13

6 Experimental Evaluation

In this section, we experimentally evaluate the theory of skipping refinement.
Our goals are to evaluate the specification costs and benefits of using skipping
refinement as a notion of correctness and to determine the impact that the use of
skipping refinement has on state-of-the-art verification tools in terms of capacity
and verification times.

We consider three case studies. The first is a hardware implementation of a
JVM-inspired stack machine with an instruction buffer. The second is a memory
controller with an optimization that eliminates redundant writes to memory. The
third is a compiler transformation that vectorizes a list of scalar instructions.

For each case study, we compare two approaches for verifying correctness.
The approaches require that we have both a specification system and an im-
plementation system. The first approach is to prove input-output equivalence,
i.e., we show that if the specification and the implementation systems start in
equivalent initial states and are given the same inputs, then if both systems
terminate, the final states of the two systems are also equivalent. The second
approach is to prove skipping refinement.

The first two case studies were developed using the BAT specification lan-
guage [18], compiled to sequential AIGs, and then analyzed using model-checkers.
We performed experiments with four model-checkers: TIP, IIMC, BLIMC, and
SUPER_PROVE [1] using a machine with an Intel Xeon X5677 with 16 cores run-
ning at 3.4GHz and 96GB main memory. We chose SUPER_PROVE and IIMC
as they are the top 2 model-checkers in the single safety property track [1]. TIP
and BLIMC are chosen to cover temporal decomposition and bounded model-
checking based tools. The timeout limit for model-checker runs is set to 900 sec-
onds. While SUPER_PROVE and IIMC are multi-threaded, BLIMC and TIP
use only single core of the machine.

The last case study of compiler transformation involves systems whose state
space is infinite. This allowed us to evaluate the use of skipping refinement
for infinite state systems. Since model checkers cannot be used to verify such
systems, we used the ACL2s interactive theorem prover [7].

The BAT files, corresponding AIGs, ACL2s models, and ACL2s proof scripts
are publicly available [2].

Our results show that when correctness is based on input-output equivalence,
model-checkers quickly start timing out as the complexity (size) of the systems
increases. In contrast, when skipping refinement is used, much larger systems
can be automatically verified. For the infinite state case study, interactive theo-
rem proving was used and the issue there is really about the amount of human
guidance needed for proofs. The skipping refinement proofs were much simpler.

6.1 JVM-inspired Stack Machine

In this case study we verify a stack machine inspired by the Java Virtual Ma-
chine (JVM). Java processors have been proposed as an alternative to just-in-
time compilers to improve the performance of Java programs. Java processors

14

such as JME [10] fetch bytecodes from an instruction memory and store them
in an instruction buffer. The bytecodes in the buffer are analyzed to perform
instruction-level optimizations e.g., instruction folding. In this case study, we
verify BSTK, a simple hardware implementation of part of the JVM. BSTK is
an incomplete and inaccurate model of JVM that only models an instruction
memory, an instruction buffer and a stack. Only a small subset of JVM instruc-
tions are supported (push, pop, top, nop). However, even such a simple model is
sufficient to exhibit the applicability of skipping simulation and the limitations
of current hardware model-checking tools.

STK is the high-level specification with respect to which we verify the cor-
rectness of BSTK, the implementation. Both STK and BSTK are parameterized
systems with parameters s (width of stack), k& (depth of stack), and n (number
of instructions in émem). Their behaviors are defined using abstract transition
systems. The syntax and operational semantics are shown in Fig. 3. Adding
element e to the beginning or end of list (or array) [is denoted by e::l and
[:: e, respectively. Each transition consists of a state:condition pair above a line,
followed by the next state below the line. If a concrete state matches the state
in a transition and satisfies all elements of the condition, then the state can
transition to the state below the line. Every condition implicitly contains the
condition pc < n.

The state of STK consists of an instruction memory, a program counter, and
a stack. STK fetches an instruction from the instruction memory, executes it,
increases the program counter and possibly modifies the stack, as outlined in
Fig. 3. If none of the transition rules match (which happens when pc = n), then
STK stutters (this is not shown as a transition rule in Fig. 3).

The state of BSTK is similar to STK, except that it also includes an instruc-
tion buffer (with capacity k). BSTK fetches an instruction from the instruction
memory and as long as it is not top and the instruction buffer is not full, it queues
it to the end of the instruction buffer and increments the program counter. If
the fetched instruction is top the machine executes all buffered instructions in
the order they were enqueued, thereby draining the instruction buffer and ob-
taining a new stack. Otherwise, if the instruction buffer is full, then the machine
again executes all buffered instructions in the order they were enqueued, thereby
draining the instruction buffer and obtaining a new stack, and it also updates the
instruction buffer so that it only contains just the current fetched instruction. If
none of the transition rules match, then BSTK drains the instruction buffer (if
it is not empty) and updates the stack accordingly (this is not shown in Fig. 3).
Note that both machines are deterministic.

Let Ma = (Sa, i>,L,4> and M¢ = (S¢, 2>,LC> be the transition systems
for STK and BSTK as specified in Fig. 3. With input-output equivalence as
the correctness condition, we say that M correctly implements M 4 under a
refinement map r if for every M state sg that has an empty instruction buffer,
if we run M ¢ to completion (which occurs when pc = n) to reach state s¢, then
starting M 4 in state 7(sp) and running M4 to completion yields a state w,

stk = [vg, ..., Vs] (Stack
inst := (push v) | (pop) | (top) | (nop) (Instruction
imem := [insty, ..., insty] (Program
pc:=0]1]| - |n (Program Counter
ibuf := [insty, ..., insty] (Instruction Buffer

sstate := (imem, pc, stk)

istate := (imem, pc, ibuf , stk)

(STK State
(BSTK State

)
)
)
)
)
)
)

15

STK (44—>) where s = capacity of stk, t = |stk|

(imem, pc, stk : imem[pc] = (push v),t < s

(tmem, pc + 1, v :: stk)

(tmem, pc, stk) : imem|[pc] = (push v),t = s

(imem, pc + 1, stk)

(tmem, pc, []) : imem[pc] = (pop)
(tmem, pc+ 1,][])

(imem, pe, v :: stk : imem|[pc] = (pop)

(imem, pc + 1, stk)
(imem, pe, stk) : imem[pc] = (top)

(imem, pc + 1, stk)

(imem, pe, stk) : imem[pc] = (nop)

(imem, pc + 1, stk)

BSTK (£>) where k = capacity of ibuf, m = |ibuf|

(imem, pe, ibuf, stk) : m < k, imem/[pc] # top

(imem, pc + 1, ibuf :: imem|[pc], stk)
(imem, pe, ibuf , stk) : imem[pc] = top,
(ibuf , 0, stk) =™ (ibuf, m, stk’)
{imem, pc + 1,]], stk’)

(imem, pc, ibuf , stk) : m = k,
(ibuf, 0, stk) A, ™ (ibuf , m, stk’)
(imem, pc + 1, [imem/[pc]], stk’)

Fig. 3: Syntax and Semantics of Stack and Buffered Stack Machine

16

such that r(s.) = w,. The refinement map we use is defined as follows.
r({imem, pc, ibuf , stk)) = (imem, pc, stk)

Before we describe skipping refinement, we first discuss why a simpler notion
of refinement such as stuttering refinement will not suffice. If the BSTK takes
a step which requires it to drain its instruction buffer, then the stack will be
updated to reflect the execution of a potentially large number of instructions,
something that is neither a stuttering step nor a single transition of the STK
system. Therefore, it is not possible to prove that BSTK refines STK, using
stuttering refinement and a refinement map that does not transform the stack
(such as r, defined above).

We now formulate the correctness of BSTK based on skipping refinement.
We show M¢ <, My, using Definition 5. First observe that the largest number
of STK steps BSTK can make in one transition arises when the instruction
buffer is full, in which case the BSTK machine executes all instructions in the
instruction buffer. Thus condition WFSK2d in Definition 5, that requires us to
reason about reachability, can easily be reduced to bounded reachability. Hence
we set 7 = k + 1, where k is the capacity of the instruction buffer and condition
WFSK2d is (Jv : w =<9 v : uBv). Next we define the refinement map, but first
we note that we do not have to consider all syntactically well-formed STK states.
We only have to consider states whose instruction buffer is consistent with the
contents of the instruction memory, so-called good states based on commitment
refinement maps [16]. One way of defining a good state is as follows: state s
is good iff pc > |ibuf| and stepping BSTK from (imem, pc — |ibuf], [], stk) state
for |ibuf| steps yields state s, where |ibuf| is number of instructions in state
s’s instruction buffer. As part of the skipping refinement proof, we define the
notion of a good state and show that good states are closed under the transition
relation of BSTK.

Let S¢ is the set of good states. The refinement map R : S, — S4 is defined
as follows: R.s = (imem, pc — |ibuf], stk). Given R, we define B = {(s, R.s) | s €
St}

Since STK and BSTK are deterministic machines and STK does not stut-
ter, we only need to define one rank function: rank: S;; — w where rank(s) =
k — |ibuf]| (recall that k is capacity of ibuf). We can also simplify WFSK2 (Def-
inition 5) as follows.

For all s,u € S, such that s G u

R.s 25" 'Ry V [Ru = R.s Arank(u) < rank(s)] (2)

Notice that since BSTK is deterministic, u is a function of s, so we can
remove u from the above formula, if we wish. Since k + 1 is a constant, we can

expand out A<k using only 4, instead.

To evaluate the computational benefits of skipping refinement, we created
a benchmark suite parameterized by the size of imem, ibuf, and stk (Table 1).
We defined the STK and the BSTK systems and encoded correctness conditions

17

based on input-output equivalence and skipping refinement using the BAT speci-
fication language and tool. Using BAT, we compiled these problems to sequential
AIGs and used hardware model-checkers to perform the verification.

tip + iime X blime * sp O ‘
TO - +
900 |- =
= 100 I
= '
g : o
E L - /// ** X X %
L prad § %
i 0 - o o 8
E 0 & L + + +
7 i m U - O
Fooa” O O
1 [= \\D\‘ | il
- : : se

Input-output Equivalence (sec)

Fig. 4: Running time (log scale) of model-checkers for stack machine and memory con-
troller

In Fig. 4, we plot the running times (in seconds) for four model-checkers: SU-
PER_PROVE (SP), TIP, IIMC and BLIMC. The x-axis represents the running
time of model-checkers using input-output equivalence and y-axis represents the
running time using skipping refinement. A point with x = 900 s indicates that the
model-checker timed out for input-output equivalence while y = 900 s indicates
that the model-checker timed out for skipping refinement. Results show that
model-checkers timeout for most of the configurations when using input-output
equivalence while all model-checkers except TIP can solve all the configurations
using skipping refinement. Furthermore, there is an improvement of several or-
ders of magnitude in the running time when using skipping refinement. Notice
that the number of latches for the skipping refinement tables (for this and all
other case studies) is 0. This is because we just unrolled Formula 2 as described
above. We believe that if we encoded the problem as a sequential AIG, then per-
formance would tend to improve, based on our experience with these problems.
Given that performance was already so much better than the performance on
the input-output equivalence problems, we did not try to further simplify the
skipping proof (but notice that we did use sequential AIGs for the input-output
equivalence proofs because the combinatorial AIGs would have been too large).

18

stkdepth|stkword|ibuf|imem|inputs|latches(io) |gates(io) |gates(sks)
8 8 8 |16 227 |552 24460 120598
8 8 16 |64 707 {1597 51019 307185
8 8 32 |128 [1347 |3040 114380 |859186
8 8 32 [256 |2627 |5602 134112 (897243
8 8 32 [512 |5186 |10724 173557 (935298
16 16 16 |32 836 1981 255683 863083
16 16 16 |64 1412 (3135 264472 990759
16 16 32 |128 |2564 |5730 539129 2080698
16 16 32 |256 [4868 (10340 574221 (2118753
16 16 32 (512 |9476 |19558 644385 |2152063

Table 1: Configurations of BSTK and STK machines and size of AIGs for input-output
equivalence(io) and skipping refinement(sks).

6.2 Memory Controller

Modern microprocessors operate at a higher clock frequency than their main
memories. Thus it is essential for a memory controller, the interface between
the CPU and main memory, to buffer requests and responses and synchronize
communication between the CPU and memory. Moreover, current memory con-
trollers implement optimizations to maximize available memory bandwidth uti-
lization. In this case study, we model such a memory controller, OptMEMC.
OptMEMC fetches a memory request from location pt in a queue of CPU re-
quests, regs. It enqueues the fetched request in the request buffer, rbuf and
increments pt to point to the next CPU request in regs. If the fetched request
is a read or the request buffer is full (the capacity of rbuf is k, a fixed positive
integer), then before enqueuing the request into rbuf, OptMEMC first analyzes
the request buffer for consecutive write requests to the same address in the mem-
ory (mem). If such a pair of writes exists in the buffer, it marks the older write
requests in the request buffer as redundant. Then it executes all the requests in
the request buffer except the marked (redundant) ones. Requests in the buffer
are executed in the order they were enqueued.

To reason about the correctness of OptMEMC using refinement, we define
an abstract, high-level specification system, MEMC, that describes the “legal”
behavior of any memory controller implementation. It fetches memory requests
from the CPU one at a time and immediately executes the read or write request.
The syntax and the semantics of MEMC and OPTMEMC are given in Fig. 5,
using the same conventions as described previously in stack machine section.
We define parameterized systems using parameters that determine the size of
req, rbuf and mem, and encode the input-output equivalence between MEMC
and OptMEMC using the BAT specification language. We then compile the
descriptions to sequential AIGs and use model-checkers to verify correctness.

We now formulate the correctness of OptMEMC based on the notion of
skipping refinement. Let Mp = (Sy, i>,L,4> and M¢ = (Sc, E>,Lc> be tran-
sition systems for MEMC and OptMEMC respectively. Given a refinement map
r: Sc — Sa, we use Definition 5 to show that Mo <, M 4. As was the case

mem := [v1,...,Vn] (Memory)

req := (write addr v) | (read addr)

19

| (refresh), addr <n (Request)

reqs := [reqi, . . ., reqy) (Requests)

rbuf := [reqi, . .., reqx) (Request Buffer)

sstate := (regs, pt, mem) (MEMC State)

istate := (regs, pt, rbuf, mem) (OptMEMC State)
MEMC (25)

(regs, pt, mem), reqs[pt] = (write addr v)

(regs, pt + 1, mem[addr] < v)
(regs, pt, mem), reqs[pt] = (read addr)

(regs, pt + 1, mem)
(regs, pt, mem), reqs[pt] = (refresh)

(regs, pt + 1, mem)

OptMEMC (55)
Let |rbuf| = j

(regs, pt, rbuf, mem), j <k,
req # top
(regs, pt, rbuf :: regs[pt], mem)

(regs, pt, rbuf, mem), reqs[pt] = (read addr),
(rbuf, 0, mem) Ay {rbuf,j, mem')

(regs, pt, nil, mem”)
(regs, pt, rbuf, mem), j =k,
(rbuf, 0, mem) i>-7'(7”buf, k, mem')

(regs, pt, rbuf :: reqs[pt], mem’)

Fig. 5: Syntax and Semantics of MEMC and OptMEMC

20

with the previous case study, OptMEMC and MEMC are deterministic machines
and MEMC does not stutter. WFSK2 (Definition 5) can again be simplified to
Formula 2. We encode Formula 2 for the systems in Table 2 using BAT and
compile the correctness condition to an AIG.

The model checking running times are shown in Fig. 4. While model-checkers
timeout for many configurations (points with x = 900s in Fig. 4) when using
input-output equivalence, all except TIP solve all the configurations when using
skipping refinement. Furthermore, the running times with skipping refinement
show improvement of several orders of magnitude. Also, the performance of SU-
PER_PROVE when using skipping refinement is much more robust with respect
to the size of the system than when using input-output equivalence.

msize | mword |rbuf|regs|input |latches(io) |gates(io)|gates(sks)
8 8 8 32 (480 (1082 26429 119075

8 8 8 64 |896 |1916 32817 117454

8 8 16 |32 |480 |1187 48610 |293098

8 8 16 |64 (896 |2021 54998 302956
16 16 32 |64 |1664 |4054 534746 |2057352
16 16 32 |128 {3072 |6872 556142 2097336
16 16 32 |256 |5888 |12506 598914 2135409
16 16 32 |512 |11520(23772 684438 |2173481

Table 2: Configurations of OPTMEMC and MEMC machines and size of AIGs for
input-output equivalence(io) and skipping refinement(sks).

6.3 Superword Level Parallelism with SIMD instructions

An effective way to improve the performance of multimedia programs running on
modern commodity architectures is to exploit Single-Instruction Multiple-Data
(SIMD) instructions (e.g., the SSE/AVX instructions in x86 microprocessors).
Compilers analyze programs for superword level parallelism and when possible
replace multiple scalar instructions with a compact SIMD instruction that con-
currently operates on multiple data [12]. In this case study, we illustrate the
applicability of skipping refinement to verify the correctness of such a compiler
transformation using ACL2s, an interactive theorem prover. The source language
consists of scalar instructions and the target language consists of both scalar and
vector instructions. We model the transformation as an function that takes as
input a program in the source language and outputs a program in the target
language. Instead of proving that the compiler is correct, we prove the equiva-
lence of the source program with the generated target program, i.e., we use the
translation validation approach to compiler correctness [4].

For presentation purposes, we make some simplifying assumptions: the state
of the source and target programs (modeled as transition systems) is a three-
tuple comnsisting of a sequence of instructions, a program counter and a store.

21

a=b+c c
— ="+

u=v X w N u _V % w

X=y X z X 7y SIMD |,

Fig. 6: Superword Parallelism

We also assume that a SIMD instruction operates on two sets of data operands
simultaneously and that the transformation identifies parallelism at the basic
block level. Therefore, we do not model any control flow instruction. Note that
we do not reorder instructions in the source program. Fig. 6 shows how two add
and two multiply scalar instructions are transformed into corresponding SIMD
instructions.

loc:={z,y,z,a,b,¢c,...} (Variables)
sop := add | sub | mul | and | or | nop (Scalar Ops)
vop = vadd | vsub | vmul | vand | vor | vnop (Vector Ops)
sinst := sop(z T y) (Scalar Inst)
vinst := vop(c a b)(f d e) (Vector Inst)
sprg :=[] | sinst:: sprg (Scalar Program)
vprg :=[] | (sinst | vinst) :: vpryg (Vector Program)
store :=[| | (z,vz) :: store (Registers)

Scalar Machine (i>)
(sprg, pe, store), {(z, va), (y, vy)} C store,
sprg[pc] = sop(z z y), v = [(sop vz vy)]
(sprg, pc + 1, store| .=,)

Vector Machine (£>)
<vp1“g, pe, store), {<l’, U1>7 <y7 Uy>} g store,
sprglpc] = sop(z z y), v: = [(sop ve vy)]
(vprg, pc + 1, store|z:=,)

(vprg, pe, store), vprg[pc] = vop(c a b){f d e),
{<a7 vﬂ)v <b7 Ub>7 <d7 ’Ud), <6, vﬁ>} C store,
{ve, vr) = [(vop (va vp)(va ve))]

(vprg, pc + 1, store| c.mu, j:=v;)

Fig. 7: Syntax and Semantics of Scalar and Vector Program

The syntax and operational semantics of the scalar and vector machines are
given in Fig. 7, using the same conventions as described previously in the stack

22

machine section. We denote that z,...,y are variables with values v,...,v,
in store by {(z,vs),...,(y,vy)} C store.[(sop v, vy)] denotes the result of the
scalar operation sop and [(vop (v, vp)(vg ve))] denotes the result of the vector
operation vop. Finally, we use store|zz:vz’_“’y::vy to denote that variables x, ...,y
are updated (or added) to store with values vy, ..., vy.

As was the case with the stack machine in subsection 6.1, it can be shown
that the notion of stuttering simulation is too rigid to relate the scalar and the
vector machines on scalar and vector programs produced by the compiler, no
matter what refinement map we use. To see this, note that the vector machine
might run exactly twice as fast as the scalar machine and during each step the
scalar machine might be modifying the memory. Since both the machines do not
stutter, in order to use stuttering refinement, the length of the vector machine
run has to be equal to the run of the scalar machine.

Let M4 and M be transition systems of the scalar and vector machines,
respectively. The vector machine is correct iff M refines M 4. We show Mo <,
M 4, using Definition 5. Determining j, an upper-bound on skipping that reduces
condition WFSK2d in Definition 5 to bounded reachability is simple because
the vector machine can perform at most 2 steps of the scalar machine at once;
therefore j = 3 suffices.

We next define the refinement map. Let sprg be the source program and
uprg be the compiled vector program. We use the compiler to generate a lookup
table pcT that maps values of the vector machine’s program counter to the
corresponding values of the scalar machine’s program counter. The refinement
map R :Sc — S4 is defined as follows.

R((vspryg, pc, store)) = (sprq, pcT (pc), store)

Note that pcT(pc) can also be determined using a history variable and this is
preferable from a verification efficiency perspective. Given R, we define B =
{(s,R.s) | s € Sc}.

Since the machines do not stutter, WFSK2 (Definition 5) can be simplified

as follows. For all s,u € S¢ such that s G

R.s 23R (3)

Since the vector machine is deterministic, u is a function of s, so we can remove
. . A .
u from the above formula, if we wish. Also, we can expand out —<3 to obtain

a formula using only 4, instead.

For this case study we used deductive verification methodology to prove cor-
rectness. The scalar and vector machines are defined using the data-definition
framework in ACL2s [7,6]. We formalized the operational semantics of the scalar
and vector machines using standard methods. The sizes of the program and store
are unbounded and thus the state space of the machines is infinite. Once the
definitions were in place, proving skipping refinement with ACL2s was straight-
forward. Proving input-output equivalence would have required theorem proving
expertise and insight to come up with the right invariants, something we avoided.
The proof scripts are publicly available [2].

