means
the proposed claim is true. A value of F means the proposed claim
was false. (2) the decision made by the opponent. This is repre-
sented in Table 3 by the column dec. A value of a means agree and
a value of d means dispute. There is no strengthening in bivalent
labs. (3) the outcome of the refutation game and the winner. This
is represented in Table 3 by the column out. The outcome is either
s for “support” or r for “refutation” and the winner is either P for
the “proponent” or O for the “opponent”.

Table 3 has three blame columns ¢B, aB and oB with values that
are either P for the “proponent” or O for the “opponent”. In the cB
column, we blame the proponent for proposing a false claim. In the
0B, we blame the opponent for either agreeing with a false claim
or disputing a true claim.

The definition of those properties depends on the SCG CSP Table
(see Figure 3 with the competitive payoff function). which analy-
ses the SCG game tree (see Figure 1 on page 3 with the competitive
payoff function). The SCG CSP Table has 8 rows based on the 3 in-
dependent variables: claim (true/false) abbreviated (T/F), dec (dis-
pute/agree) decision abbreviated (d/a) and out (refuted/supported)
outcome abbreviated (1/s). The claim variable value we would like
to determine by playing the game. The dec (decision) variable is
assigned by the second game decision. The out (outcome) variable
is assigned by the refutation game where the claim is either refuted
or supported. For the outcome we also list the winner of the game:
sO means the claim was supported and the winner is O.

The SCG CSP Table has besides the three independent variables
claim, action and outcome, three dependent blame variables cP, aB
and oB with values P (proponent) or O (Opponent). Blame is is as-
signed as shown in the Blame Justification column of the SCG CSP
Table. The blame justification (last column) is for the 0B column
only and the justification is independent of whether the claim is true
or false. The justification is based on the observable variables dec
and out. The justification for the cB column is: Proposing a false
claim leads to a blame for P in column cB. For the decision blame
column aB, agreeing with a false claim or disputing a true claim
leads to a blame for O.

5.2 Payoff
5.2.1 Incomplete Knowledge

If one of the player is to blame in all rows of row group, then the
payoff must be -ve. If one of the player is not to blame in any of
the rows of a row group, then the payoff must be +ve.

In the design of the SCG payoff function there are three forces at
work that need to be balanced. We would like the game to be fair,
sound and competitive. The definition of those properties depends
on the SCG CSP Table (see Figure 3 with the competitive payoff
function). which analyses the SCG game tree (see Figure 1 on page
3 with the competitive payoff function). The SCG CSP Table has
8 rows based on the 3 independent variables: claim (true/false)
abbreviated (T/F), dec (dispute/agree) decision abbreviated (d/a)
and out (refuted/supported) outcome abbreviated (r/s). The claim
variable value we would like to determine by playing the game.
The dec (decision) variable is assigned by the second game deci-
sion. The out (outcome) variable is assigned by the refutation game
where the claim is either refuted or supported. For the outcome we
also list the winner of the game: sO means the claim was supported
and the winner is O.

The SCG CSP Table has besides the three independent variables
claim, action and outcome, three dependent blame variables cP, aB
and oB with values P (proponent) or O (Opponent). Blame is is as-
signed as shown in the Blame Justification column of the SCG CSP
Table. The blame justification (last column) is for the 0B column
only and the justification is independent of whether the claim is true
or false. The justification is based on the observable variables dec
and out. The justification for the cB column is: Proposing a false
claim leads to a blame for P in column c¢B. For the decision blame
column aB, agreeing with a false claim or disputing a true claim
leads to a blame for O.

Finally, the P and O columns give the payoff values for the pro-
ponent P and opponent O. Notice that the payoff function has iden-
tical values for row pairs (1,2) and (3,4) and (5,6) and (7,8).

A game is fair if for all rows the following property holds: If P
(or O) lose a point they are blamed in that row. See Figure 3 for an
example of a fair game.

Note that if P could have made a mistake, but we are not sure
because we don’t know whether the claim is true or false, we don’t
punish P. Therefore, if P made a point, it could still be blamed. We
give P the benefit of the doubt.

The soundness definition has two parts: Definitive soundness
and chance soundness. The first kind of soundness is about the
0B column: if you get blamed for losing a refutation game you will
have a negative payoff. The second kind of soundness is about the
cB and aB columns: if you get blamed in those columns you take
the risk of having a negative payoff. It depends on your opponent
whether she will expose the reason for the blame.

A game is 0B-sound if for all rows the following property holds:
if P (or O) are blamed in the 0B column, they have a negative payoff
in that row. The game in Figure 3 is oB-sound.

A game is cB-sound if there exists a row in which P is blamed
in the c¢B column and there is a negative payoff for P. The game
in Figure 3 is cB-sound. Proof: If P is blamed in column cB, the
optimal response for O is to dispute the claim and then to refute it.
Row 7 has a negative payoff for P.

Informally, cb-sound means that if you get blamed in the cB col-
umn you risk of being punished by a strong opponent.

A game is aB-sound if for all rows where O is blamed in the aB
column, there is a chance that O will have a negative payoftf if P
plays better. The game in Figure 3 is aB-sound. The proof involves
two cases. The first case is: O makes the mistake of agreeing with
a false claim (F a, row 1 and row 5). We search for a row with the
same prefix (F a) where P is the winner. We find row 5 where the
payoff is indeed negative for O. The second case is: O makes the

mistake of disputing a true claim (T d, row 4 and row 8). We search
for a row with the same prefix (T d) where P is the winner. We find
row 4 where the payoft is indeed negative for O.

A game is sound if it has all three properties: oB-sound and
cB-sound and aB-sound.

The third important game property is competitiveness. A game is
competitive if it matters whether you win or lose: the payoft value
is higher for the winner. The game in Figure 3 is competitive.

Theorem: Good Payoff There exists a payoff function which
has all three properties: fair, sound and competitive.

Proof: The game in Figure 3 is fair, competititive and sound.

EME g o -

sO paso oaso P

I a sO - - -

F*¥ d sP pdsp odsp P - O Odid not refutea
claim it disputed

) d sP = 0] O

F a rP parp oarp P O O Ofailed tosupporta
claim it agreed with

T* a P = - 0

F d rO pdro odro P - P Pfailed tosupporta
claim it proposed

T* d rO S ORI

Figure 3: SCG CSP Table.

5.3 Payoff Function Design using CSP

To study the space of payoff functions, we introduce a constraint
satisfaction problem that expresses the constraints implied by the
fair, sound and competitive properties. Figure 3 introduces eight
variables for formulating the constraints for the payoff function:
paso, oaso, etc. The variable names come from the decision and
outcome column.

The constraints for the fair property (losing a point implies a
blame in oB) are: paso > 0, and oaso > 0, and pdsp > 0, and
parp > 0, and odro > 0.

The constraints for soundness we give separately for oB-sound,
cB-sound and aB-sound.

For oB-sound the constraints are: odsp < 0, and oarp < 0, and
pdro < 0.

For c¢B-sound the constraint is ((pdro < 0) V (parp < 0) V
(pdsp < 0) V (paso < 0)).

For aB-sound the first constraint is ((oaso < 0) V (oarp < 0))
because row 1 or 5 must have a negative payoff for O. The second
constraint is ((odsp < 0) V (odro < 0)) because row 4 or 8 must
have a negative payoff for O.

The constraints for competitiveness are (good to win the refuta-
tion game): parp — oarp > paso — oaso and pdsp — odsp >
pdro — odro. The rationale is as follows: In case of agreement,
the difference between the payoff of the proponent and the pay-
off of the opponent when the proponent wins (parp — oarp), is
larger than the corresponding difference when the opponent wins
(paso — oaso). Therefore, wining the refutation game is advisable

for both parties. The second constraint applies for the case of dis-
pute.

Any variations of the payoff function must satisfy all constraints
introduced above if the game has to be fair, sound and competitive.
The above constraints are also useful when only a subset of the
properties is desired.

6. REFERENCES

	1 Introduction
	1.1 SCG in a Nutshell
	1.2 SCG Applications
	1.3 Contributions
	1.4 Organization

	2 Binary Game Definition
	2.1 Domain
	2.2 Refutation Protocol
	2.3 Lab and Claim
	2.3.1 Classification of Claims and Labs

	2.4 Refutation Game
	2.5 Binary SCG
	2.5.1 Payoff function

	2.6 Example

	3 Beyond Binary SCG
	3.1 Matches and Tournaments
	3.2 Reputation Score
	3.2.1 Breakthroughs

	3.3 Histories and Open Publication

	4 Discussion
	4.1 Five Element Game Ontology
	4.2 Triadic Game Design
	4.3 Exploratory-Performatory Games

	5 Binary SCG Analysis
	5.1 Blame Assignment
	5.2 Payoff
	5.2.1 Incomplete Knowledge

	5.3 Payoff Function Design using CSP

	6 References

