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Abstract

Existing mechanisms for the transfer of information in and out of CASE-based repositories, and in particular the XMI format, are designed for expedient machine processing, and have significant drawbacks for human users. This report describes a system that automatically generates a producer and consumer for a human-usable textual notation corresponding to a given information model. This HUTN system is based on the Meta-Object Facility, an OMG standard for the definition of information models and the subsequent mapping of these models to CORBA interfaces.

The primary design goal of the system is human usability, and this is achieved through consideration of the successes and failures of common programming languages. The system uses an abstract base syntax that is applied to all models, and allows for user alteration of the language through the provision of several language customisations.
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Chapter 1: Introduction

The use of object stores, or repositories, is becoming increasingly common in Computer-Aided Software Engineering (CASE) and information technology. Information models developed using a variety of CASE tools can now be used to generate repositories and other component tools for the storage, transfer, and manipulation of the conformant information. However, the technologies used in the generation of these components are still in their infancy, and a number of essential components are still to be investigated and developed. One of these components addresses the problem of transferring information in and out of generated repositories. Some standards [XMI98] have been and are being developed, but these are generally focussed on machine-based transfer, and have often resulted in syntaxes that are difficult for humans to use. Another more common scenario used for the transfer of this data incorporates the use of a custom-made mechanism or language, sometimes textual but more often graphical.

It would be useful to be able to quickly produce a textual language (as implemented in a producer and a consumer) for the transfer of information between a user and the repository. The need for a textual format stems from a variety of sources. While a graphical notation is a powerful and often intuitive mechanism for the display of the information, it is sometimes not available to all users. Also, a graphical representation can be unwieldy and confusing for large sets of data, where graph-style notations particularly can become very cluttered. Other users may desire the ability to use text-based tools such as “grep” and “sed” to search for or replace information within the document. Obviously, careful consideration must also be placed into the design of the language’s usability.

This paper describes a mechanism by which a language can be generated to fully describe the data held by a repository, while still being acceptable to and usable by a human user not necessarily familiar with the language. The system is designed with a user-centric design philosophy, weighing usability issues as the primary considerations of design. This usability is enhanced through the system’s provision of a configuration mechanism that allows the user to make small adjustments to the syntax of the language. The system uses a stream of XMI data stream in combination with an XSL style sheet to produce a readable stream of information representing the contents of a repository. The user can then peruse or modify this data, before returning it to a repository using a generated parser. The Distributed Systems Technology Centre (DSTC)’s MOF product is used as the repository system, and is explained in Chapter 2.

This project was partially inspired by the Enterprise Distributed Object Computing (EDOC) suite of Requests for Proposal, produced by the Object Management Group (OMG). The suite addresses the need for a common modelling mechanism for business object models, and the subsequent need for popular tools for this mechanism, including compliance with CORBA and UML. The third request in this suite [Hutn99] calls for a “Human-Usable Textual Notation” for expressing these business models. Further to this, the request suggests that the resultant notation be “based on a generic language approach that might be readily applied to other profiles”. For the purposes of this project, this suggestion has been extended to constitute the idea of a more generic language generator for MOF-based information models.

This document discusses the design and implementation of such a mechanism, and the relevance and use of the resultant system, which has been called the HUTN system. Following this introduction, a background is provided into some of the technologies utilised in the development of the HUTN system, including the Meta-Object Facility, upon which it is based. Chapter 3 then outlines a set of usability considerations for the design of a set of usable notations. The application of these principles to the construction of the HUTN syntaxes is then introduced in Chapter 4. Chapter 5 provides a detailed description of the grammars of the generated languages, as well as examples of a generated language. Chapter 6 then details the construction of a HUTN system that has been developed as a prototype, including the architecture of the system with respect to existing components and discussions of some issues encountered during development. Chapter 7 outlines a number of issues that have been identified for future pursuit, before Chapter 8 draws conclusions on the project and its outcomes.

Appendices A, B and C illustrate the effectiveness of the HUTN system in constructing a readable block of information from an XMI stream.  Appendix A shows a UML diagram of a model used for generating a language.  An XMI stream conforming to this model is shown in Appendix B, followed by the HUTN translation in Appendix C.

Chapter 2: Background

2.1 The Meta-Object Facility (MOF)

The repository system used for this project is the Meta-Object Facility [MOF97, Frankel99, CDI+97], a standard of the Object Management Group (OMG). The MOF specifies a small but complete set of modelling concepts that can be used to express information models. In line with the OMG’s commitment to CORBA (Common Object Request Broker Architecture), the MOF standard also provides a mapping from these modelling concepts to CORBA IDL (Interface Definition Language). This is then extended to allow for the generation of a repository for the modelled data using the MOF.

There are a number of essential concepts used in MOF modelling. A Package is used to encapsulate a collection of related Classes and Associations. Packages can also contain simple type definitions, equivalent to those available in CORBA IDL. Classes exist in the commonly-used sense of the word, describing an object and its properties. These properties are represented through Attributes and References, which can be inherited using a multiple-inheritance system based on that of CORBA IDL. Attributes have a name and a type, selected from the CORBA type system. This includes a range of types from basic types such as integers, strings and booleans, to more complex types such as enumerations, and through to structured types. In addition, attributes have both upper and lower limits on the number of times that they can appear within a class instance. An Association is used to represent a relationship between instances of two classes, each of which plays a role within the association. Associations can have the additional property of containment; an association represents a containment relationship if one of the participant classes does not exist outside the scope of the other. A Class participating in an association can also contain a Reference to the association. A reference appears much like an attribute, but reflects the set of class instances that participate in the Association with the containing class instance.

The MOF is an ideal repository upon which to base a textual notation generator, for a number of reasons. Primarily, it is currently without a convenient method for transporting data in and out of repositories. An XMI system (as described below) is currently under development, but this system also has shortcomings with respect to human usability. Also, the MOF standard provides connectivity through CORBA interfaces, making communication with external programs simpler and cleaner than systems without such interfaces. Thirdly, the MOF modelling schema is simple yet powerful, with fewer concepts than many other systems, which makes a generic generation facility significantly more simple to implement than for a system with a complex modelling mechanism.

2.2 XML-based Model Interchange (XMI) Format

While there are benefits involved in using the MOF, the repositories that it generates lack an important feature: the ability to transport data in and out of and between repositories. To address this concern, the OMG has adopted the XML-based Model Interchange (XMI) Format standard [XMI98]. The XMI standard defines a set of mappings from the MOF modelling concepts to a representation in XML (eXtensible Markup Language), a standard of the World Wide Web Consortium (W3C) [XML98].

XML was chosen for its growing popularity for data expression, and for the flexibility provided by its type definition system. The XML is essentially a tree-based language consisting of a series of nested “elements”, each of which is represented by a set of matching start and end tags. These elements may also include a number of name-value pairs called attributes, which appear within the opening tag of the element. The flexibility of the language lies in the ability to associate an XML document with a Document Type Definition (DTD). This DTD allows for the placement of further specific restrictions on the contents of an element. These include restrictions on the type of data (for example, numbers, strings with/without white space) allowable between two tags. The element can also be restricted in terms of the attributes that may appear within the element, and on the types of their value. Further, a restriction can be placed on the different elements (and the number of each) that are allowable beneath an element on the document tree.

The XMI specification provides two main components: a set of rules for producing a DTD from a model, and a set of rules for the transfer of data between XMI and a MOF-compliant repository. A brief outline of the mapping will be provided here. Each instance of a MOF Package, Class, or Association is represented by an XML element. In addition, every instance of a MOF Class contains an XMI identifier in the form of an attribute labelled “xmi.id” on the instance’s XML element. When a class instance appears by reference (rather in the form of a full declaration), it is referenced by an “xmi.idref” attribute in the XML element. MOF Attributes whose types are simple types are represented as elements containing data, except for enumerations and booleans, whose values are enclosed in attributes, within self-closing tags. Attributes whose values are class instances are represented either as class instance declarations or as references to class references using the scheme mentioned above. String values in XMI are not delimited, but at the same time no restrictions are placed on their layout within the XMI stream. This raises serious issues about the preservation of significant white space at the start and end of strings, which would be lost under a typical white space elision policy. This lack of delimitation is one of the perceived problems with XMI that is addressed by the HUTN in Section 5.8. An example of an XMI document is shown in Figure 1.

<?xml version = "1.0"?>

<XMI>

  <XMI.header>

    <XMI.model xmi.name = 'familyPackage' xmi.version = '1.1'/>

  </XMI.header>

  <XMI.content>

    <FamilyPackage xmi.id=’xmi-id-001’>

      <FamilyPackage.Family xmi.id='xmi-id-002'>

        <FamilyPackage.Family.familyName>

          The McDonalds

        </FamilyPackage.Family.familyName>

        <FamilyPackage.Family.address>

          7 Main Street

        </FamilyPackage.Family.address>

        <FamilyPackage.Family.nuclear xmi.value=’false’/>

        <FamilyPackage.Family.migrants xmi.value=’true’/>

        <FamilyPackage.Family.familyFriends>

          <FamilyPackage.Family xmi.idref=’xmi-id-003’/>

        </FamilyPackage.Family.familyFriends>

      </FamilyPackage.Family>

      <FamilyPackage.Family xmi.id='xmi-id-003’>

        <FamilyPackage.Family.nuclear xmi.value=’true’/>

        <FamilyPackage.Family.migrants xmi.value=‘false’/>

        <FamilyPackage.Family.address>

          5 Main Street, Brisbane

        </FamilyPackage.Family.address>

        <FamilyPackage.Family.familyName>

          The Smiths

        </FamilyPackage.Family.familyName>

        <FamilyPackage.Family.naturalChild>

          <FamilyPackage.Person>

            <FamilyPackage.Person.name>

              Joan Smith

            </FamilyPackage.Person.name>

            <FamilyPackage.Person.sex xmi.value=’female’/>

          </FamilyPackage.Person>

        </FamilyPackage.Family.naturalChild>

        <FamilyPackage.Family.familyFriends>

          <FamilyPackage.Family xmi.idref=’xmi-id-002’/>

        </FamilyPackage.Family.familyFriends>

      </FamilyPackage.Family>

      <FamilyPackage.Person xmi.id=‘xmi-id-004’>

        <FamilyPackage.Person.sex xmi.value=’male’/>

        <FamilyPackage.Person.name>

          Namdou Ndiaye

        </FamilyPackage.Person.name>

      </FamilyPackage.Person>

      <FamilyPackage.Sponsorship>

        <FamilyPackage.Family xmi.idref=‘xmi-id-002’/>

        <FamilyPackage.Person xmi.idref=‘xmi-id-004’/>

      </FamilyPackage.Sponsorship>

    </FamilyPackage>

  </XMI.content>

</XMI>

Figure 1: An example XMI stream for two families

As Figure 1 clearly demonstrates, the XMI/XML format is one that is neither succinct, nor easily readable or writable. Although the XMI standard is still under revision, the basic structure of the language and its ties with XML will not change and, as such, these human usability problems are likely to remain.

2.3 XML Stylesheet Language (XSL)

Style sheet languages are used to transform information from structured languages into other forms, and are particularly useful tools in separating the content and presentation components of information. Languages such as the Cascading Style Sheet (CSS) and, to a lesser degree, the Document Style and Semantics Specification Language (DSSSL) [CSS99, DSSSL96] standards have been used for many years, particularly for the formatting of HTML documents on the internet. The W3C has recently created a working draft for a style sheet language for XML, called the XML Stylesheet Language (XSL) [XSL98]. XSL offers a powerful vocabulary for the specification of transformations and formatting semantics, for application on XML documents.  XSL also fits into the XML family of languages, being constructed from a set of predefined XML elements and document formatting rules

While XMI has significant drawbacks in terms of usability, it does provide a structured and complete representation of the information. Since the construction of a style sheet for converting an XMI stream is simpler to construct (and thus to generate) than a program that queries a repository directly, this has been chosen as the method of HUTN production.

The vocabulary provided for use within XSL documents is very large and powerful, but is in a state of flux due to the continuing refinement of the XSL working draft. For this reason, only a subset of commonly-used features has been used in the design of the HUTN system, in the hope that these will not change with revisions of the standard. These are explained below.

An XSL style sheet consists of a series of templates, each of which matches against a certain XML element (or set of elements) specified by a regular-expression-style pattern. A variety of control functions are then available within a template, such as set iteration and conditional statements. Each of these appears in the form of an element. Text that is not contained within an element is regarded as output formatting. Unlike conventional parsers, the parsing mechanism used by XSL involves the parsing of the whole document tree before any actions are taken. This provides a template with access to all branches of the tree, which removes many conventional parsing problems that arise through forward references. Because of this, both the control mechanisms mentioned above and the various access functions that are provided are able to use information from all parts of the tree.

Figure 2 shows an example of an XSL style sheet that might be applied to the XMI stream in Figure 1.

<?xml version=‘1.0’ encoding=‘iso-8859-1’?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

<xsl:template match="//FamilyPackage.Family[@xmi.id]”>

<xsl:if test=”FamilyPackage.Family.Nuclear[@xmi.value=‘true’]”> nuclear </xsl:if> Family “<xsl: apply-templates select="FamilyPackage.Family.Name”/> {

  <xsl:for-each select=”FamilyPackage.Family.Address”>

  address: “<xsl:apply-templates/>”

  </xsl:for-each>

  <xsl:if test=”FamilyPackage.Family.Migrants[@xmi.value=‘true’]”> migrants </xsl:if>

  <xsl:for-each select=”FamilyPackage.Family.FamilyFriends”>

  familyFriends: <xsl:apply-templates/>

  </xsl:for-each>

</xsl:template

</xsl:stylesheet>

Figure 2: Example of an XSL style sheet
It should be noted that the XSL proposal has recently been separated into three distinct documents: the XSL language, XSL transformations and the XML Path Language [XSL99, XSLT99, XPath99].

2.4 Domain-Specific Language Generators

The field of domain-specific languages (DSLs) pertains to the creation of small languages for use with specialised and usually small universes of discourse. A variety of techniques are used for the implementation of these languages, the most common of which involves the embedding of the DSL within an existing programming language. While this does provide the user of the DSL with access to the full functionality of the original language, it brings with it any usability issues that might be associated with the language, as discussed in Section 3.

One system that implements DSLs in this manner is the Jakarta Tool Suite [Batory98], which uses a combination of compiler-compiler definitions and a pre-processing mechanism for the creation of languages and component-based generators. Hudak also uses this approach of embedding DSLs within a programming language, in his paper [Hudak97] on the use of Haskell as a host for DSLs. Along similar lines is the approach taken by the Khepera system [FNS97], of implementing a source-to-source translation between a DSL and a programming language.

However, it was decided that the HUTN system should not be tied to a specific programming language in this way, but rather should be capable of independent operation.

Chapter 3: Usability Considerations of the HUTN System

As mentioned above, the merits offered by the XMI format in terms of semantic coverage and structure, as well as the simplicity associated with the construction of style sheets led to the idea of creating the HUTN producer as a translation of XMI. Consequently, the structure of the designed languages is based largely on that of XMI.

3.1 Axioms

The design of the HUTN system was based around a number of goals and conditions. The first condition was that, since the languages were to be textual, the syntax would be restricted to the ASCII character set. Secondly, it was decided that, to ensure rapid deployment of the generated language, the system should be capable of the fully automated generation of the language, without the need for human intervention. Subject to these conditions, the primary goal of the system was to provide a high degree of usability for a person reading or writing the language.

As the first step in this user-centred design process, a number of assumptions had to be made about the target user audience of the generated languages. It was decided that this audience could be assumed to have some degree of familiarity with computer languages generally, while not necessarily being proficient in the use of programming languages. The syntax of a language can have a strong effect on the speed and efficiency of its use for an expert user, but the syntax features associated with this speed and efficiency often lead to a more difficult learning curve for the novice user. While it is not impossible to deal with both, a certain trade-off between these two features is apparent in many common programming languages. For example, the C programming language features many syntactic elements that are convenient for the experienced user, but the language is widely acknowledged as one of the more difficult to learn. By contrast, the Pascal language is a very popular language for teaching programming, but is less popular for large-scale development, where it is more time consuming and less efficient than a language such as the C programming language. For this application, it was decided that an efficient learning curve was a more important requirement of the languages, and that they would consequently be designed with learnability as a primary goal, and expert-friendliness as a secondary goal.

3.2 Syntax and Aesthetics

There is a proliferation of opinions on the aesthetic virtues and downfalls of programming languages, and of what features are important when designing a language. However, while there is an abundance of papers on the design of a language’s semantic operations, there are surprisingly few published works on programming language usability as it pertains purely to syntax. It must also be considered that there are essential differences between the syntactic structure and features of a programming language and those that the HUTN languages might contain. While a programming language is aimed at the modification and maintenance of a (usually abstract) body of information, the HUTN languages are required purely for the display of information. For this reason, programming language features such as control constructs have no real relevance to HUTN languages.

Two usability works on programming languages and their syntax were considered to assist in identifying principles upon which to design the HUTN languages. The first [McIver96] is a paper by McIver and Conway from Monash University, which identifies and explore problems associated with languages used as first languages for the teaching of programming. The paper also discusses a number of directions for the design of such a language. The other [RL77] is a paper by Richard and Ledgard of the University of Massachusetts, and discussed a number of principles for syntax design, with a view to designing a general purpose programming language called Utopia84. From these papers and from independent consideration, a number of principles have been assembled for the design of the HUTN language.

3.2.1 Use of symbols and punctuation

The first principle was that a language should have a sufficient variety of symbols that the user should be able to easily navigate through a stream of data. Probably the worst culprit for this is the LISP language and its almost exclusive use of parentheses. This problem often comes about from a language’s devotion to a certain functional, logical or object-oriented paradigm. As pointed out by McIver and Conway, this can also lead to the problem of ‘syntactic homonyms’, the use of a single syntactic construct to represent two distinct semantics. Richard and Ledgard also identify this as a problem, emphasising that “distinct features should have distinct forms”.

However, the reverse of this can also be a problem. A language that makes use of a large vocabulary can make a novice’s task of learning the language very difficult, and often misleading. The Ada 9x languages, for example, have 68 reserved words and over 50 predefined attributes. As explained by McIver and Conway, this problem is often dealt with by teaching the learner only a small subset of the language’s vocabulary. However, this can lead to confusion when the student is exposed to the new features of the language, and can lead to the production of overly verbose or obscure code if they neglect to use some language features. The problem can also lead to the presence of ‘syntactic synonyms’, the availability of a number of syntactic constructs for the presentation of a single construct. These synonyms only serve to further mislead the student and unnecessarily expand the vocabulary of a language.

Related to this problem is the excessive use of symbols for the denotation of functions or, to a lesser degree, for the denotation of syntactic structure. This is evident in languages such as C, particularly. While the resultant terse syntax can make the language very efficient for expert users, it has a detrimental effect on the novice user’s ability to learn the language.

3.2.2 Use of reserved words

Another language syndrome to be avoided is the overuse of natural language words for syntactic structuring. While not as significant a problem as terse syntax, the verbose syntax that can result in a language that becomes harder to read by virtue of the sheer bulk of information being presented. Also, symbols are more intuitive delimiters of structure than words, since natural languages use symbols exclusively for punctuation. This division between words for semantic functions and symbols for punctuation is a useful general rule, in part because of the ties with natural language, and in part because of the roles that they play. Words are useful when their function requires a degree of explanation, whereas structure delimitation requires little such explanation, so is better suited to a more brief representation.

3.2.3 User expectations

One of the programming language faults identified by McIver and Conway is that of backward compatibility. They define backward compatibility in two forms: genetic compatibility and memetic compatibility. Genetic compatibility refers to syntactic similarities in programming languages that result from one language being developed as a successor to the first (such as C and C++). Memetic compatibility, by contrast, refers to language features that are derived from de-facto standards, such as the use of square brackets for indexing into arrays. The authors suggest that both of these were too often agents for the propagation of syntactic features that, while familiar to those with programming experience, conflicted with a novice’s preconceived ideas of what a function might appear as. However, since the target audience of the HUTN system is assumed to have some familiarity with programming conventions, the situation is reversed. These syntactic familiarities can serve the purpose of providing the new user with a head start in learning the language.

The final usability consideration taken from the two papers was avoiding the problem of violating the user’s expectations. This often comes about through poor selection of function names and appearances. In some situations, the orthogonality of concepts can mean that misleading code can arise through the obscure and complicated combination of simple features. However, the number of concepts used in the HUTN system is reasonably small, and their use fairly limited in range, so this problem is unlikely to cause significant problems.

3.3 Other considerations

Indentation plays an important part in improving the readability of textual documents, and particularly in enhancing the navigability of programming language source code. This is also the case in the HUTN languages, and an indentation policy should be incorporated into the producer of HUTN text.

It is quite probable that the users of the HUTN languages will be involved in the use of a number of languages, either through the evolution of a single domain model or through the use of a number of models. This implies a need for some uniformity between the HUTN languages. This is achieved through the use of a common basic structure for the languages, the design of which is described below in Section 4.1.

One of the major decisions made to enhance the usability of the system was to allow the use of user configurations. These configurations would involve simple syntactic modifications without changing either the larger syntactic structure or the semantics of the language. Since the system would still be fully functional without these customisations, it was felt that the ability of the user to modify the language in any way, however small, was likely to aid both in their ability to learn the language, and in the aesthetic appearance of the language. The details of these customisations are described in the Section 4.2.
Chapter 4: Design of the HUTN Languages

“Simply put, extensibility permits programming language users to define new language features. Starting with a base language and using various definition facilities, an extensible language user can create new notations…”

[Standish75]

The practice of language extension, although not the viewpoint from which the HUTN system was designed, succinctly encapsulates the essential design of the language generator. The user customisations mentioned in Section 3.3 and discussed at greater length below in Section 4.2 constitute a form of definition facility for the modification of the base languages, those languages generated by the system without user customisations. In fact, the analogy drawn between languages and the concept of classes can be extended by saying that these base languages are in fact applications of models to a ‘generic’ base language. Though this generic base language is never explicitly declared or described in the system, it is present in the common core about which the HUTN languages are based. In this way the HUTN languages can be thought of as extensions of an abstract generic base language. The structure of this language and the manner of the customisations allowed by the system’s definition facility are described in this chapter.

4.1 The Base Language

Using the structural and syntactic features of existing languages is a good way to enhance the learnability of the HUTN languages, and to ensure that the user’s expectations are not violated. To this end, some thought was given to the essential style of programming languages, so that it might be applied to the base language.

Languages, on the whole, represent information in a fairly similar way. A document invariably consists of a set of concepts, each of which consists of a number of other concepts, and so on until the concepts are nothing but simple pieces of atomic data. This can be seen in both procedural and object-oriented programming languages, as well as in natural English. For example, an English essay could be said to consist of a series of paragraphs, each of which contains a series of sentences, which contain series’ of words. A piece of source code for the Java programming language [Java] could consist of a series of import statements, package statements, and class definitions, which contain variables and methods, which contain sets of parameters and statements.

At different levels of depth on this ‘concept tree’, the representation of the containing concept changes. One common change is for concepts higher on this tree to be introduced in some way. For example the essay with its paragraphs might first have a title, or chapters within a thesis might have chapter numbers and titles. A method declaration in a Java class definition has a visibility value, a method name, and a return type. By contrast, where an element is the only possible element in its position, it may go without an introduction, such as sentences within a paragraph, or statements within a Java method definition. However, to be effective this requires some language familiarity on the part of the user, something that cannot be assumed for the HUTN system.

Particularly in structured notations such as programming languages, it is often necessary to separate the contained concepts using some form of punctuation. Java, for example, uses braces to delimit method bodies, commas to separate method parameters, and semicolons to terminate statements. Written English uses full stops to terminate sentences, and commas or parentheses to delimit phrases. The choice of symbols for separating punctuation can also be dependent on the depth of the concept on the tree. For example, braces are often associated in programming languages with high-level or major concepts such as procedure declarations, while commas are often associated with low-level or minor ones, such as a list of method parameters.

The MOF modelling concepts underlying the HUTN languages also conform to this ‘concept tree’ paradigm. Package instances contain Class instances, Class instances contain Attribute values, Association instances contain Class instances, and so on. Accordingly, the HUTN language core has been based around these ideas of concept containment, introduction and delimitation.

The MOF Class, Package, and Association concepts have been classified as ‘major’ concepts, warranting an introduction for their instances. The introduction is a simple one, consisting of the name of the Class, Package, or Association and some identifying string. (When converting from XMI, the XMI ID provides a logical and automatically unique identifier). The appearance of this introduction is very similar to the introductions of procedures or functions in Pascal or C. Curly braces, as used in many languages deriving syntactic features from C, are used to delimit the bodies of these major concepts. Class instances can also be referenced by other parts of the document. This is done by simply displaying the introduction of the instance without the body. Because it is always possible to know whether an instance or an instance reference will appear, this does not cause the parser problems that might otherwise occur.

By contrast, MOF Attributes are denoted as minor concepts, and as such are represented differently. In their case, the attribute name is followed by a colon, followed in turn by the value of the attribute. The attributes’ representations are separated by white space, with no other separator or terminator. Should one have been included, the logical choice for a terminator would have been the terminator, as is used in most conventional programming languages, but it was decided that white space would be adequate. This is possible because it is always feasible to know how many white-space separated ‘words’ will appear in an attribute’s value. No simple attributes are permitted white space within their values except string-typed attributes, whose values are delimited by double-quote characters. Attributes whose values are class instances are represented either as instance references or as full instance declarations, depending on the nature of the attribute. These representations do have more than one ‘word’ in their value, but do not cause problems because the number of words is always fixed and known to the parser.

References are displayed with the reference name followed by a colon and the representation of the class instance that is referred to. This is almost identical to the representation of attributes, which could be seen as violating the principle of ‘different forms for different features’. However, the role of references in the MOF is in many ways to provide a class instance with attribute-like access to other class-instances that are related through associations, but still provide the benefits of associations, such as visibility from both participants. For this reason, the underlying ‘feature’ of references and class-instance valued attributes is essentially the same, and thus their representations should in fact be similar.

4.2 User Customisations

Three user customisations are featured in the HUTN language generator. These are the selection of one attribute as the identifying attribute of a class, the selection of an attribute to be represented as a keyword and the selection of an attribute to be represented as an adjective.

Customisations of attribute representations are made on a class, rather than on an attribute. The reason for this is that, through inheritance, an attribute may appear in a number of classes. The default activity in an inheritance tree is for the customisation to be applied to all subclasses of the class upon which it is originally defined. However, it is entirely possible that a user might prefer a subclass to be identified by a different attribute, or for a keyword on the superclass to be an adjective on the subclass. This is dealt with by allowing the user to override their language customisations by simply defining a new customisation the subclass. The device assimilating the preferences can apply the customisations as appropriate. However, this mechanism does not allow for the negation of existing customisations, such as the redefinition of a keyword back to a normally represented attribute, or the reverting of a class to being identified by an XMI ID. It is felt that subclasses are unlikely to require this, and the extra configuration syntax that it would introduce would only serve to confuse the user unnecessarily.

4.2.1 Identifying attributes

Class instances are concepts that can be referred to by other objects, such as References, Associations, and other Classes. For this reason they require a unique name by which they can be identified. As described above, the XMI ID provides this, and is thus a logical choice for a default identifier. However, since this string is often arbitrarily assigned, it makes for a somewhat poor identifier with regard to usability. It would be far better to use an identifier that somehow is relevant to or symbolic of the instance that it identifies.

The logical choice, therefore, is to use an attribute of the class instance as the identifier. The major problem with this customisation is ensuring that somehow the identifier will be unique.  Since the MOF does not provide a mechanism by which an attribute can be defined as unique, the responsibility of ensuring the uniqueness of the identifying attribute is passed to the user. For attributes with a very limited range of values, this is obviously difficult. For example, if an attribute’s type is boolean, or if it is an enumeration, the attribute is unlikely to make a useful identifier, since its small range of values will greatly restrict the number of instances that it can uniquely identify. In addition to this, many attribute types are unlikely to be practical as identifiers. A numerical identifier will likely prove little more usable than the original XMI ID, and a struct data type is more likely to confuse the reader than assist with identification. For this reason, the HUTN system restricts the selection of an identifying attribute to string values.

Since the value of the attribute selected as the identifying attribute is presented in the class instance’s introduction, its normal representation within the body of the instance’s definition is superfluous, and is thus omitted.

4.2.2 Keywords

When a boolean variable is mandatory, it seems redundant to display the attribute’s name as well as its value each time it is displayed. The display of two pieces of information seems unnecessary for the representation of a variable that only has two states. A useful optimisation might be to simply show the attribute only if it is true, and to elide its representation if it is false. Further to this, since the presence of the representation already denotes that the attribute’s value is true, it would be far more efficient to simply the display the name of the attribute.

However, the selection of a boolean attribute as a keyword is restricted to attributes that are mandatory and do not contain more than one value. There are only two states available to a keyword representation: present or absent. By contrast, an optional boolean has three plausible states: true, false, and not defined. Attributes with more than one value obviously have even more than this, and as such neither optional nor multiply defined boolean attributes are permitted.

This technique of shortening an attribute’s representation could also be used (albeit slightly differently) for attributes of other types with limited value sets, such as enumerations. For example, a mandatory enumerated attribute might be represented simply by its value, without its attribute name. However, this would obviously present a problem if more than one attribute on the class had the same enumeration as a value. Even allowing only one of these attributes to be so defined might prove misleading to the reader, and thus the HUTN system supports keywords only for mandatory boolean attributes.

4.2.3 Adjectives

Beyond simply an identifier of the concept, programming languages such as C++, Java and Pascal represent various other pieces of information in the definition of a method or procedure. These can include the visibility of the method, or the return type of the method. Variables displayed in this way are here called adjectives, since they provide information about an object before it is declared, much like an adjective describing a noun in the English grammar.

Adjectives in the HUTN system are provided in the same manner as keywords, since the two provide the same service, simply displaced within the representation of the class instance. Where a keyword’s representation is expressed in the body, an adjective’s is placed directly before the name of the class in the introduction of the declaration. In addition to boolean types, types such as enumerations would be particularly useful for display in this position. Real-world examples, such as the visibility enumeration in a C++ method declaration, use adjectives of this sort, and the replication of this ability would doubtless prove very useful. However, since their representations are the same as those of keywords, adjectives of types other than mandatory booleans present the same problems as described for keywords and, as such, are not allowed in the HUTN system.

Like the identifying attribute of a class, an attribute that is represented as adjective, within the introduction of a class instance, need not be shown again within the body of the class instance.

When one or more attributes are defined as adjectives on a class, the nature of the parser may be required to change. When no adjectives are present in a language, a parser may use a look-ahead of only one symbol, since the next occurring symbol will uniquely determine the current state of the parser. However, the introduction of adjectives changes this. For example, if two classes are given attributes of the same name, or if an adjective is inherited from a class’s parent class, then the presence of the adjective in the symbol stream will not be sufficient to determine which class the forthcoming instance will belong to. For this reason, it is necessary to make the look-ahead of the parser greater than one. More exactly, the look-ahead must be greater than the number of adjectives on that class that has the most shared adjectives. (In the JavaCC parser generator system, which is used in the HUTN prototype, the parser can determine the required look-ahead value at run time and adjust the its look-ahead as necessary.)

Chapter 5: HUTN Language Mappings

This chapter describes the syntax of the generated languages, in terms of the MOF modelling concepts as outlined in Section 2.1. The later sections of the chapter discuss the more generic syntactic features of the language: indentation, name-scope optimisation, and string delimitation.

The examples presented throughout this section (with the exception of the name-scope reduction examples) are derived from the FamilyPackage system, whose information model is described in UML in Appendix A.  Appendices B and C contain the respective XMI and HUTN streams from which the data in this section’s examples are extracted.

5.1 Package Representations

A package in the MOF type structure is a concept used for containing a collection of related classes and associations.

Package instances are represented as simple block objects. Identifying attributes are not permitted on packages and, as such, packages are prefaced and identified by the name of the package, followed by the string-delimited XMI ID. Between a set of braces appear the class and association instances of the package, in accordance with the mappings described below in Sections 5.2 and 5.5. An example of the representation of a package instance is given in Figure 3.

FamilyPackage “xmi-id-001” {


Class instances here


Association instances here

}

Figure 3: An example of a package instance representation


5.2 Class Representations

Since classes are the objects that convey most information, they are the basis for all of the language configurations. There are three possible configurations: the selection of one attribute as the identifying attribute of the class, the selection of an attribute as an adjective, and the selection of an attribute as a keyword. String-typed attributes are the only attributes selectable as identifying attributes, since other types are more prone to problems with uniqueness and parser conflicts.  Keywords and adjectives are restricted to mandatory boolean attributes, as described in Section 4.2.2.

The syntax of class instance definitions is as follows. Those attributes defined by the user as adjectives appear first, in keyword form, followed by the name of the class. If the user has not selected an identifying attribute, the string-delimited XMI ID of this attribute appears next. The representations of the remaining attributes then appear between a set of braces. Singleton boolean attributes that have been configured as keywords appear in keyword form, while other attributes appear in standard form. Figure 4 shows a representation of a class Family that has no identifying attribute, an adjective ‘nuclear’ and a string-typed attribute ‘familyName’.

FamilyPackage “xmi-id-001” {


Family “xmi-id-002 {



familyName: “The McDonalds”



Attribute representations



Reference representations

}

nuclear Family “xmi-id-003” {


familyName: “The Smiths”



Attribute representations



Reference representations


}

}

Figure 4: An example of the representation of XMI-identified class instances

Alternatively, if an identifying attribute has been defined, the string-delimited value of that attribute (since all identifying attributes must be strings) appears as the class instance’s identifier, in place of the XMI ID. As above, this is preceded by the adjective attributes and the name of the class, and followed by the representation of the other attributes between a set of braces. Since the value of the identifying attribute has already been presented, its normal representation within the body of the instance’s declaration is elided. Figure 5 presents the previous example where the familyName attribute has been specified as the identifying attribute of the Family class.

FamilyPackage “xmi-id-001” {


Family “The McDonalds” {



Attribute representations



Reference representations

}

nuclear Family “The Smiths” {



Attribute representations



Reference representations


}

}

Figure 5: An example of the representation of attribute-identified Class instances

The parser does not place restrictions the order of the attribute and reference representations within a class instance. Similarly, no restrictions are placed on the order that a producer will output these representations, although it is probable that implementations of the producer will use a consistent ordering.

5.3 Attribute Representations

The representation of attributes is dependent on whether or not the attributes have been configured as keywords, adjectives, or the identifying attribute, and on the type of the attribute. For those attributes not configured for special representation, there are varying methods of presentation depending on the attribute’s type, with separate formats for multiple attributes (or lists).

For enumerated or boolean attributes not defined as keywords or adjectives, the representation begins with the name of the attribute, followed by a colon. This is then followed by the value of the attribute. For boolean attributes this is either true or false, while for enumerated attributes it is the string representing the value of the attribute (as opposed to the index). If the attribute is a mandatory boolean and has been configured as a keyword or an adjective, its representation consists simply of the attribute name.

For string attributes, the representation consists of the name of the attribute followed by a colon, and the string-delimited value of the attribute.  The manner of this string delimitation is discussed in Section 5.6.

Numerical attributes, such as integers, doubles, and floats, are represented by the attribute name and a colon, followed by the value of the attribute.

Optional attributes are treated in the same manner as other attributes when the value is present, and are omitted altogether when the value is not. Attributes that can have more than one value are treated as a list, and are represented within parentheses, and separated by white space. When information is displayed from the repository, the elements of this list are separated by a single space for simple elements, and by a new line for class instance-valued attributes. When reading information into the repository however, there are no such formatting restrictions, and any amount of white space can separate the elements.

Figure 6 presents an example of a number of attributes’ representations. The ‘migrants’ attribute has been defined as a keyword on the Family class, the ‘nuclear’ attribute as an adjective of Family, ‘familyName’ as the identifying attribute of Family, and ‘name’ has been selected as the identifier of Person.

FamilyPackage “xmi-id-001” {


Family “The McDonalds” {



migrants



Address: “7 Main Street”



Reference representations


}


nuclear Family “The Smiths” {



Address: “5 Main Street”



Reference representations


}


Person “Namdou Ndiaye” {



age: 7



sex: male



Reference representations


}

}

Figure 6: An example of representations of simple attributes

Attributes whose values are instances of a class can be represented in two separate ways. If the attribute class instance is contained by the enclosing class instance (that is, it does not exist outside of the containing instance’s scope), then the attribute instance is represented in the same manner as described in Section 5.2. Alternatively, if the attribute class instance is not contained, then it is represented simply by its class name followed by its identifier. (Where the identifier is the value of the identifying attribute of the class if one exists, or alternatively the instance’s XMI ID). An example in which petFish is a contained attribute and petDog is a non-contained attribute, both of Family, is presented in Figure 7.

FamilyPackage “xmi-id-001” {


Family “The McDonalds” {



petDog: Dog “Spike”



petFish: Fish “Wanda” {




Attribute and reference representations



}


}


Dog “Spike” {




Attribute and reference representations


}

}

Figure 7: An example of class-instance valued attributes
5.4 Reference Representations

References are a means for classes to be aware of class instances that play a part in an association, by providing a view into the association as it pertains to the observing instance. For this reason, the representation within a class instance of a reference depends in part on the nature of the association to which it refers. An association is involved in a containment relationship if one of the participating instances is wholly contained within the other. That is, the contained instance does not exist outside the scope of the other instance.

Much like that of an attribute, the representation of a reference begins with the name of the reference followed by a colon. If the instance to which the reference refers is the contained instance in a containment relationship, then this is followed by a representation of the instance in accordance with the above protocol for displaying class instances (in Section 5.1). Figure 8 shows the Family class with references, ‘naturalChild’ and ‘adoptedChild’, to two containment associations between the Family and Person classes.

FamilyPackage “xmi-id-001” {


Family “The Smiths” {



Attribute representations



Reference representations



naturalChild: Person “Harry Smith” {




Attribute and reference representations



}



naturalChild: Person “Joan Smith” {




Attribute and reference representations



}



adoptedChild: Person “Dylan Smith” {




Attribute and reference representations



}


}

}

Figure 8: An example representation for a reference to a containment association

Alternatively, if the association that is referred to is not a containment relationship, then the subsequent depiction consists of the class name followed by the instance’s identifier (be it the value of the class’s identifying attribute or the instance’s XMI ID). An example of this case is given in Figure 9, where familyFriends is a reference to a non-containment association ‘familyFriendship’.

FamilyPackage “xmi-id-001” {


Family “The McDonalds” {



Attribute representations



familyFriends: Family “The Smiths”


}


Family “The Smiths” {



Attribute representations



familyFriends: Family “The McDonalds”


}

}

Figure 9: An example of the representation of references to a non-containment association

5.5 Association Representations

As described above, associations constitute a relationship between two classes, and can appear in two forms: either containment relationships or not containment relationships. Further to this, classes can contain references into associations (see Section 5.4). This leads to three separate methods for representing the class instances involved in an association.

If one or more of the classes participating in the association contains a reference into the association, then the elements participating in the association are displayed within the representation of the class containing the reference, as described above in Section 5.4.

If the association represents a containment relationship, but there are no classes containing references to the association, the association contents are displayed within the representations of class instances. More particularly, the contained instance is represented within the representation of the containing instance. The representation for this contained instance is exactly the same as if it were referenced, except that the name of the association is substituted for the name of the reference. The display of the association name is necessary to avoid conflicts where two associations have contained instances of the same class. An example of the representation of unreferenced containment associations is presented in Figure 10, where CarOwnership is an association between Family and Car, with Car instances being contained by Family instances.

FamilyPackage “xmi-id-001” {


Family “The McDonalds” {



CarOwnership: Car “755-BDL” {




Attribute and reference representations



}


}

}

Figure 10: An example of a containment association without references

The third method deals with the case when the association is not a containment relationship, and neither of the participating classes contains a reference into the association. In this case, a list appears containing references to the class instances participating in the association. In more detail, this list consists of the name of the association followed by a block (with opening and closing braces) containing the pairs of instances participating in the relationships. Each instance in the pair will be preceded by the name of the role it plays in the association and a colon. Each class instance is then represented simply by the name of the instance’s class, followed by the its identifier (value of the identifying attribute or, failing that, the XMI ID).

Figure 11 shows the representation if there is an association ‘sponsorship’ between the Family and Person classes that is not a containment association and is not referenced by either of the participating classes,

FamilyPackage “xmi-id-001” {


Family “The Smiths” {



Attribute and reference representations

}

Person “Namdou Ndiaye” {



Attribute and reference representations


}


sponsorship {



sponsor: Family “The Smiths”



sponsored: Person “Namdou Ndiaye”



Other pairs within the sponsorship association


}

}

Figure 11: An example of the representation for a non-containment association

5.6 Indentation

The stream generated from the repository will be significantly more acceptable to the reader if it is appropriately indented. Obviously this is a feature that need only be enforced in the producer, since it is not appropriate to explicitly require indenting in the parser.

As in many programming languages, the introduction of a new major concept (such as a procedure or class) will be denoted by a hanging indent. This will also be the case in these languages, with a hanging indent introduced by new package instances, new class instances, and new association instances. Lines that run over 80 characters in length are likely to cause inconveniences on some systems, so these lines will be broken up (placing the break between words rather than within words, wherever possible).  The overflow will be placed on the next line with two additional temporary indentations. The language extracts provided as examples in the previous sections provide demonstrations of the indentation styles adopted for each concept.

5.7 Name Scope Optimisation

Names of packages, associations, and classes in the MOF include all of the information about the concept’s scope. This fully qualified name consists of a number of scope-level components, separated by dots. For example, an attribute contains information about which class it is in, and what package that class is contained by. However, while this scope information is necessary in the broader picture, these names provide more information than is necessary to uniquely identify a model concept within the model.

The names of packages, associations, and classes are therefore optimised to make them as short as possible while still being unique within the domain model. (Since attribute names are unique within their class, they are simply represented by their local name). This is done as follows. First, a set of all names is assembled, and each is broken down into a sequence of words (one for each scope level). A possible scoped name is then created for each name, constituting the last word of the word sequence for that name. If this possible name is unique within the set of possible names, then it is accepted as the scope-optimised name. If not, then the process is repeated with the last two words of the name sequence. This continues until all names have been optimised. The table shown in Figure 12 presents an example of a set of names and their reductions.

	Fully Scoped Name
	Scope-Optimised Name

	Genealogy.Family.Child
	Family.Child

	Genealogy.Family.Father
	Father

	Genealogy.Tree.Child
	Tree.Child

	Genealogy.Tree.Branch
	Genealogy.Tree.Branch

	Flora.Tree.Branch
	Flora.Tree.Branch

	Flora.Flower
	Flower


Figure 12: An example of some name optimisations
5.8 String Delimitation

The XMI standard is very unclear with regards to the delimitation of strings. String-typed attributes, like numerically typed attributes, are simply placed between start and end tags of the attribute name. However, the general trend with XML documents is that formatting is not significant, and it is quite common to put the start tag, string contents, and end tag all on separate lines. This is not a problem for numerical types, since it can safely be assumed that the leading and trailing white space is insignificant. However, this may not be the case with strings, since all characters are acceptable. The HUTN system provides all string attributes (including identifiers) with double quote symbols for string delimiters. The backslash character is then defined as an escape character, so that the ‘\”’ sequence symbolises a literal quote character, and a ‘\\’ sequence denotes a literal backslash character. For the extraction of the string values from the XMI stream, an assumption is made that all of the leading and trailing white space is superfluous, and it is thus stripped from the string’s representation in the HUTN language.

It should be noted that a recent proposal to the XMI revision task force suggests that all simple MOF Attributes (including strings) might be expressed in the same manner as booleans and enumerations are, within an “xmi.value” attribute on the opening tag. Since XML attributes are already delimited, this would solve the problem described above. If this proposal is accepted, it would make sense to review the HUTN’s escape character mechanism to bring it into line with that used for XML attributes. This would greatly simplify the processing of string attributes in the HUTN system, and provide some familiarity for users experienced with XMI.

Chapter 6: A Prototype HUTN generator.
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Figure 13: The Structure of the HUTN System

This section discusses the development of a prototype HUTN system. Discussion is first made on the position of the system with respect to existing components. Following this, the components implemented for the purposes of the prototype will be described.

The intended design of the system is illustrated above in Figure 13, with the components to be implemented as part of the HUTN system shaded. These new modules depend heavily on a number of existing programs. The MOF Model Repository is a repository for information models, which are created in a custom model definition language (called the Meta-Object Definition Language or MODL). DSTC’s MOF Early Access product is used for this purpose, since it has the advantage of being able to generate fully functional instance repositories from the model in the Model repository. The XMI subsystem (not shown in Figure 13) performs the role of generating programs (and a DTD) for transferring data between the instance repository and XMI form. Unfortunately, during the HUTN’s development this XMI subsystem was still under development by DSTC, and was not at a mature enough stage for use in the HUTN system. For this reason, the design of the final HUTN system was modified. Particularly, the design of the parser generator module was modified to allow a generated parser to transfer data directly into an instance repository. Also, hand-coded XMI documents (and DTDs) were used as test input to the generated XSL style sheets, since it was not possible to generate them. The modified system is shown in Figure 14.
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Figure 14: Modified Structure of the HUTN System

The system is divided into three basic components. The XSL generator component is responsible for the creation of an XSL style sheet for converting a stream of XMI into the target human-usable language. The Grammar Generator component generates a grammar and associated backend code for the parsing of the language back into a MOF-compliant repository. Finally, the so-called Configurator component is responsible for parsing a file containing language configurations, and for communicating these preferences to the two generator components.

The Grammar Generator and the XSL Generator components are designed around a common generator architecture, which provides a simple mechanism for communicating with the MOF. The architecture is enacted through the use of an existing Java package included as part of the MOF system. This package and the architecture it supports are described in Section 6.1, followed by descriptions of the three major components of the HUTN system.

The HUTN modules were implemented in the Java programming language. Java provides a number of features that make it a useful language for this purpose, such as its mature object orientation and use of interfaces, and its ready connectivity with CORBA. The CORBA product used for this implementation was Inprise’s “Visibroker 3.4 for Java” [Visibroker] product. This was chosen because it is the system used in the MOF product, and was thus less likely to induce compatibility problems. The generated XSL style sheets were interpreted by the XT [XT99] package, a free XSL system. 

6.1 The Generator Architecture

The generator architecture used for the XSL and Parser generator modules is based around a package used for retrieving and acting on information about a model in a MOF repository. The package is designed to serve as a generalised utility framework for programs that generate code or conduct some other activity based on such a model. The classes were originally designed for the repository generation facility of DSTC’s MOF product, and are also being used in the development of the XMI facility. 

The package provides one class for each MOF modelling concept (for example, Class, Association, Data Type), and implements methods for retrieving most of the common features of that element that might be useful for a system accessing a model. For more obscure features, a system can use the methods provided by the MOF’s CORBA interfaces. Typically, a system using the package will extend a number of these classes to include generation or activity functions as required.

One of the important features provided by the package is that of object caching. This avoids the creation of duplicate generator objects, when model components are accessed by more than one route. For example, if a class object is created by requesting all classes within a package, it need not be instantiated again if it is requested as a role in an association. Also, since modules using this package often extend the generator classes, the object caching mechanism can be extended to handle the instantiation of these extended generator classes in place of the base classes. This is achieved through the use of Java interfaces and inheritance.

In the cases of the XSL Generator module and the Parser Generator module, classes are created extending the generator classes, with methods for generating the respective XSL and compiler source code, as well as some additional utility methods. The process of generating begins with the acquisition of a reference to some top-level object, such as a package definition. This object is an instance of an extended generator class, and is activated using some generator method. This method in turn calls the generator methods on the classes and associations contained within the package. This passing of control further down the hierarchy continues until the generation can be performed by a single object without delegation to another object. At this point the classes below on the hierarchy need not be extended from the base generator classes.

6.2 The XSL Generator

The XSL generator module creates an XSL style sheet that provides a mapping from the XMI format of the modelled data to the syntax required as per Section 5. It does this using the architecture described above, with a series of cascading generate methods beginning at the package level. The style sheet comprises a series of template rules, one for each package, class and association that appears in the data model. When the style sheet is activated, it searches the top level of the XMI tree for any of the appropriate objects. When it finds an element matching a template, it transfers control to the template.

Package and association templates behave in almost exactly the same manner. Once a package or association instance element is encountered, the appropriate template simply displays the introductory information according to the rules listed in Section 5. It then reverts to applying templates to process the class instances, association instances, and class instance references that appear within the package or association instance.

The generator produces three templates for each class in the information model. The first is activated for a class instance that appears directly within a package instance, and not as a contained instance within another class instance. This template does the representation for the class structure and for the simple attributes. Attributes whose values are embedded class instances or references to class instances are dealt with by delegating control to their relevant templates. The second template deals with a class instance that appears embedded within another class instance. Since there is no XMI ID in this case, if the class has no identifying attribute defined, then the template creates a random identifier. Other than this difference, the template behaves in the same manner as the previous one. The third template is for a class instance reference, and simply produces the short representation as defined in Section 5.4. Since in XMI an identifying attribute’s value only appears in the declaration of a class instance, and not in that of a class instance reference, the template must find the value of this attribute somewhere else on the document tree. It does this by defining the “xmi.id” attribute as an XML identifying attribute in the XMI DTD. In conjunction with the “xmi.idref” attribute supplied in the instance reference element, the template can locate the node on the tree where the referred class instance is declared, and thus find the value of the identifying attribute.

Once the XSL style sheet has been produced, it can be activated using an XSL transformation engine. While a number of these are available, the rapidly changing XSL specification means that the version of the engine is very important. For the purposes of this prototype, the engine used was the XT [XT99] engine, a java-based engine produced by James Clark.

6.3 The Grammar Generator

The role performed by the Parser Generator is divided into two parts: grammar generation and backend generation. The grammar generation is responsible for the production of a language grammar file that can recognise a HUTN stream, reconstruct the data types, and provide the information to a backend that processes it as required. The backend code, in this case, is responsible for the addition of the information back into the instance repository. The reason for this partitioning is for flexibility, since at some point it may be useful for the system to be able to revert the HUTN stream into XMI, or to act on it in some different way. Alterations such as these might then be realised simply by providing the appropriate method implementations and attaching the new backend generator to the existing generator.

The grammar file constructed by this module is for the javaCC [JavaCC] program, produced by Meta-mata. JavaCC input consists of a driving program followed by a number of lexical and parsing rules, and this is then used to produce an LL(k) parser. The product was chosen over other Java-based compiler-compiler packages such as Java-CUP [javaCUP] for its integrated lexical analysis features. While other packages often require a separate program for lexical analysis, javaCC allows for lexical rules intermingled with parse rules, which is useful for the purposes of the HUTN system, as will be seen in the description of the grammar generation process.

The first section of the generated grammar file comprises a simple driving program that initialises the data stream and parses the command line arguments. The driving program also includes a simple error detection and display mechanism. This program is then followed by a number of lexical declarations such as numbers and string constants. After this come the parsing rules. One parsing rule is constructed for each package, class, and association.

The package and association rules are very simple. Once the data has been parsed, the rule simply delegates to a method on the backend and passes control down to the next level of the concrete syntax tree.

Class rules have the additional task of marshalling the types that are parsed in. Since all types are read in as strings, the first task is to arrange the values into variables in line with those that are to be passed to the constructors in the repository. Simple types are presented in the form designated by the repository’s CORBA interfaces. Enumerated types are passed as integers, and class instances are passed as a string concatenation of the instance’s class name and the its identifier. Since there are restrictions placed on the number of occurrences that an attribute can make, these constraints must be checked next. Once this is done, the attributes and references are conveyed to the appropriate method on the backend.

Additional parsing rules are also constructed for enumerated types, as well as a single rule for booleans. In this way, ‘true’, ‘false’ and the values of the enumerated types form the set of reserved words in the language. The final element of the generated grammars is a simple lexical rule for identifiers. Declaring this rule after the parse rules allows for the declaration of string literals within rules without causing reduce-reduce conflicts in the parser.

The Java code generated for the parser backend is responsible for the addition of objects into the instance repository. However, since class instances are passed only as string concatenations of class names and identifiers, a correlation must be kept of identifying strings and actual repository object references. This is done by the backend code. Also, to avoid duplicate entries and forward referencing problems in associations and references, all entries in associations (regardless of how they appear) are stored, and added after all other parsing has been performed. This requires a storage mechanism for each association in the model. Beyond these tasks, the role of the backend is simple.

The first method to appear is an initialise method, that is provided with a reference to an instance repository and initialises the association stores, name mappings, and the backend’s connection to the repository, which is maintained throughout the parse. A method is then generated for each class, package and association in the model. For classes and packages this simply checks for name inconsistencies and creates the appropriate object in the instance repository. For associations, the method simply adds an entry into the post-processing store for association entries. The backend also contains a finalise method, that transfers these stored association entries into the repository and closes the connection with the repository.

6.4 The HUTN Configurator

The HUTN configurator is a simple parser designed for the acquisition of the user’s language preferences, and for the transfer of these to the generation modules. The three configuration possibilities are represented in a format modelled after that used in Unix Xdefaults files. As each option is parsed, an element is added to a static storage mechanism in each generator. An example of the configuration file is given in Figure 15.

FamilyPackage.Family.identifier:familyName

FamilyPackage.Family.adjective:nuclear

FamilyPackage.Person.identifier:name

FamilyPackage.Family.keyword:migrants

Figure 15: An example of a HUTN language configuration

Chapter 7: Future Work

There are a number of features that were considered for incorporation into the current HUTN system but, for reasons of appropriateness, simplicity and time, were not included. Some of these features may prove interesting in future work, and these are described in this chapter. Since the project was initiated partly in response to the OMG’s EDOC suite of Requests for Proposal, the final section of this chapter discusses a possible response to this.

7.1 Additional Customisations

A number of customisation types were considered for the HUTN system but not included, for reasons of simplicity and time. These might prove to be interesting additions to the system in future. Some of these were discussed in Section 4.2, regarding the use of other types of attributes for identifiers, adjectives and keywords. Three others are described here. The first two described here pertain to the representation of non-containment Associations in which the participating classes do not contain references. The other regards allowing the user to choose the symbols used in the generated language for punctuation.

The system currently displays the list of class instances that participate in the association, differentiated by the name of the role that the instance plays. One alternative to this is the use of infix operators for the display of the roles. This would mean that a single tuple of the association would be represented as an operation between the two class instances, as follows.

Family “The Smiths” sponsorship Person “Namdou Ndiaye”

This representation was not instituted as the default method since it provides less identification of which class instance plays which role in the association, depending instead on the user’s knowledge of the ordering of the roles in the association. However, incorporating this as a user customisation might offer the user some more choice on the display of associations.

The other possible customisation for representing associations is the use a table-like appearance. Under this policy, the two lines representing the roles within an association’s body are replaced by a single line with the class instances separated into columns by white space.

However, to fit the two participant objects on the same line (80 characters in length), it would probably be necessary to remove the role names from the front of the class instances. To ensure that confusion does not result, these rule names would be placed in parentheses in the introduction of the association, as a key to the tabulated roles.

sponsorship (sponsor, sponsored) {


Family “The Smiths”

Person “Namdou Ndiaye”

Family “The Smiths”

Person “Sharif Mbangwa”


Family “The McDonalds”
Person “Miguel Aranjuez”

}

In the current HUTN system, the choice of symbols for punctuation was common for all languages, and was left out of the hands of users. A possible extension to the system might be to allow the user to define the various symbols used for block delimitation, string delimitation (and escape characters), and list separation and delimitation. Some checks would be needed on these defined symbols to ensure that they would not introduce compiler conflicts, and possibly to advise the user if a choice had particularly negative implications for the language’s usability (see Section 3). It is also possible that these choices could be made not only on a language-by-language basis, but also on a system-wide basis, through the use of a system configuration file. Customisations made this way would have affect all languages generated by the system, subject to the possible overriding of global configurations by individual language choices.

7.2 Towards a generic customisation mechanism

During the development of the HUTN system, one consideration was the provision of a mechanism for the encapsulation of customisations within modules or components. This would mean that the addition of a new type of customisation would simply involve the construction and addition to the system of a new customisation module. This module would include details on exactly how the customisation would affect the syntax of a generated language. However, the experience of implementing the three customisations described in Section 4.2 showed that the specification of these change details has the potential to be very complex. For such a system to work, the HUTN system as a whole would have to be described in a highly structured manner, so that a customisation could gain access to a certain point within the abstract syntax of the language. One method for structuring might be for the generator to work from the skeleton of an abstract syntax tree, filling in the details of the syntax as dictated by the information model. The customisation modules could possibly then use the structure of the abstract syntax tree to locate points where changes needed to be made, then make alterations as described by the module’s specification.

Some programs such as the Synthesizer Generator [TR81] and UQ* [CW99] already provide this detailed maintenance of an abstract syntax tree. However, the purpose of these systems is for language-based editing, so connecting them to a repository might prove difficult. While a module-based customisation system such as this would provide a high degree of flexibility, the difficulty involved in its implementation is substantial and, for this reason, it was not pursued in the HUTN system.

7.3 Response to the EDOC HUTN proposal

The EDOC suite of Requests for Proposal was formed to create a suite of modelling concepts and accessories for use in the field of enterprise computing. The suite hinges on the definition of a ‘UML profile’, a set of modelling concepts that forms a subset of UML and that can be used to represent business data. The third request calls for a Human-Usable Textual Notation for representing the enterprise models created using these concepts. One of the requirements for the ‘UML Profile’ will be the definition of the incorporated modelling concepts in terms of the MOF concepts. Given this ‘meta-model’, the HUTN system should be possible to generate such a notation, and to modify it using customisations. This will provide a good test of the HUTN system, since the model is likely to be large, and to incorporate a large range of the MOF features.

Chapter 8: Conclusions

The stark contrast between the example XMI/XML in appendix B and the equivalent HUTN in Appendix C shows that a language generation facility designed with sufficient consideration of usability can make significant advances in providing a human-usable mechanism for the interchange of data with repositories. This usability comes about not by coincidence, but through the adoption of a user-centric design approach, considering the needs of the user before the technical agenda of the system’s development. The alignment of the generated language’s style with those of common programming languages provides the user with a familiar frame of reference for learning the language. Also, careful consideration of the problems associated with existing programming languages’ styles leads to a syntax that will be able to avoid these problems.

There are three properties that make the HUTN system a particularly useful one. The first is that it is generic, in that it can provide a language for any model that can be specified using the MOF techniques. Secondly, the system provides full automation, particularly useful for systems whose information models are undergoing change. Thirdly, the customisation mechanisms available provide the user with a degree of control over the appearance and consequently the usability of the language.

Generic

The language mappings as described in Section 5 provide a set of syntactic rules providing complete coverage for all of the significant MOF modelling concepts. This means that a language can be rapidly created for any model specified using these concepts. In addition, since the MOF modelling concepts have been designed as a basic set of common concepts, there will almost always be a simple mapping from these concepts to alternative modelling techniques. Therefore it should be possible to use the syntax described to develop a similar system for other modelling and repository tools, such as Rational Rose.

The proposal that resulted in the XMI standard was supported and created by a number of companies that play a significant role in the modelling and repositories field, such as Rational, Unisys and IBM, so it seems likely that the format will gain in popularity and use. Since the HUTN system is based on transformations to (and potentially from) XMI, it could quite easily be used with XMI from sources other than the MOF. A pre-requisite would of course be the availability of a MOF model from which to generate the producer and consumer, but it should be possible to create such a model (or the majority thereof) from the DTD of an XMI stream.

Fully Automated

The second benefit of the system is that it is fully automated. The task involved in the manual implementation of a parser allows for more flexibility in language design, but requires a good deal of time and effort. In addition to this, a manually constructed parser is open to problems with information models that are subject to change. Automation dictates that changes made to a language, be they as a result of a change in the underlying model or a change in the syntax, will be implemented uniformly and quickly across the entire system. In this way, automation avoids problems of consistency in changing languages, and greatly reduces the time involved in the evolution of an information model/repository suite.

User-customisable

The other major benefit provided by the HUTN system is that of flexibility of syntax. While the essential style of the language is fixed, the ability to alter the representation of some attributes within a class instance means that some of the usability decisions of the language can be passed back to the creator (and presumably the user) of the language. This can only serve to enhance the usability of the language, since through the fully automated nature of the language generator, customisations that do not help the language can easily be removed or altered.
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Appendix A: Example Information Model

The following UML diagram presents the information model used by the examples presented throughout the document, and in Appendices B and C.
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Appendix B: Example XMI stream

The following XMI stream is an encoding of some data corresponding to the model presented in Appendix A.

<?xml version = "1.0"?>

<XMI>

  <XMI.header>

    <XMI.model xmi.name = ‘familyPackage’ xmi.version = ‘1.1’/>

  </XMI.header>

  <XMI.content>

    <FamilyPackage xmi.id=’xmi-id-001’>

      <FamilyPackage.Family xmi.id=‘xmi-id-002’>

        <FamilyPackage.Family.familyName>

          The McDonalds

        </FamilyPackage.Family.familyName>

        <FamilyPackage.Family.address>

          7 Main Street

        </FamilyPackage.Family.address>

        <FamilyPackage.Family.nuclear xmi.value=’false’/>

        <FamilyPackage.Family.migrants xmi.value=’true’/>

        <FamilyPackage.Family.familyFriends>

          <FamilyPackage.Family xmi.idref=’xmi-id-003’/>

        </FamilyPackage.Family.familyFriends>

        <FamilyPackage.Family.petFish>

          <FamilyPackage.Fish>

            <FamilyPackage.Fish.name>

              Wanda

            </FamilyPackage.Fish.name>

            <FamilyPackage.Fish.sex xmi.value=’female’/>

          </FamilyPackage.Fish>

        </Familypackage.Family.petfish>

        <FamilyPackage.Family.petDog>

          <FamilyPackage.Family.Dog xmi.idref=’xmi-id-007’/>

        </FamilyPackage.Family.petDog>

      </FamilyPackage.Family>

      <FamilyPackage.Family xmi.id=‘xmi-id-003’>

        <FamilyPackage.Family.nuclear xmi.value=’true’/>

        <FamilyPackage.Family.migrants xmi.value=‘false’/>

        <FamilyPackage.Family.address>

          5 Main Street, Brisbane

        </FamilyPackage.Family.address>

        <FamilyPackage.Family.familyName>

          The Smiths

        </FamilyPackage.Family.familyName>

        <FamilyPackage.Family.naturalChild>

          <FamilyPackage.Person>

            <FamilyPackage.Person.name>

              Joan Smith

            </FamilyPackage.Person.name>

            <FamilyPackage.Person.age>

              20

            </FamilyPackage.Person.age>

            <FamilyPackage.Person.sex xmi.value=’female’/>

          </FamilyPackage.Person>

        </FamilyPackage.Family.naturalChild>

        <FamilyPackage.Family.naturalChild>

          <FamilyPackage.Person>

            <FamilyPackage.Person.name>

              Harry Smith

            </FamilyPackage.Person.name>

            <FamilyPackage.Person.age>

              17

            </FamilyPackage.Person.age>

            <FamilyPackage.Person.sex xmi.value=’male’/>

          </FamilyPackage.Person>

        </FamilyPackage.Family.naturalChild>

        <FamilyPackage.Family.adoptedChild>

          <FamilyPackage.Person>

            <FamilyPackage.Person.name>

              Dylan Smith

            </FamilyPackage.Person.name>

            <FamilyPackage.Person.age>

              12

            </FamilyPackage.Person.age>

            <FamilyPackage.Person.sex xmi.value=’male’/>

          </FamilyPackage.Person>

        </FamilyPackage.Family.adoptedChild>

        <FamilyPackage.Family.familyFriends>

          <FamilyPackage.Family xmi.idref=’xmi-id-002’/>

        </FamilyPackage.Family.familyFriends>

      </FamilyPackage.Family>

      <FamilyPackage.Person xmi.id=‘xmi-id-004’>

        <FamilyPackage.Person.sex xmi.value=’male’/>

        <FamilyPackage.Person.age>

          7

        </FamilyPackage.Person.age>

        <FamilyPackage.Person.name>

          Namdou Ndiaye

        </FamilyPackage.Person.name>

      </FamilyPackage.Person>

      <FamilyPackage.Person xmi.id=‘xmi-id-005’>

        <FamilyPackage.Person.sex xmi.value=’male’/>

        <FamilyPackage.Person.age>

          6

        </FamilyPackage.Person.age>

        <FamilyPackage.Person.name>

          Sharif Mbangwa

        </FamilyPackage.Person.name>

      </FamilyPackage.Person>

      <FamilyPackage.Person xmi.id=’xmi-id-006’>

        <FamilyPackage.Person.sex xmi.value=’male’/>

        <FamilyPackage.Person.age>

          3

        </FamilyPackage.Person.age>

        <FamilyPackage.Person.name>

          Miguel Aranjuez

        </FamilyPackage.Person.name>

      </FamilyPackage.Person>

      <FamilyPackage.Dog xmi.id=‘xmi-id-007’>

        <FamilyPackage.Dog.sex xmi.value=’male’/>

        <FamilyPackage.Dog.age>

          2

        </FamilyPackage.Dog.age>

        <FamilyPackage.Dog.name>

          Spike

        </FamilyPackage.Dog.name>

        <FamilyPackage.Dog.breed>

          Irish Wolfhound

        </FamilyPackage.Dog.breed>

      </FamilyPackage.Dog>

      <FamilyPackage.Sponsorship>

        <FamilyPackage.Family xmi.idref=‘xmi-id-003’/>

        <FamilyPackage.Person xmi.idref=‘xmi-id-004’/>

        <FamilyPackage.Family xmi.idref=‘xmi-id-003’/>

        <FamilyPackage.Person xmi.idref=‘xmi-id-005’/>

        <FamilyPackage.Family xmi.idref=‘xmi-id-002’/>

        <FamilyPackage.Person xmi.idref=‘xmi-id-006’/>

      </FamilyPackage.Sponsorship>

      <FamilyPackage.CarOwnership>

        <FamilyPackage.Family xmi.idref=’xmi-id-002’/>

        <FamilyPackage.Car>

          <FamilyPackage.Car.Registration>

            755-BDL

          </FamilyPackage.Car.Registration>

          <FamilyPackage.Car.State>

            QLD

          </FamilyPackage.Car.State>

          <FamilyPackage.Car.Make>

            Mitsubishi Magna

          </FamilyPackage.Car.Make>

          <FamilyPackage.Car.Year>

            1992

          </FamilyPackage.Car.Year>

        </FamilyPackage.Car>

      </FamilyPackage.CarOwnership>

    </FamilyPackage>

  </XMI.content>

</XMI>

Appendix C: An Example of a HUTN language

This section presents a piece of HUTN input that could be used to represent the same data as presented by the XMI stream in Appendix B.  Since it is an input stream, there is no restriction placed on the order of the information within the stream.  The translation from the XMI stream presented in Appendix B into a HUTN language is shown in this appendix.  The language configuration used the create this HUTN language is shown after the HUTN text.

FamilyPackage “xmi-id-001” {


Family “The McDonalds” {



address: “7 Main Street”



migrants



familyFriends: Family “The Smiths”



petFish: Fish “Wanda” {




sex: female



}



petDog: Dog “Spike”



CarOwnership: Car “755-BDL” {




state: “QLD”




make: “Mitsubishi Magna”




year: 1992



}


}


nuclear Family “The Smiths” {



address: “5 Main Street”



naturalChild: Person “Joan Smith” {




age: 20




sex: female



}



naturalChild: Person “Harry Smith” {




age: 17




sex: male



}



adoptedChild: Person “Dylan Smith” {




age: 12




sex: male



}



familyFriends: “The McDonalds”


}


Person “Namdou Ndiaye” {



sex: male



age: 6


}


Person “Sharif Mbangwa” {



sex: male



age: 3


}


Person “Miguel Aranjuez” {



sex: male



age: 2


}


Dog “Spike” {



sex: male



age: 2



breed: “Irish Wolfhound”


}


sponsorship {



sponsor: Family “The Smiths”



sponsored: Person “Namdou Ndiaye”



sponsor: Family “The Smiths”



sponsored: Person “Sharif Mbangwa”



sponsor: Family “The McDonalds”



sponsored: Person “Miguel Aranjuez”


}

}

The following language configuration was used for the HUTN language illustrated above.

FamilyPackage.Family.identifier:familyName

FamilyPackage.Family.adjective:nuclear

FamilyPackage.Family.keyword:migrants

FamilyPackage.Person.identifier:name

FamilyPackage.Dog.identifier:name

FamilyPackage.Fish.identifier:name

FamilyPackage.Car.identifier:registration
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