
Skipping Refinement

Mitesh Jain and Panagiotis Manolios

Northeastern University∗

{jmitesh,pete}@ccs.neu.edu

Abstract. We introduce skipping refinement, a new notion of correct-
ness for reasoning about optimized reactive systems. Reasoning about
reactive systems using refinement involves defining an abstract, high-
level specification system and a concrete, low-level implementation sys-
tem. One then shows that every behavior allowed by the implementation
is also allowed by the specification. Due to the difference in abstraction
levels, it is often the case that the implementation requires many steps to
match one step of the specification, hence, it is quite useful for refinement
to directly account for stuttering. Some optimized implementations, how-
ever, can actually take multiple specification steps at once. For example,
a memory controller can buffer the commands to the memory and at
a later time simultaneously update multiple memory locations, thereby
skipping several observable states of the abstract specification, which
only updates one memory location at a time. We introduce skipping
simulation refinement and provide a sound and complete characteriza-
tion consisting of “local” proof rules that are amenable to mechanization
and automated verification. We present case studies that highlight the
applicability of skipping refinement: a JVM-inspired stack machine, a
simple memory controller and a scalar to vector compiler transforma-
tion. Our experimental results demonstrate that current model-checking
and automated theorem proving tools have difficultly automatically an-
alyzing these systems using existing notions of correctness, but they can
analyze the systems if we use skipping refinement.

1 Introduction

Refinement is a powerful method for reasoning about reactive systems. The
idea is to prove that every execution of the concrete system being verified is
allowed by the abstract system. The concrete system is defined at a lower level
of abstraction, so it is usually the case that it requires several steps to match
one high-level step of the abstract system. Thus, notions of refinement usually
directly account for stuttering [5,10,13].

Engineering ingenuity and the drive to build ever more efficient systems has
led to highly-optimized concrete systems capable of taking single steps that
perform the work of multiple abstract steps. For example, in order to reduce

∗ This research was supported in part by DARPA under AFRL Cooperative Agree-
ment No. FA8750-10-2-0233 and by NSF grants CCF-1117184 and CCF-1319580.

2

memory latency and effectively utilize memory bandwidth, memory controllers
often buffer requests to memory. The pending requests in the buffer are analyzed
for address locality and then at some time in the future, multiple locations in the
memory are read and updated simultaneously. Similarly, to improve instruction
throughput, superscalar processors fetch multiple instructions in a single cycle.
These instructions are analyzed for instruction-level parallelism (e.g., the absence
of data dependencies) and, where possible, are executed in parallel, leading to
multiple instructions being retired in a single cycle. In both these examples,
in addition to stuttering, a single step in the implementation may perform the
work of multiple abstract steps, e.g., by updating multiple locations in memory
and retiring multiple instructions in a single cycle. Thus, notions of refinement
that only account for stuttering are not appropriate for reasoning about such
optimized systems. In Section 3, we introduce skipping refinement, a new notion
of correctness for reasoning about reactive systems that “execute faster” and
therefore can skip some steps of the specification. Skipping can be thought of
as the dual of stuttering: stuttering allows us to “stretch” executions of the
specification system and skipping allows us to “squeeze” them.

An appropriate notion of correctness is only part of the story. We also want
to leverage the notion of correctness in order to mechanically verify systems.
To this end, in Section 4, we introduce Well-Founded Skipping, a sound and
complete characterization of skipping simulation that allows us to prove refine-
ment theorems about the kind of systems we consider using only local reasoning.
This characterization establishes that refinement maps always exist for skipping
refinement. In Section 5, we illustrate the applicability of skipping refinement
by mechanizing the proof of correctness of three systems: a stack machine with
an instruction buffer, a simple memory controller, and a simple scalar-to-vector
compiler transformation. We show experimentally that by using skipping re-
finement current model-checkers are able to verify systems that otherwise are
beyond their capability to verify. We end with related work and conclusions in
Sections 6 and 7.

Our contributions include (1) the introduction of skipping refinement, which
is the first notion of refinement to directly support reasoning about optimized
systems that execute faster than their specifications (as far as we know) (2) a
sound and complete characterization of skipping refinement that requires only
local reasoning, thereby enabling automated verification and showing that re-
finement maps always exist (3) experimental evidence showing that the use of
skipping refinement allows us to extend the complexity of systems that can be
automatically verified using state-of-the-art model checking and interactive the-
orem proving technology.

2 Motivating Examples

To illustrate the notion of skipping simulation, we consider a running example
of a discrete-time event simulation (DES) system. A state of the abstract, high-
level specification system is a three-tuple 〈t, E,A〉 where t is a natural number

3

corresponding to the current time, E is a set of pairs (e, te) where e is an event
scheduled to be executed at time te (we require that te ≥ t), and A is an
assignment of values to a set of (global) state variables. The transition relation
for the abstract DES system is defined as follows. If there is no event of the form
(e, t) ∈ E, then there is nothing to do at time t and so t is incremented by 1.
Otherwise, we (nondeterministically) choose and execute an event of the form
(e, t) ∈ E. The execution of an event can modify the state variables and can also
generate a finite number of new events, with the restriction that the time of any
generated event is > t. Finally, execution involves removing (e, t) from E.

Now, consider an optimized, concrete implementation of the abstract DES
system. As before, a state is a three-tuple 〈t, E,A〉. However, unlike the abstract
system which just increments time by 1 when no events are scheduled for the
current time, the optimized system uses a priority queue to find the next event
to execute. The transition relation is defined as follows. An event (e, te) with
the minimum time is selected, t is updated to te and the event e is executed, as
above.

Notice that the optimized implementation of the discrete-time event simu-
lation system can run faster than the abstract specification system by skipping
over abstract states when no events are scheduled for execution at the current
time. This is neither a stuttering step nor corresponds to a single step of the spec-
ification. Therefore, it is not possible to prove that the implementation refines
the specification using notions of refinement that only allow stuttering [13,17],
because that just is not true. But, intuitively, there is a sense in which the op-
timized DES system does refine the abstract DES system. Skipping refinement
is our attempt at formally developing the theory required to rigorously reason
about these kinds of systems.

Due to its simplicity, we will use the discrete-time event simulation example
in later sections to illustrate various concepts. After the basic theory is devel-
oped, we provide an experimental evaluation based on three other motivating
examples. The first is a JVM-inspired stack machine that can store instructions
in a queue and then process these instructions in bulk at some later point in
time. The second example is an optimized memory controller that buffers re-
quests to memory to reduce memory latency and maximize memory bandwidth
utilization. The pending requests in the buffer are analyzed for address locality
and redundant writes and then at some time in the future, multiple locations
in the memory are read and updated in a single step. The final example is a
compiler transformation that analyzes programs for superword-level parallelism
and, where possible, replaces multiple scalar instructions with a compact SIMD
instruction that concurrently operates on multiple words of data. All of these
examples require skipping, because the optimized concrete systems can do more
than inject stuttering steps in the executions specified by their specification sys-
tems; they can also collapse executions.

4

3 Skipping Simulation and Refinement

In this section, we introduce the notions of skipping simulation and refinement.
We do this in the general setting of labeled transition systems where we allow
state space sizes and branching factors of arbitrary infinite cardinalities.

We start with some notational conventions. Function application is some-
times denoted by an infix dot “.” and is left-associative. For a binary relation R,
we often write xRy instead of (x, y) ∈ R. The composition of relation R with it-
self i times (for 0 < i ≤ ω) is denoted Ri (ω = N and is the first infinite ordinal).
Given a relation R and 1 < k ≤ ω, R<k denotes

⋃
1≤i<k R

i and R≥k denotes⋃
ω>i≥k R

i . Instead of R<ω we often write the more common R+.] denotes the
disjoint union operator. Quantified expressions are written as 〈Qx : r : p〉, where
Q is the quantifier (e.g., ∃,∀), x is the bound variable, r is an expression that
denotes the range of x (true if omitted), and p is the body of the quantifier.

Definition 1. A labeled transition system (TS) is a structure 〈S,→ , L〉, where
S is a non-empty (possibly infinite) set of states, → ⊆ S × S is a left-total
transition relation (every state has a successor), and L is the labeling function:
its domain is S and it tells us what is observable at a state.

A path is a sequence of states such that for adjacent states s and u, s→ u.
A path, σ, is a fullpath if it is infinite. fp.σ.s denotes that σ is a fullpath starting
at s and for i ∈ ω, σ(i) denotes the ith element of path σ.

Our definition of skipping simulation is based on the notion of matching,
which we define below. Informally, we say a fullpath σ matches a fullpath δ under
relation B if the fullpaths can be partitioned into non-empty, finite segments such
that all elements in a particular segment of σ are related to the first element in
the corresponding segment of δ.

Definition 2 (Match). Let INC be the set of strictly increasing sequences of
natural numbers starting at 0. Given a fullpath σ, the ith segment of σ with re-
spect to π ∈ INC, written πσi, is given by the sequence 〈σ(π.i),, σ(π.(i+ 1)− 1)〉.
For π, ξ ∈ INC and relation B, we define

corr(B , σ, π, δ, ξ) ≡ 〈∀i ∈ ω :: 〈∀s ∈ πσi :: sBδ(ξ.i)〉〉 and

match(B , σ, δ) ≡ 〈∃π, ξ ∈ INC :: corr(B , σ, π, δ, ξ)〉.

In Figure 1, we illustrate our notion of matching using our running example of
a discrete-time event simulation system. Let the set of state variables be {v1, v2}
and let the set of events contain {(e1, 0), (e2, 2)}, where event ei increments
variable vi by 1. In the figure, σ is a fullpath of the concrete system and δ
is a fullpath of the abstract system. (We only show a prefix of the fullpaths.)
The other parameter for match is B, which, for our example, is just the identity
relation. In order to show that match(B , σ, δ) holds, we have to find π, ξ satisfying
the definition. In the figure, we separate the partitions induced by our choice for
π, ξ using −− and connect elements related by B with . Since all elements of
a σ partition are related to the first element of the corresponding δ partition,
corr(B , σ, π, δ, ξ) holds, therefore, match(B , σ, δ) holds.

5

Concrete(σ) Abstract(δ)

−−−−

−−−−

−−−−

−−−−

〈0, {(e1, 0), (e2, 2), . . .}, {v1 = 1, v2 = 1}〉 〈0, {(e1, 0), (e2, 2), . . .}, {v1 = 1, v2 = 1}〉

(s1)〈0, {(e2, 2), . . .}, {v1 = 2, v2 = 1}〉 〈0, {(e2, 2), . . .}, {v1 = 2, v2 = 1}〉

〈1, {(e2, 2), . . .}, {v1 = 2, v2 = 1}〉〉

〈2, {(e2, 2), . . .}, {v1 = 2, v2 = 1}〉〉

〈2, {. . .}, {v1 = 2, v2 = 2}〉〉 〈2, {. . .}, {v1 = 2, v2 = 2}〉〉

Fig. 1: Discrete-time Event simulation system

Given a labeled transition system M = 〈S,−→, L〉, a relation B ⊆ S × S is a
skipping simulation, if for any s, w ∈ S such that sBw, s and w are identically
labeled and any fullpath starting at s can be matched by some fullpath starting
at w.

Definition 3 (Skipping Simulation). B ⊆ S × S is a skipping simulation
(SKS) on TSM = 〈S,−→, L〉 iff for all s, w such that sBw, the following hold.

(SKS1) L.s = L.w

(SKS2) 〈∀σ : fp.σ.s : 〈∃δ : fp.δ.w : match(B , σ, δ)〉〉

It may seem counter-intuitive to define skipping refinement with respect to
a single transition system, since our ultimate goal is to relate transition systems
at different levels of abstraction. Our current approach has certain technical
advantages and we will see how to deal with two transitions systems shortly.

In our running example of a discrete-time event simulation system, neither
the optimized concrete system nor the abstract system stutter, i.e., they do not
require multiple steps to complete the execution of an event. However, suppose
that the abstract and concrete system are modified so that execution of an
event takes multiple steps. For example, suppose that the execution of e1 in
the concrete system (the first partition of σ in Figure 1) takes 5 steps and the
execution of e1 in the abstract system (the first partition of δ in Figure 1) takes 3
steps. Now, our abstract system is capable of stuttering and the concrete system
is capable of both stuttering and skipping. Skipping simulation allows this, i.e.,
we can define π, ξ such that corr(B , σ, π, δ, ξ) still holds.

Note that skipping simulation differs from weak simulation [10]; the latter
allows infinite stuttering. Since we want to distinguish deadlock from stuttering,
it is important we distinguish between finite and infinite stuttering. Skipping
simulation also differs from stuttering simulation, as skipping allows an imple-
mentation to skip steps of the specification and therefore run “faster” than the

6

specification. In fact, skipping simulation is strictly weaker than stuttering sim-
ulation.

3.1 Skipping Refinement

We now show how the notion of skipping simulation, which is defined in terms
of a single transition system, can be used to define the notion of skipping re-
finement, a notion that relates two transition systems: an abstract transition
system and a concrete transition system. In order to define skipping refinement,
we make use of refinement maps, functions that map states of the concrete sys-
tem to states of the abstract system. Refinement maps are used to define what
is observable at concrete states. If the concrete system is a skipping refinement
of the abstract system, then its observable behaviors are also behaviors of the
abstract system, modulo skipping (which includes stuttering). For example, in
our running example, if the refinement map is the identity function then any
behavior of the optimized system is a behavior of the abstract system modulo
skipping.

Definition 4 (Skipping Refinement).

Let MA = 〈SA,
A−→, LA〉 and MC = 〈SC ,

C−→, LC〉 be transition systems and let
r : SC → SA be a refinement map. We say MC is a skipping refinement of MA

with respect to r, written MC .r MA, if there exists a relation B ⊆ SC × SA
such that all of the following hold.

1. 〈∀s ∈ SC :: sBr.s〉 and

2. B is an SKS on 〈SC] SA,
C−→] A−→,L〉 where L.s = LA(s) for s ∈ SA, and

L.s = LA(r.s) for s ∈ SC .

Notice that we place no restrictions on refinement maps. When refinement
is used in specific contexts it is often useful to place restrictions on what a
refinement map can do, e.g., we may require for every s ∈ SC that LA(r.s) is a
projection of LC(s). Also, the choice of refinement map can have a big impact
on verification times [18]. Our purpose is to define a general theory of skipping,
hence, we prefer to be as permissive as possible.

4 Automated Reasoning

To prove that transition systemMC is a skipping refinement of transition system
MA, we use Definitions 4 and 3, which require us to show that for any fullpath
from MC we can find a “matching” fullpath from MA. However, reasoning
about the existence of infinite sequences can be problematic using automated
tools. In order to avoid such reasoning, we introduce the notion of well-founded
skipping simulation. This notion allows us to reason about skipping refinement
by checking mostly local properties, i.e., properties involving states and their
successors. The intuition is, for any pair of states s, w, which are related and a

7

state u such that s −→ u, there are four cases to consider (Fig. 2): (a) either we
can match the move from s to u right away, i.e., there is a v such that w −→ v and
u is related to v, or (b) there is stuttering on the left, or (c) there is stuttering
on the right, or (d) there is skipping on the left.

s w

u v

(a)

s w

u

(b)

s w

u v

(c)

s w

u v
≥ 2

(d)

Fig. 2: Well-founded skipping simulation

Definition 5 (Well-founded Skipping). B ⊆ S×S is a well-founded skipping
relation on TS M = 〈S,−→, L〉 iff :

(WFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉
(WFSK2) There exist functions, rankt : S × S → W , rankl : S × S × S → ω,

such that 〈W,≺〉 is well-founded and

〈∀s,u, w ∈ S : s −→ u ∧ sBw :

(a) 〈∃v : w −→ v : uBv〉 ∨
(b) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(c) 〈∃v : w −→ v : sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉 ∨
(d) 〈∃v : w →≥2 v : uBv〉〉

In the above definition, notice that condition (2d) requires us to check that
there exists a v such that v is reachable from w and uBv holds. Reasoning
about reachability is not local in general. However, for the kinds of optimized
systems we are interested in, we can reason about reachability using local meth-
ods because the number of abstract steps that a concrete step corresponds to
is bounded by a constant. As an example, the maximum number of high-level
steps that a concrete step of an optimized memory controller can correspond to
is the size of the request buffer; this is a constant that is determined early in the
design. Another option is to replace condition (2d) with a condition that requires
only local reasoning. While this is possible, in light of the above comments, the
increased complexity is not justified.

Next, we show that the notion of well-founded skipping simulation is equiv-
alent to SKS and can be used as a sound and complete proof rule to check if a
given relation is an SKS. This allows us to match infinite sequences by checking
local properties and bounded reachability. To show this we first introduce an
alternative definition for well-founded skipping simulation. The motivation for
doing this is that the alternate definition is useful for proving the soundness and
completeness theorems. It also allows us to highlight the idea behind the condi-
tions in the definition of well-founded skipping simulation. The simplification is
based on two observations. First, it turns out that (d) and (a) together subsume
(c), so in the definition below, we do not include case (c). Second, if instead of
→≥2 we use →+ in (d), then we subsume case (a) as well.

8

Definition 6. B ⊆ S × S is a reduced well-founded skipping relation on TS
M = 〈S,−→, L〉 iff :

(RWFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉
(RWFSK2) There exists a function, rankt : S × S → W , such that 〈W,≺〉 is

well-founded and

〈∀s,u, w ∈ S : s −→ u ∧ sBw :

(a) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(b) 〈∃v : w →+ v : uBv〉〉

In the sequel, “WFSK” is an abbreviation for “well-founded skipping rela-
tion” and, similarly, “RWFSK” is an abbreviation for “reduced well-founded
skipping relation.”

We now show that WFSK and RWFSK are equivalent.

Theorem 1 B is a WFSK on M = 〈S,−→, L〉 iff B is an RWFSK on M.

Proof. (⇐ direction): This direction is easy.
(⇒ direction): The key insight is that WFSK2c is redundant. Let s, u, w ∈ S, s→
u, and sBw. If WFSK2a or WFSK2d holds then RWFSK2b holds. If WFSK2b
holds, then RWFSK2a holds. So, what remains is to assume that WFSK2c holds
and neither of WFSK2a, WFSK2b, or WFSK2d hold. From this we will derive
a contradiction.

Let δ be a path starting at w, such that only WFSK2c holds between s, u, δ.i.
There are non-empty paths that satisfy this condition, e.g., let δ = 〈w〉. In
addition, any such path must be finite. If not, then for any adjacent pair of
states in δ, say δ.k and δ(k + 1), rankl(δ(k + 1), s, u) < rankl(δ.k, s, u), which
contradicts the well-foundedness of rankl . We also have that for every k > 0,
u 6B δ.k; otherwise WFSK2a or WFSK2d holds. Now, let δ be a maximal path
satisfying the above condition, i.e., every extension of δ violates the condition.
Let x be the last state in δ. We know that sBx and only WFSK2c holds between
s, u, x, so let y be a witness for WFSK2c, which means that sBy and one of
WFSK2a,b, or d holds between s, u, y. WSFK2b can’t hold because then we
would have uBy (which would mean WFSK2a holds between s, u, x). So, one of
WFSK2a,d has to hold, but that gives us a path from x to some state v such
that uBv. The contradiction is that v is also reachable from w, so WFSK2a or
WFSK2d held between s, u, w. �

Let’s now discuss why we included condition WFSK2c. The systems we are
interested in verifying have a bound—determined early early in the design—on
the number of skipping steps possible. The problem is that RWSFK2b forces us
to deal with stuttering and skipping steps in the same way, while with WFSK
any amount of stuttering is dealt with locally. Hence, WFSK should be used for
automated proofs and RWFSK can be used for meta reasoning.

One more observation is that the proof of Theorem 1, by showing that
WFSK2c is redundant, highlights why skipping refinement subsumes stutter-
ing refinement. Therefore, skipping refinement is a weaker, but more generally
applicable notion of refinement than stuttering refinement.

9

In what follows, we show that the notion of RWFSK (and by Theorem 1
WFSK) is equivalent to SKS and can be used as a sound and complete proof rule
to check if a given relation is an SKS. This allows us to match infinite sequences
by checking local properties and bounded reachability. We first prove soundness,
i.e., any RWFSK is an SKS. The proof proceeds by showing that given a RWFSK
relation B, sBw, and any fullpath starting at s, we can recursively construct a
fullpath δ starting at w, and increasing sequences π, ξ such that fullpath at s
matches δ.

Theorem 2 (Soundness) If B is an RWFSK on M then B is a SKS on M.

Proof. To show that B is an SKS onM = 〈S,−→, L〉, we show that given B is a
RWFSK on M = 〈S,−→, L〉 and x, y ∈ S such that xBy, SKS1 and SKS2 hold.
SKS1 follows directly from condition 1 of RWSFK.

Next we show that SKS2 holds. We start by recursively defining δ. In the
process, we also define partitions π and ξ. For the base case, we let π.0 = 0,
ξ.0 = 0 and δ.0 = y. By assumption σ(π.0)Bδ(ξ.0). For the recursive case,
assume that we have defined π.0, . . . , π.i as well as ξ.0, . . . , ξ.i and δ.0, . . . , δ(ξ.i).
We also assume that σ(π.i)Bδ(ξ.i). Let s be σ(π.i); let u be σ(π.i+ 1); let w be
δ(ξ.i). We consider two cases.

First, say that RWFSK2b holds. Then, there is a v such that w →+ v and
uBv. Let #»v = [v0 = w, . . . , vm = v] be a finite path from w to v where m ≥ 1.
We define π(i + 1) = π.i + 1, ξ(i + 1) = ξ.i + m, ξδi = [v0, . . . , vm−1] and
δ(ξ(i+ 1)) = v.

If the first case does not hold, i.e., RWFSK2b does not hold, and RWFSK2a
does hold. We define J to be the subset of the positive integers such that for
every j ∈ J , the following holds.

〈∀v : w →+ v : ¬(σ(π.i+ j)Bv)〉 ∧ (1)

σ(π.i+ j)Bw ∧ rankt(σ(π.i+ j), w) ≺ rankt(σ(π.i+ j − 1), w)

The first thing to observe is that 1 ∈ J because σ(π.i + 1) = u, RWFSK2b
does not hold (so the first conjunct is true) and RWFSK2a does (so the second
conjunct is true). The next thing to observe is that there exists a positive integer
n > 1 such that n 6∈ J . Suppose not, then for all n ≥ 1, n ∈ J . Now, consider the
(infinite) suffix of σ starting at π.i. For every adjacent pair of states in this suffix,
say σ(π.i+ k) and σ(π.i+ k + 1) where k ≥ 0, we have that σ(π.i+ k)Bw and
that only RWFSK2a applies (i.e., RWFSK2b does not apply). This gives us a
contradiction because rankt is well-founded. We can now define n to be min({l :
l 6∈ J}). Notice that only RWFSK2a holds between σ(π.i+n−1)), σ(π.i+n) and
w, hence σ(π.i+n)Bw and rankt(σ(π.i+n), w) ≺ rankt(σ(π.i+n−1), w). Since
Formula 1 does not hold for n, there is a v such that w →+ v ∧ σ(π.i + n)Bv.
Let #»v = [v0 = w, . . . , vm = v] be a finite path from w to v where m ≥ 1. We
are now ready to extend our recursive definition as follows: π(i + 1) = π.i + n,
ξ(i+ 1) = ξ.i+m, and ξδi = [v0, . . . , vm−1].

10

Now that we defined δ we can show that SKS2 holds. We start by unwinding
definitions. The first step is to show that fp.δ.y holds, which is true by construc-
tion. Next, we show that match(B , σ, δ) by unwinding the definition of match.
That involves showing that there exist π and ξ such that corr(B , σ, π, δ, ξ) holds.
The π and ξ we used to define δ can be used here. Finally, we unwind the def-
inition of corr , which gives us a universally quantified formula over the natural
numbers. This is handled by induction on the segment index; the proof is based
on the recursive definitions given above. �

We next state completeness, i.e., given a SKS relation B we provide as wit-
ness a well-founded structure 〈W,≺〉, and a rank function rankt such that the
conditions in Definition 6 hold.

Theorem 3 (Completeness) If B is an SKS on M, then B is an RWFSK on
M.

The proof requires us to introduce a few definitions and lemmas.

Definition 7. Given TSM = 〈S,−→, L〉, the computation tree rooted at a state
s ∈ S, denoted ctree(M, s), is obtained by “unfolding” M from s. Nodes of
ctree(M, s) are finite sequences over S and ctree(M, s) is the smallest tree sat-
isfying the following.

1. The root is 〈s〉.
2. If 〈s, . . . , w〉 is a node and w −→ v, then 〈s, . . . , w, v〉 is a node whose parent

is 〈s, . . . , w〉.

Our next definition is used to construct the ranking function appearing in
the definition of RWFSK.

Definition 8. (ranktCt) Given an SKS B, if ¬(sBw), then ranktCt(M, s, w) is
the empty tree, otherwise ranktCt(M, s, w) is the largest subtree of ctree(M, s)
such that for any non-root node of ranktCt(M, s, w), 〈s, . . . , x〉, we have that
xBw and 〈∀v : w →+ v : ¬(xBv)〉.

A basic property of our construction is the finiteness of paths.

Lemma 4 Every path of ranktCt(M, s, w) is finite.

Given Lemma 4, we define a function, size, that given a tree, t, all of whose
paths are finite, assigns an ordinal to t and to all nodes in t. The ordinal assigned
to node x in t is defined as follows: size(t, x) =

⋃
c∈children.x size(t, c) + 1. We

are using set theory, e.g., an ordinal number is defined to be the set of ordinal
numbers below it, which explains why it makes sense to take the union of ordinal
numbers. The size of a tree is the size of its root, i.e., size(ranktCt(M, s, w)) =
size(ranktCt(M, s, w), 〈s〉). We use � to compare ordinal and cardinal numbers.

Lemma 5 If |S| � κ, where ω � κ then for all s, w ∈ S, size(ranktCt(M, s, w))
is an ordinal of cardinality � κ.

11

Lemma 5 shows that we can use as the domain of our well-founded function
in RWFSK2 the cardinal max (|S|+, ω): either ω if the state space is finite, or
|S|+, the cardinal successor of the size of the state space otherwise.

Lemma 6 If sBw, s −→ u, u ∈ ranktCt(M, s, w) then size(ranktCt(M, u, w)) ≺
size(ranktCt(M, s, w)).

We are now ready to prove completeness.

Proof. (Completeness) We assume that B is an SKS on M and we show that
this implies that B is also an RWFSK on M. RWFSK1 follows directly. To
show that RWFSK2 holds, let W be the successor cardinal of max (|S|, ω) and
let rankt(a, b) be size(ranktCt(M, a, b)). Given s, u, w ∈ S such that s→ u and
sBw, we show that either RWFSK2(a) or RWFSK2(b) holds.

There are two cases. First, suppose that 〈∃v : w →+ v : uBv〉 holds, then
RWFSK2(b) holds. If not, then 〈∀v : w →+ v : ¬(uBv)〉, but B is an SKS so let
σ be a fullpath starting at s, u. Then there is a fullpath δ such that fp.δ.w and
match(B , σ, δ). Hence, there exists π, ξ ∈ INC such that corr(B , σ, π, δ, ξ). By
the definition of corr , we have that uBδ(ξ.i) for some i, but i cannot be greater
than 0 because then uBx for some x reachable from w, violating the assumptions
of the case we are considering. So, i = 0, i.e., uBw. By lemma 6, rankt(u,w) =
size(ranktCt(M, u, w)) ≺ size(ranktCt(M, s, w)) = rankt(s, w). �

Following Abadi and Lamport [13], one of the basic questions asked about
new notions of refinement is: under what conditions do refinement maps exist?
Abadi and Lamport required several rather complex conditions, but our com-
pleteness proof shows that for skipping refinement, refinement maps always exist.
See Section 6 for more information.

Well-founded skipping gives us a simple proof rule to determine if a concrete
transition system MC is a skipping refinement of an abstract transition system
MA with respect to a refinement map r. Given a refinement map r : SC → SA
and relation B ⊆ SC × SA, we check the following two conditions: (a) for all
s ∈ SC , sBr.s and (b) if B is a WFSK on disjoint union ofMC andMA. If (a)
and (b) hold, from Theorem 2, MC .rMA.

5 Experimental Evaluation

In this section, we experimentally evaluate the theory of skipping refinement
using three case studies: a JVM-inspired stack machine, an optimized memory
controller, and a vectorization compiler transformation. Our goals are to evaluate
the specification costs and benefits of using skipping refinement as a notion of
correctness and to determine the impact that the use of skipping refinement
has on state-of-the-art verification tools in terms of capacity and verification
times. We do that by comparing the cost of proving correctness using skipping
refinement with the cost of using input-output equivalence: if the specification
and the implementation systems start in equivalent initial states and get the

12

same inputs, then if both systems terminate, the final states of the systems are
also equivalent. We chose I/O equivalence since that is the most straightforward
way of using existing tools to reason about our case studies. Since skipping
simulation is a stronger notion of correctness that I/O equivalence, skipping
proofs provide more information, e.g., I/O equivalence holds even if the concrete
system diverges, but skipping simulation does not hold and would therefore catch
such divergence errors.

The first two case studies were developed and compiled to sequential AIGs
using the BAT tool [20], and then analyzed using the TIP, IIMC, BLIMC, and
SUPER PROVE model-checkers [1]. SUPER PROVE and IIMC are the top per-
forming model-checkers in the single safety property track of the Hardware Model
Checking Competition [1]. We chose TIP and BLIMC to cover tools based on
temporal decomposition and bounded model-checking. The last case study in-
volves systems whose state space is infinite. Since model checkers cannot be used
to verify such systems, we used the ACL2s interactive theorem prover [8]. BAT
files, corresponding AIGs, ACL2s models, and ACL2s proof scripts are publicly
available [2], hence we only briefly describe the case studies.

Our results show that with I/O equivalence, model-checkers quickly start
timing out as the complexity of the systems increases. In contrast, with skipping
refinement much larger systems can be automatically verified. For the infinite
state case study, interactive theorem proving was used and the manual effort
required to prove skipping refinement theorems was significantly less than the
effort required to prove I/O equivalence.

JVM-inspired Stack Machine. For this case study we defined BSTK, a simple
hardware implementation of part of Java Virtual Machine (JVM) [11]. BSTK
models an instruction memory, an instruction buffer and a stack. It supports
a small subset of JVM instructions, including push, pop, top,nop. STK is the
high-level specification with respect to which we verify the correctness of BSTK.
The state of STK consists of an instruction memory (imem), a program counter
(pc), and a stack (stk). STK fetches an instruction from the imem, executes it,
increases the pc and possibly modifies the stk . The state of BSTK is similar
to STK, except that it also includes an instruction buffer, whose capacity is
a parameter. BSTK fetches an instruction from the imem and as long as the
fetched instruction is not top and the instruction buffer (ibuf) is not full, it
enqueues it to the end of the ibuf and increments the pc. If the fetched instruction
is top or ibuf is full, the machine executes all buffered instructions in the order
they were enqueued, thereby draining the ibuf and obtaining a new stk .

Memory Controller. We defined a memory controller, OptMEMC, which fetches
a memory request from location pt in a queue of CPU requests, reqs. It enqueues
the fetched request in the request buffer, rbuf and increments pt to point to the
next CPU request in reqs. If the fetched request is a read or the request buffer is
full (the capacity of rbuf is parameter), then before enqueuing the request into
rbuf , OptMEMC first analyzes the request buffer for consecutive write requests
to the same address in the memory (mem). If such a pair of writes exists in the
buffer, it marks the older write requests in the request buffer as redundant. Then

13

1

10

100

900

TO

1

1
0

1
0
0

9
0
0

T
O

S
k
ip

p
in

g
R

efi
n
em

en
t

(s
ec

)

Input-output Equivalence (sec)

tip iimc blimc sp

Fig. 3: Performance of model-checkers on case studies

it executes all the requests in the request buffer except the marked (redundant)
ones. Requests in the buffer are executed in the order they were enqueued. We
also defined MEMC, a specification system that processes each memory request
atomically.
Results. To evaluate the computational benefits of skipping refinement, we cre-
ated a benchmark suite including versions of the BSTK and STK machines—
parameterized by the size of imem, ibuf , and stk—and OptMEMC and MEMC
machines—parameterized by the size of req , rbuf and mem. These models had
anywhere from 24K gates and 500 latches to 2M gates and 23K latches. We used
a machine with an Intel Xeon X5677 with 16 cores running at 3.4GHz and 96GB
main memory. The timeout limit for model-checker runs is set to 900 seconds.
In Fig. 3, we plot the running times for the four model-checkers used. The x-
axis represents the running time using I/O equivalence and y-axis represents the
running time using skipping refinement. A point with x = TO indicates that the
model-checker timed out for I/O equivalence while y = TO indicates that the
model-checker timed out for skipping refinement. Our results show that model-
checkers timeout for most of the configurations when using I/O equivalence while
all model-checkers except TIP can solve all the configurations using skipping re-
finement. Furthermore, there is an improvement of several orders of magnitude
in the running time when using skipping refinement. The performance benefits
are partly due to the structure provided by the skipping refinement proof obli-
gation. For example, we have a bound on the number of steps that the optimized
systems can skip before a match occurs and we have rank functions for stutter-
ing. This allows the model checkers to locally check correctness instead of having
to prove correspondence at the input/output boundaries, as is the case for I/O
equivalence.

Superword-level Parallelism with SIMD instructions. For this case study we ver-
ify the correctness of a compiler transformation from a source language con-

14

taining only scalar instructions to a target language containing both scalar and
vector instructions. We model the transformation as a function that given a pro-
gram in the source language and generates a program in the target language.
We use the translation validation approach to compiler correctness and prove
that the target program implements the source program [4].

For presentation purposes, we make some simplifying assumptions: the state
of the source and target programs (modeled as transition systems) is a tuple
consisting of a sequence of instructions, a program counter and a store. We
also assume that a SIMD instruction operates on two sets of data operands
simultaneously and that the transformation identifies parallelism at the basic
block level. Therefore, we do not consider control flow.

For this case study, we used deductive verification methodology to prove
correctness. The scalar and vector machines are defined using the data-definition
framework in ACL2s [8,6,7]. We formalized the operational semantics of the
scalar and vector machines using standard methods. The sizes of the program
and store are unbounded and thus the state space of the machines is infinite.
Once the definitions were in place, proving skipping refinement with ACL2s was
straightforward. Proving I/O equivalence requires significantly more theorem
proving expertise and insight to come up with the right invariants, something
we avoided with the skipping proof. The proof scripts are publicly available [2].

6 Related Work and Discussion

Notions of correctness. Notions of correctness for reasoning about reactive sys-
tems have been widely studied and we refer the reader to excellent surveys on
this topic [22,10,15]. Lamport [12] argues that abstract and the concrete sys-
tems often only differ by stuttering steps; hence a notion of correctness should
directly account stuttering. Weak simulation [10] and stuttering simulation [17]
are examples of such notions. These notions are too strong to reason about op-
timized reactive systems, hence the need for skipping refinement, which allows
both stuttering and skipping.

Refinement Maps. A basic question in a theory of refinement is whether re-
finement maps exist: if a concrete system implements an abstract system, does
there exists a refinement map that can be use to prove it? Abadi and Lam-
port [13] showed that in the linear-time framework, a refinement map exists
provided the systems satisfy a number of complex conditions. In [16], it was
shown that for STS, a branching-time notion, the existence of refinement maps
does not depend on any of the conditions found in the work of Abadi and Lam-
port and that this result can be extended to the linear-time case [17]. We also
show that for skipping refinement, refinement maps always exists.

Hardware Verification. Several approaches to verification of superscalar pro-
cessors appear in the literature and as new features are modeled new variants
of correctness notions are proposed [3]. These variants can be broadly classified
on the basis of whether (1) they support nondeterministic abstracts systems or
not (2) they support nondeterministic concrete systems or not (3) the kinds of

15

refinement maps allowed. The theory of skipping refinement provides a general
framework that support nondeterministic abstract and concrete systems and ar-
bitrary refinement maps. We believe that a uniform notion of correctness can
significantly ease the verification effort.

Software Verification. Program refinement is widely used to verify the cor-
rectness of programs and program transformations. Several back-end compiler
transformations are proven correct in CompCert [14] by showing that the source
and the target language of a transformation are related by the notion of forward
simulation. In [21], several compiler transformations, e.g., dead-code elimination
and control-flow graph compression, are analyzed using a more general notion of
refinement based on stuttering simulation. Like CompCert, the semantics of the
source and target languages are assumed to be deterministic and the only source
of non-determinism comes from initial states. In section 5, we used skipping
refinement and a methodology similar to translation validation [4] to analyze
a compiler transformation that extracts superword parallelism in a program.
It is not possible to prove the correctness of this transformation using stutter-
ing refinement. In [9], choice refinement is introduced to account for compiler
transformations that resolve internal nondeterministic choices in the semantics
of the source language (e.g., the left-to-right evaluation strategy). Skipping re-
finement is an appropriate notion of correctness to analyze such transformations.
In [19], it is shown how to prove the correctness of assembly programs running
on a pipelined machine by first proving that the assembly code is correct when
running on an idealized processor and, second, by proving that the pipelined
machine is a refinement of idealize processor. Skipping can be similarly used to
combine hardware and software verification for optimized systems.

7 Conclusion and Future Work

In this paper, we introduced skipping refinement, a new notion of correctness for
reasoning about optimized reactive systems where the concrete implementation
can execute faster than its specification. This is the first notion of refinement
that we know of that can directly deal with such optimized systems. We pre-
sented a sound and complete characterization of skipping that is local, i.e., for
the kinds of systems we consider, we can prove skipping refinement theorems by
reasoning only about paths whose length is bounded by a constant. This char-
acterization provides a convenient proof method and also enables mechanization
and automated verification. We experimentally validated skipping refinement
and our local characterization by performing three case studies. Our experimen-
tal results show that, for relatively simple configurations, proving correctness
directly, without using skipping, is beyond the capabilities of current model-
checking technology, but when using skipping refinement, current model-checkers
are able to prove correctness. For future work, we plan to characterize the class
of temporal properties preserved by skipping refinement, to develop and exploit
compositional reasoning for skipping refinement, and to use skipping refinement
for testing-based verification and validation.

16

References

1. Results of hardware model checking competition, 2013, http://fmv.jku.at/

hwmcc13/hwmcc13.pdf

2. Skipping simulation model, http://www.ccs.neu.edu/home/jmitesh/sks
3. Aagaard, M., Cook, B., Day, N., Jones, R.: A framework for microprocessor cor-

rectness statements. Correct Hardware Design and Verification Methods (2001)
4. Barrett, C., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A., Zuck, L.: Tvoc: A trans-

lation validator for optimizing compilers. In: Computer Aided Verification (2005)
5. Browne, M.C., Clarke, E.M., Grümberg, O.: Characterizing finite kripke structures

in propositional temporal logic. Theoretical Computer Science (1988)
6. Chamarthi, H., Manolios, P.: ACL2s homepage (2015), http://acl2s.ccs.neu.

edu/acl2s

7. Chamarthi, H.R., Dillinger, P.C., Manolios, P.: Data definitions in the ACL2 sedan.
In: ACL2. ETPCS (2014)

8. Chamarthi, H.R., Dillinger, P.C., Manolios, P., Vroon, D.: The ACL2 Sedan theo-
rem proving system. TACAS (2011)

9. Dockins, R.W.: Operational Refinement for Compiler Correctness. Ph.D. thesis,
Princeton University (2012)

10. van Glabbeek, R.: The linear time-branching time spectrum. CONCUR (1990)
11. Hardin, D.S.: Real-time objects on the bare metal: an efficient hardware realization

of the java tm virtual machine. ISORC (2001)
12. Lamport, L.: What good is temporal logic. Information processing (1983)
13. Lamport, L., Abadi, M.: The existence of refinement mappings. Theoretical Com-

puter Science (1991)
14. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reasoning

(2009)
15. Lynch, N., Vaandrager, F.: Forward and backward simulations:II. timing-based

systems. Information and Computation (1996)
16. Manolios, P.: Mechanical verification of reactive systems. Ph.D. thesis, University

of Texas (2001)
17. Manolios, P.: A compositional theory of refinement for branching time. CHARME

(2003)
18. Manolios, P., Srinivasan, S.K.: A computationally efficient method based on com-

mitment refinement maps for verifying pipelined machines. MEMOCODE (2005)
19. Manolios, P., Srinivasan, S.K.: A framework for verifying bit-level pipelined ma-

chines based on automated deduction and decision procedures. Journal of Auto-
mated Reasoning 37 (2006)

20. Manolios, P., Srinivasan, S.K., Vroon, D.: Bat: The bit-level analysis tool. CAV
(2007)

21. Namjoshi, K.S., Zuck, L.D.: Witnessing program transformations. Static Analysis
Symposium (2013)

22. Pnueli, A.: Linear and branching structures in the semantics and logics of reactive
systems. Automata, Languages and Programming (1985)

http://fmv.jku.at/hwmcc13/hwmcc13.pdf
http://fmv.jku.at/hwmcc13/hwmcc13.pdf
http://www.ccs.neu.edu/home/jmitesh/sks
http://acl2s.ccs.neu.edu/acl2s
http://acl2s.ccs.neu.edu/acl2s

	Skipping Refinement

