
REFINEMENT-BASED REASONING OF OPTIMIZED

REACTIVE SYSTEMS

A dissertation submitted by

Mitesh Jain

to the the College of Computer and Information Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Northeastern University

Boston, Massachusetts

Version: February 6, 2018

Abstract

We show that the correctness of a large class of optimized reactive systems can

be effectively analyzed using refinement. Reasoning about reactive systems using

refinement involves showing that any (infinite) behavior of a low-level, concrete im-

plementation system is a behavior of the high-level abstract specification system.

Existing notions of refinement do directly account for the differences in the unob-

servable behaviors (stuttering) of a concrete implementation and its abstract speci-

fication. However, they do not directly account for the differences in the observable

behaviors of an optimized implementation and its abstract specification. Towards

this we introduce two new notions of correctness, skipping simulation and recon-

ciling simulation and develop a theory of refinement based on it. We study their

algebraic properties and present several sound and complete proof-methods that can

be used to effectively reason about them. The proof-methods reduce global reasoning

about infinite computations of reactive systems to local reasoning about states and

their successors and therefore are amenable to mechanical reasoning using existing

verification tools.

i

ii

Contents

Introduction i

1 Preliminaries 1

1.1 Notations . 1

1.2 Transition systems . 2

1.3 Notions of correctness . 3

1.4 Summary . 7

2 Skipping Simulation 9

2.1 Running Example . 9

2.2 Skipping Simulation . 11

2.2.1 Algebraic Properties . 13

2.3 Skipping Refinement . 17

2.4 Mechanised Reasoning . 23

2.4.1 Reduced Well-Founded Skipping Simulation 23

2.4.2 Well-founded Skipping Simulation 29

2.4.3 Reduced Local Well-founded Skipping Simulation 31

2.4.4 Local well-founded Skipping Simulation 34

2.5 Summary . 37

iii

CONTENTS

3 Reconciling Simulation 39

3.1 Running Example (Continued) . 39

3.2 Reconciling Simulation . 40

3.3 Algebraic Properties . 42

3.4 Reconciling refinement . 43

3.5 Mechanised reasoning . 45

3.5.1 Reduced Well-founded Reconciling Simulation 45

3.5.2 Well-founded Reconciling Simulation 49

3.5.3 Well-founded Reconciling Simulation with Explicit Stuttering 52

3.6 Summary . 60

4 Case Studies 63

4.1 Superword Level Parallelism with SIMD instructions 64

4.2 JVM-inspired Stack Machine . 69

4.3 Memory Controller . 76

4.4 Event Processing System . 79

4.5 Conclusion . 92

5 Related Work 95

5.1 Notions of equivalences and refinement 95

5.2 Applications . 101

5.2.1 Processor Verification . 101

5.2.2 Software . 101

Conclusions and Future Work 107

iv

List of Figures

2.1 Event Processing System . 11

2.2 An example TS to show that SKS is not closed under intersection . . 14

2.3 Reduced well-founded skipping simulation (RWFSK) 23

2.4 Well-founded skipping simulation (WFSK) 29

2.5 Reduced local well-founded skipping simulation (RLWFSK) 33

2.6 Local well-founded skipping simulation (LWFSK) 35

3.1 An example to show that reconciling simulation is not compositional 43

3.2 Reduced well-founded reconciling simulation (RWRS) 46

3.3 Well-founded reconciling simulation (WRS) 49

3.4 Well-founded reconciling simulation with explicit stuttering (WRSS) 54

4.1 An example of superword parallelism optimization 65

4.2 Syntax and Semantics of Scalar and Vector Program 66

4.3 Syntax and Semantics of Stack and Buffered Stack Machine 71

4.4 Running time (log scale) of model-checkers for stack machine 76

4.5 Syntax and Semantics of MEMC and OptMEMC 78

4.6 Running time (log scale) of model-checkers for memory controller . . 80

v

LIST OF FIGURES

vi

Introduction

Reactive systems are non-terminating systems that maintain an ongoing interaction

with their environment. Examples of such systems include safety-critical systems

like automotive controllers and communication networks and omnipresent systems

like microprocessors and operating systems. The main difference between a reactive

system and a transformational system is the property of non-termination. Trans-

formational systems are terminating; hence their correctness can be expressed using

a relation between their inputs and outputs. In contrast, non-termination is an es-

sential characteristic of reactive systems and their formal semantics are described

using infinite objects such as infinite traces or computation trees. Hence, methods

based on input-output relations are inadequate for reasoning about reactive systems.

Moreover, the need to analyze the ongoing interaction of a reactive system with its

environment enforces a view of its behaviors that is often less abstract than the

input-output relational view of the behaviors of a transformational system.

One approach to analyze the correctness of a reactive system — the focus of this

dissertation — is based on refinement. The concept of refinement for analyzing the

correctness of reactive systems have been investigated since the early 1980s [32, 31,

34, 5]. In a refinement-based approach to reasoning, a high-level abstract system

A serves as a specification for a concrete system C described at a lower level of

abstraction. We say that C refines (implements) A iff all observable behaviors that

i

are allowed by C are the observable behaviors that are allowed by A. Notice that

the behaviors of A and C are described at different levels of abstraction. Hence a

fundamental question in a refinement-based approach to reasoning is the following:

what is an appropriate notion of refinement that relates observable behaviors of two

systems described at different levels of abstraction? A concrete system describes its

behaviors in more detail than the abstract system that serves as its specification.

Hence it is often that C requires multiple steps to perform a task that is described in

a single step in A. Therefore, this phenomenon known as stuttering, must be directly

accounted for in a notion of refinement [33].

The Problem The drive to build ever more efficient systems has led to highly-

optimized implementations. These systems run “faster” than their simple abstract

systems and in a single step perform the work of multiple abstract steps. For exam-

ple, in order to reduce the memory latency and effectively utilize memory bandwidth,

memory controllers in modern computer systems often buffer requests to the mem-

ory. The pending requests in the buffer are analyzed for address locality and then at

some time in the future, multiple locations in the memory are read and updated si-

multaneously. As a further example, consider a modern superscalar microprocessor.

To improve the instruction throughput multiple instructions are fetched in a single

cycle. The fetched instructions are then analyzed for instruction-level parallelism

and where possible (e.g., in absence of data dependencies) are executed in parallel

on the available compute units, eventually leading to multiple instructions being re-

tired in a single cycle. Both the memory controller and the microprocessors exhibit

stuttering behavior: a memory request is buffered for several steps before it even-

tually updates the memory location and a fetched instruction in a microprocessors

travels through several pipeline stages before it eventually retires. But in addition

to stuttering, a single step of these systems may perform work of multiple abstract

ii

Introduction

steps, e.g., by updating multiple memory locations and retiring multiple instructions

in a single cycle. The above examples are representative of a common occurrence:

an optimized concrete system runs faster than its simple abstract system. Thus,

existing notions of refinement that only account for stuttering are inadequate for

analyzing the correctness of such optimized systems.

Next, consider the synchronization mechanisms used in concurrent systems. Tra-

ditionally, concurrent systems use locks to synchronize access to a resource that is

shared among the concurrently running threads. Coarse-grained locks provide a

simple mechanism to implement such synchronization: only one thread can access

a shared resource at any time and operations “takes effect” in a single step. This

limits the possible interleaving among concurrent threads and simplifies reasoning

about the system. However, this also limits the available parallelism and scalability.

In contrast, optimized implementations eschew locks and instead use a sequence of

fine-grained synchronization primitives to update a shared resource. This mechanism

reduces contention for a shared resource and increases the available parallelism. But

it also allows more interleaving among concurrent threads and therefore makes rea-

soning difficult. What is an appropriate notion of refinement to show that such an

optimized implementation refines the high-level abstract system with coarse-grained

locks? Notice that because of the difference in possible interleavings among con-

current threads in the two systems, updates to the shared resources may happen

in different order. Nevertheless, starting from related states, the two systems must

eventually reach related states. If differences in updates to the shared resources

are observable, the difference in behaviors of the optimized system and the abstract

system cannot be classified as stuttering. Also, it is not the case that a step in the

optimized system corresponds to multiple steps in the abstract system; they just

happen in different order. Therefore, the differences in their behaviors cannot be

iii

classified as skipping also. Thus, existing notions of refinement that only account

for stuttering and skipping are inadequate to directly for analyzing the correctness

of such optimized systems.

An appropriate and simple to understand notion of correctness is only part of

the story. We also want to mechanically verify the correctness of optimized reactive

systems. However, when reasoning about the correctness of reactive systems based

on refinement, we have to analyze relationship between infinite computations of the

concrete system and the abstract system. Support for such reasoning is rather limited

in existing verification tools. Therefore, a notion of refinement must also admit an

alternative proof-method that is amenable for mechanical reasoning.

Contirbutions and Structure of the Dissertation

In this dissertation, we develop a theory of refinement to effectively analyze the

correctness of a large class of optimized reactive systems. We develop the theory

using a generic model of a labeled transition system. Any system with a well-defined

operational semantics can be mapped to a labeled transition system. Thus, our

exposition is purely semantic and is agnostic with respect to the particular choice

of language used to describe the systems. Moreover, we place no restrictions on the

state space size or the branching factor of the transition system. Hence the theory

is widely applicable.

In Chapter 2, we first introduce the notion of skipping refinement, a new notion

that extends the domain of applicability of a refinement-based approach to the class

of reactive systems, where a concrete implementation can execute “faster” than its

abstract high-level specification. This is the first notion of refinement that we know

of that can be used to directly analyze such optimized reactive systems. Skipping

can be thought of as a dual of stuttering. Stuttering “stretches” a computation in

iv

Introduction

the sense that many steps of a concrete system corresponds to a single step of its

specification. In contrast, skipping “squeezes” a computation in the sense that a

single step in a concrete system corresponds to many steps of its specification. To

show that skipping refinement is amenable for mechanical reasoning, we develop

four sound and complete proof-methods to reason about skipping refinement. These

proof-methods reduce reasoning about infinite computations to local reasoning about

states and their successors. Moreover, the completeness results implies that if a

system M1 is a refienemnt of M2 then we can always locally reason about it. We

also study algebraic properties of skipping refinement. In particular, we show that

it is compositional, i.e., if system M1 is a skipping refinement of system M2 and

systemM2 is a skipping refinement of systemM3, we can infer that thatM1 is a

skipping refinement ofM3. Thus, skipping refinement aligns with a top-down design

methodology: starting with a high-level abstract system that is as-simple-as-possible,

design one feature at a time, eventually ending with an optimized concrete system.

Just as the stepwise approach to design leads to a conceptually manageable design

process for a complex system, it also leads to a manageable and scalable verification

process.

In Chapter 3, we introduce the notion of reconciling refinement, that can be used

to directly reason about the correctness of a concrete system that may differ from

its high-level abstract specification in the intermediate states of the computations

but eventually reconcile and reach related states. Reconciling refinement is a strictly

weaker notion than skipping refinement in the sense that if M1 is a skipping re-

finement of M2, then M1 is also reconciling refinement of M2, but not the other

way. To show that reconciling refinement is amenable for mechanical reasoning,

we develop three sound and complete proof-methods to reason about reconciling

refinement. These methods reduce reasoning about infinite computations to local

v

reasoning about states and their successor. We also study algebraic properties of

reconciling refinement. In particular, we show that it is not compositional.

In Chapter 4, we present case studies that highlight the limitations of existing

notions of refinement to reason about optimized reactive systems. We discuss con-

siderations in choosing an appropriate notion of refinement and a proof-method to

analyze it. We consider four case studies: (1) a vectorizing compiler transformation

(2) a JVM-inspired stack machine, (3) an optimized memory controller, and (4) an

asynchronous event-processing system. The first three case studies are examples

of systems that exhibit bounded skipping while the fourth case study exhibits un-

bounded skipping. To facilitate understanding and focus on evaluating the theory of

refinement, we only model certain aspects of the systems. We discuss why existing

notions of refinement are not adequate for reasoning about such optimized systems.

We also illustrate the use of suggested proof-methods and how the specific knowledge

of the system under verification can be used to simplify the proof obligations. Fur-

thermore, we provide experimental evidences showing that current model-checking

and automated theorem proving tools have difficulty automatically analyzing these

systems based on existing notion of correctness. In contrast, when skipping refine-

ment is used, these verification tools can be used to analyze correctness of systems

of much larger size.

In Chapter 5, we discuss the related work and finally conclude with remarks on

future work.

vi

Chapter 1

Preliminaries

This chapter contains notations used in this thesis. It also includes definition of a

transition system and notions of correctness such as simulation and bisimultaion,

stuttering simulation and bisimultaion, and associated proof-methods.

1.1 Notations

We first describe the notational conventions used in this dissertation. The set of

natural number is denoted by ω and is the first infinite ordinal. The disjoint union

operator is denoted by]. Cardinality of a set is denoted by#S. Function application

is sometimes denoted by an infix dot “.” and is left-associative. For a binary relation

R, we often write xRy instead of (x, y) ∈ R. The composition of relation R with

itself i times (for 0 < i ≤ ω) is denoted Ri. Given a relation R and 1 < k ≤ ω, R<k

denotes
⋃

1≤i<k R
i and R≥k denotes

⋃
ω>i≥k R

i . Instead of R<ω we often write the

more common R+.] denotes the disjoint union operator. Quantified expressions

are written as 〈Qx : r : t〉, where Q is the quantifier (e.g., ∃,∀,min,
⋃
), x is a bound

variable, r is an expression that denotes the range of variable x (true, if omitted),

and t is a term. The set of all elements x satisfying the predicate P is denoted either

1

Transition systems

as {x : P (x)} or {x | P (x)}.

Let R ⊆ S × S. The composition of binary relations P and Q is denoted P ;Q

= {(x, y) : 〈∃z : xPz ∧ zQy〉}. The inverse of R, written as R−1, is defined as

{(a, b) | bRa} . R is reflexive iff 〈∀s ∈ S :: sBs〉. R is symmetric iff 〈∀s, w ∈

S :: sBw ⇒ wBs〉. R is antisymmetric iff 〈∀s, w ∈ S :: sBw ∧ wBs ⇒ s = w〉.

R is transitive iff ∀u, v, w ∈ S :: uBv ∧ vBw ⇒ uBw. R is a preorder iff it is

reflexive and transitive. A preorder that is also symmetric is an equivalence relation.

A preorder that is also antisymmetric is a partial order.

A set with relations associated with it is called a structure. A well-founded

structure 〈W,≺〉1, where W is a set and ≺ is a binary relation on W such that there

are no infinitely decreasing sequences in W with respect to ≺.

1.2 Transition systems

A labeled transition system consists of a set of states that is a cartesian product of

the domains of variables used to describe the system; a binary relation on states that

models atomic transitions in the system; and a labeling function that tells what is

observable in a state.

Definition 1 (Labeled Transition System). A labeled transition system (TS) is a

structure 〈S,→, L〉, where S is a non-empty (possibly infinite) set of states, →⊆

S × S, is a left-total transition relation (every state has a successor), and L is a

labeling function whose domain is S.

A transition system is parameterized with a domain of observation and L tells

us what is observable in a state. We allow the state space and the branching factor

of the transition system to have arbitrary cardinalities. This generality is helpful in
1The syntax 〈〉 is overloaded and is used to define quantified expressions, structures (including

transition systems), sequences, and segments in a transition system.

2

Chapter 1. Preliminaries

modeling a large class of reactive systems and the theory of refinement developed

using it is broadly applicable. In particular, nondeterminism can be used to specify

concurrent and distributed systems. Notice that our exposition is purely semantic

and is agnostic to a particular programming language used to describe a system.

Finally, the set of state and the transition relation can be represented either explicitly

or use an assertion language with an ability to specify predicates and relations and

support for validity and satisfiability checking.

The semantics of a program can be expressed as a transition system as follows.

Let VAR be a (finite) set of program variables and D be the domain of interpretation

of variables. A state is a mapping from VAR to D . Two states s and w are related

by the transition relation →, written s→ w, if it is possible to in one program step

to go from s to w. The labeling function is an identity function. Notice that we

place no restriction on the atomicity of a step and one must model the semantics of

a program at a granularity that is appropriate for analysis.

Let M = 〈S,−→, L〉 be a transition system. An M-path is a sequence of states

such that for adjacent states, s and u, s → u. The jth state in an M-path is

denoted by σ.j. An M-path σ starting at state s is a fullpath, denoted by fp.σ.s,

if it is infinite. An M-segment, 〈v1, . . . , vk〉, where k ≥ 1 is a finite M-path and

is also denoted by #»v . The length of an M-segment #»v is denoted by | #»v |. Let INC

be the set of strictly increasing sequences of natural numbers starting at 0. The ith

partition of a fullpath σ with respect to π ∈ INC, denoted by πσi, is given by an

M-segment 〈σ(π.i), . . . , σ(π(i+ 1)− 1)〉.

1.3 Notions of correctness

In a refinement-based methodology, we say that a concrete low-level implementa-

tion system is correct with respect to an abstract high-level specific system if every

3

Notions of correctness

behavior allowed by the concrete system is a behavior of the abstract system. Sev-

eral notions of correctness for analyzing reactive systems have been proposed in the

past [53, 57]. Below we present the ones that have directly influenced the new notions

proposed in this thesis.

Milner and Park [47, 51] first studied the notion of simulation and bisimultaion

to compare behaviors of reactive systems.

Definition 2 (Simulation [47]). R is a simulation relation of a transition system

M = 〈S,−→, L〉 iff R ⊆ S × S and for all s, w ∈ S such that sRw, both of the

following conditions hold.

(SIM1) L.s = L.w

(SIM2) 〈∀u : s→ u : 〈∃v : w → v : uRv〉〉

Definition 3 (Bisimulation [51]). B is a bisimulation relation of a transition system

M = 〈S,−→, L〉 iff B ⊆ S × S and for all s, w ∈ S such that sRw, both of the

following conditions hold.

(BISIM1) L.s = L.w

(BISIM2) 〈∀u : s→ u : 〈∃v : w → v : uBv〉〉

(BISIM3) 〈∀v : w → v : 〈∃u : s→ u : uBv〉〉

We say that s simulates w iff there is simulation relation R such that sRw

holds. There exists a greatest simulation that is a preorder. Similarly, we say that s

is bisimilar to w iff there is a bisimulation relation B such that sBw holds. There

is a greatest bisimulation relation that is an equivalence relation. The definitions of

simulation and bisimulation itself suggest a useful proof method for verification. It

requires only local reasoning, i.e., reasoning about states and their successors.

4

Chapter 1. Preliminaries

Lamport makes the case that a notion of correctness must directly account for

stuttering [33]. Due to the difference in the level of abstraction used to specify

the systems, it is often the case that the concrete system requires many steps to

match one step of the abstract system. This is referred to as stuttering behavior.

The notions of simulation and bisimulation are often too strong to directly analyze

correctness of systems that exhibit such stuttering. Several variants of simulation

and bisimulation have been studied in the literature [58]. We present here the no-

tions of stuttering simulation and stuttering bisimulation. Stuttering simulation and

bisimulation are defined using the notion of match, which we define below. Let

M = 〈S,−→, L〉 be a transition system and B be a binary relation on S. Informally,

a fullpath σ inM matches a fullpath δ inM if the fullpaths can be partitioned into

non-empty, finite segments such that all states in a segment of σ are related by B

to all states in the corresponding segment of δ.

Definition 4 (match [41]). LetM = 〈S,−→, L〉 be a transition system, σ, δ be full-

paths inM. For π, ξ ∈ INC and binary relation B ⊆ S × S, we define

corr(B , σ, π, δ, ξ) ≡ 〈∀i ∈ ω :: 〈∀s ∈ πσi ∧ w ∈ ξδi :: sBw〉〉 and

match(B , σ, δ) ≡ 〈∃π, ξ ∈ INC :: corr(B , σ, π, δ, ξ)〉.

Definition 5 (Stuttering Simulation [41]). B is a stuttering simulation relation of a

transition systemM = 〈S,−→, L〉 iff B ⊆ S×S and for all s, w ∈ S such that sRw,

both of the following conditions hold.

(STS1) L.s = L.w

(STS2) 〈∀σ : fp.σ.s : 〈∃δ : fp.δ.w : match(B , σ, δ)〉〉

There is a greatest STS that is a preorder [41]. Though the notion of matching

fullpaths is easy to understand as a correctness criterion, reasoning based on it would

5

Notions of correctness

require reasoning about nested quantifiers over fullpaths, hich often is difficult for

automated verification tools. Well-founded simulation was proposed as an alternative

characterization of STS [41] that requires only local reasoning, i.e., reasoning about

a state and its successors, and therefore amenable for automated verification.

Definition 6 (Well-founded Simulation (WFS) [41]). B ⊆ S × S is a well-founded

simulation relation on transition systemM = 〈S,−→, L〉 iff :

(WFS1) 〈∀s, w ∈ S : sBw : L.s = L.w〉

(WFS2) There exist functions, rankt : S × S → W , rankl : S × S × S → ω, such

that 〈W,≺〉 is well-founded and

〈∀s,u, w ∈ S : s −→ u ∧ sBw :

(a) 〈∃v : w −→ v : uBv〉 ∨

(b) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨

(c) 〈∃v : w −→ v : sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉〉

Theorem 1 ([41]). LetM = 〈S,−→, L〉 be a transition system and B ⊆ S × S. B is

an STS onM iff B is WFS onM.

Definition 7 (Stuttering Bisimulation [41]). B is a stuttering bisimulation on a

transition systemM = 〈S,−→, L〉 iff both B and B−1 are STS’s onM.

There is a greatest STB that is an equivalence relation.

Definition 8 (Equivalence Stuttering Bisimulation [41]). B is an equivalence stut-

tering bisimulation (ESTB) on a transition systemM = 〈S,−→, L〉 iff B is an equiv-

alence relation and an STS onM.

In [41], it was shown that ESTB is completely characterized by well-founded

equivalence bisimulation (WEB), an alternative characterization that requires only

local reasoning.

6

Chapter 1. Preliminaries

Definition 9 (Well-founded Equivalence Bisimulation (WEB) [41]). B ⊆ S×S is a

well-founded equivalence bisimulation relation on transition systemM = 〈S,−→, L〉

iff :

(WEB1) B is an equivalence relation;

(WEB2) 〈∀s, w ∈ S : sBw : L.s = L.w〉;

(WEB3) There exist functions, erankt : S → W , erankl : S × S → ω, such that

〈W,≺〉 is well-founded and

〈∀s,u, w ∈ S : s −→ u ∧ sBw :

(a) 〈∃v : w −→ v : uBv〉 ∨

(b) (uBw ∧ erankt(u) ≺ erankt(s)) ∨

(c) 〈∃v : w −→ v : sBv ∧ erankl(v, u) < erankl(w, u)〉〉

Theorem 2 ([41]). LetM = 〈S,−→, L〉 be a transition system and B ⊆ S × S. B is

an ESTB onM iff B is WEB onM.

Notice that alternatively WEB could have been defined to be a WFS that is also

an equivalence relation. However, this formalization is preferable since the witness

ranking functions depend on fewer arguments than in WFS.

1.4 Summary

In this chapter, we presented notational conventions used in this dissertation. We

gave an overview of simulation, bisimulation, stuttering simulation and stuttering

bisimulation and associated proof-methods that are amenable for automated reason-

ing.

7

Summary

8

Chapter 2

Skipping Simulation

In this chapter, we first define the notion of skipping simulation. Then we study

its algebraic properties and develop a compositional theory of skipping refinement.

Finally, we develop sound and complete proof methods that are amenable for auto-

mated reasoning about skipping refinement.

2.1 Running Example

Consider an example of an event processing system system (EPS). An abstract high-

level specification, AEPS, of an event processing system is defined as follows. Let E

be a set of events and V be a set of state variables. A state of AEPS is a three-tuple

〈t,Sch, St〉, where t is a natural number denoting the current time; Sch is a set

of pairs (e, te), where e ∈ E is an event scheduled to be executed at time te ≥ t;

St is an assignment to state variables in V . The transition relation for the AEPS

system is defined as follows. If at time t there is no (e, t) ∈ Sch, i.e., there is no

event scheduled to be executed at time t, then t is incremented by 1. Otherwise,

we (nondeterministically) choose and execute an event of the form (e, t) ∈ Sch. The

execution of an event may result in modifying St and also removing and adding a

9

Running Example

finite number of new pairs (e′, t′) to Sch. We require that t′ > t. Finally, execution

involves removing the executed event (e, t) from Sch. This is a simple but a generic

model of an event processing system. We place no restriction on the type of state

variables or the type of events. Moreover, the ability to remove events can be used to

specify systems with preemption [48]: an event scheduled to execute at some future

time may be cancelled (and possibly rescheduled to be executed at a different time

in future) as a result of execution of an event that preempts it.

Now consider, tEPS, an optimized implementation of AEPS. As before, a state is

a three-tuple 〈t,Sch, St〉. However, unlike the abstract system which just increments

time by 1 when there are no events scheduled at the current time, the optimized sys-

tem finds the earliest time in future an event is scheduled to execute. The transition

relation of tEPS is defined as follows. An event (e, te) with the minimum time is

selected, t is updated to te and the event e is executed, as in the AEPS.

Consider an execution of AEPS and tEPS in Figure 2.1. (We only show the

prefix of executions.) Suppose at t = 0, Sch be {(e1, 0)}. The execution of event e1

add a new pair (e2, k) to Sch, where k is a positive integer. AEPS at t = 0, executes

the event e1, adds a new pair (e2, k) to Sch, and updates t to 1. Since no events are

scheduled to execute before t = k, the AEPS system repeatedly increments t by 1

until t = k. At t = k, it executes the event e2. At time t = 0, tEPS executes e1. The

next event is scheduled to execute at time t = k; hence it updates in one step t to k.

Next, in one step it executes the event e2. Note that tEPS runs faster than AEPS by

skipping over abstract states when no event is scheduled for execution at the current

time. If k > 1, the step from s2 to s3 in tEPS neither corresponds to stuttering nor

to a single step of the specification. Therefore, notions of refinement based on stut-

tering simulation and bisimulation are not directly applicable for reasoning about

the correctness of tEPS. In this chapter, we define skipping refinement, a new no-

10

Chapter 2. Skipping Simulation

tion of refinement that directly supports reasoning about optimized reactive systems

that can run faster than their high-level specification systems. We also develop a

compositional theory of skipping refinement and provide sound and complete proof

methods that require only local reasoning, thereby enabling mechanised verification

of skipping refinement.

tEPS(σ) AEPS(δ)

−−−− −−−−

−−−− −−−−

(s1) 〈0, {(e1, 0)}, {v1 = 1, v2 = 1}〉 〈0, {(e1, 0)}, {v1 = 1, v2 = 1}〉 (w1)

(s2) 〈0, {(e2, k), . . .}, {v1 = 2, v2 = 1}〉 〈0, {(e2, k)}, {v1 = 2, v2 = 1}〉 (w2)

〈1, {(e2, k), . . .}, {v1 = 2, v2 = 1}〉 (w3)

(s3) 〈k, {. . .}, {v1 = 2, v2 = 2}〉 〈k, {. . .}, {v1 = 2, v2 = 2}〉 (w5)

Figure 2.1: Event Processing System

2.2 Skipping Simulation

The definition of skipping simulation is based on the notion of smatch, a new notion

of matching fullpaths. Informally, we say that a fullpath σ smatches a fullpath

δ under the relation B if the fullpaths can be partitioned in to non-empty, finite

segments such that all elements in a segment of σ are related to the first element

in the corresponding segment of δ. Using the notion of smatch, skipping simulation

is defined as follows: a relation B is a skipping simulation on a transition system

M = 〈S,−→, L〉, if for any s, w ∈ S such that sBw, s and w are labeled identically

and any fullpath starting at s can be smatched by some fullpath starting at w.

Notice that we define skipping simulation using a single transition system, while our

11

Skipping Simulation

ultimate goal is to define a notion of refinement that relates two transition system:

an abstract transition system and a concrete transition system. We will see that

this approach has some technical advantages. Moreover, it is easy to lift the notion

defined on a single transition system to one that relates two transition systems by

considering their disjoint union.

Definition 10 (smatch). LetM = 〈S,−→, L〉 be a transition system, σ, δ be fullpaths

inM. For π, ξ ∈ INC and binary relation B ⊆ S × S, we define

scorr(B , σ, π, δ, ξ) ≡ 〈∀i ∈ ω :: 〈∀s ∈ πσi :: sBδ(ξ.i)〉〉 and

smatch(B , σ, δ) ≡ 〈∃π, ξ ∈ INC :: scorr(B , σ, π, δ, ξ)〉.

In Figure 2.1, we illustrate the notion of smatching using our running example

of an event processing system. In the figure, σ is a fullpath of tEPS and δ is a

fullpath of AEPS. (We only show the prefix of the fullpaths.) The other parameter

for matching is the relation B, which is just the identity function. In order to show

that smatch(B , σ, δ) holds, we have to find π, ξ ∈ INC satisfying the definition.

In the figure, we separate the partitions induced by our choice for π, ξ using −−

and connect elements related by B with . Since all elements of a σ partition

are related to the first element of the corresponding δ partition, scorr(B , σ, π, δ, ξ)

holds, therefore, smatch(B , σ, δ) holds.

Definition 11 (Skipping Simulation). B ⊆ S × S is a skipping simulation on a

transition systemM = 〈S,−→, L〉 iff for all s, w such that sBw, both of the following

hold.

(SKS1) L.s = L.w

(SKS2) 〈∀σ : fp.σ.s : 〈∃δ : fp.δ.w : smatch(B , σ, δ)〉〉

12

Chapter 2. Skipping Simulation

Theorem 3. LetM be a transition system. If B is an SKS onM then B is an STS

onM.

Proof: Follows directly from the definitions of SKS (Definition 11), smatch

(Definition 10), STS(Definition 5), and match(Definition 4).

2.2.1 Algebraic Properties

SKS enjoys several useful algebraic properties. In particular, it is closed under union

and relational composition. The later property enables us to develop a theory of

refinement that enables (vertical) modular reasoning of complex reactive systems.

Lemma 4. Let M = 〈S,−→, L〉 be a transition system and C be a set of SKS’s on

M. Then G = 〈∪B : B ∈ C : B〉 is an SKS onM.

Proof: Let s, w ∈ S and sGw. We show that SKS1 and SKS2 hold for G. Since

G = 〈∪B : B ∈ C : B〉, there is an SKS B ∈ C such that sBw. Since B is an SKS on

M, we have that L.s = L.w. Hence, SKS1 holds for G. Next SKS2 also holds for

B, i.e., for any fullpath σ starting at s, there is a fullpath δ starting at w such that

smatch(B , σ, δ) holds. From the definition of smatch, there exists π, ξ ∈ INC such

that for all i ∈ ω and for all s ∈ πσi, sBδ(ξ.i) holds. Since B ⊆ G, sGδ(ξ.i) holds.

Hence smatch(G , σ, δ) holds, i.e., SKS2 holds for G.

Corollary 5. For any transition systemM, there is a greatest SKS onM.

Proof: Let C be the set of all SKS’s onM and let G = 〈∪B : B ∈ C : B〉. By

construction, G is the greatest and from Lemma 4, G is an SKS onM.

The following lemma shows that SKS is not closed under intersection and nega-

tion.

13

Skipping Simulation

s w

s1 s2 w1 w2

Figure 2.2: An example showing that SKS is not closed under intersection. Consider
a TS with set of states S = {s, w, s1, s2, w1, w2}. The transition relation is denoted
by solid arrows and all states are labeled identically. The first SKS relation B1,
denoted by solid lines, is {(s, w), (s1, w1), (s2, w2)}. The second SKS relation B2,
denoted by dashed lines is {(s, w), (s1, w2), (s2, w1)}. B1 ∩ B2 is {(s, w)} but does
not include any related children of s and w.

Lemma 6. SKS are not closed under negation and intersection.

Proof: Consider a TSM = 〈S = {a, b},→= {(a, a), (b, b)}, L = {(a, 1), (b, 2)}〉.

The identity relation is an SKS, but its negation is not.

An example transition system to show that SKS is not closed under intersection

appears in Figure 2.2.

The following lemma shows that skipping simulation is closed under relational

composition.

Lemma 7. Let M be a transition system. If P and Q are SKS’s on M, then

R = P ;Q is an SKS onM.

Proof: To show that R is an SKS on M = 〈S,−→, L〉, we show that for any

s, w ∈ S such that sRw, SKS1 and SKS2 hold. Let s, w ∈ S and sRw. From the

definition of R, there exists x ∈ S such that sPx and xQw. Since P and Q are

SKS’s onM, L.s = L.x = L.w, hence, SKS1 holds for R.

To prove that SKS2 holds for R, consider a fullpath σ starting at s. Since P and

Q are SKSs onM, there is a fullpath τ inM starting at x, a fullpath δ inM starting

at w and α, β, θ, γ ∈ INC such that scorr(P , σ, α, τ, β) and scorr(Q , τ, θ, δ, γ) hold.

14

Chapter 2. Skipping Simulation

We use the fullpath δ as a witness and define π, ξ ∈ INC such that scorr(R, σ, π, δ, ξ)

holds.

We define a function, r, that given i, corresponding to the index of a partition of

τ under β, returns the index of the partition of τ under θ in which the first element

of τ ’s ith partition under β resides.

r.i = j iff θ.j ≤ β.i < θ(j + 1)

Note that r is indeed a function, as every element of τ resides in exactly one partition

of θ. Also, since there is a correspondence between the partitions of α and β, (by

scorr(P , σ, α, τ, β)), we can apply r to indices of partitions of σ under α to find

where the first element of the corresponding β partition resides. Note that r is

non-decreasing: a < b⇒ r.a ≤ r.b.

We define πα ∈ INC, a strictly increasing sequence that will allow us to merge

adjacent partitions in α as needed to define the strictly increasing sequence π on σ

used to prove SKS2. Partitions in π will consist of one or more α partitions. Given

i, corresponding to the index of a partition of σ under π, the function πα returns

the index of the corresponding partition of σ under α.

πα(0) = 0

πα(i) = min j ∈ ω s.t. |{k : 0 < k ≤ j ∧ r.k 6= r(k − 1)}| = i

Note that πα is an increasing function, i.e., a < b⇒ πα(a) < πα(b). We now define

π as follows.

π.i = α(πα.i)

15

Skipping Simulation

There is an important relationship between r and πα

r(πα.i) = · · · = r(πα(i+ 1)− 1)

That is, for all α partitions that are in the same π partition, the initial states of the

corresponding β partitions are in the same θ partition.

We define ξ as follows.

ξ.i = γ(r(πα.i))

We are now ready to prove SKS2. Let s ∈ πσi. We show that sRδ(ξ.i). By the

definition of π, we have

s ∈ ασπα.i ∨ · · · ∨ s ∈ ασπα(i+1)−1

Hence,

sPτ(β(πα.i)) ∨ · · · ∨ sPτ(β(πα(i+ 1)− 1))

Note that by the definition of r (apply r to πα.i):

θ(r(πα.i)) ≤ β(πα.i) < θ(r(πα.i) + 1)

Hence,

τ(β(πα.i))Qδ(γ(r(πα.i))) ∨ · · · ∨ τ(β(πα(i+ 1)− 1))Qδ(γ(r(πα(i+ 1)− 1)))

By the definition of ξ and the relationship between r and πα described above, we

simplify the above formula as follows.

τ(β(πα.i))Qδ(ξ.i) ∨ · · · ∨ τ(β(πα(i+ 1)− 1))Qδ(ξ.i)

16

Chapter 2. Skipping Simulation

Therefore, by the definition of R, we have that sRδ(ξ.i) holds.

Theorem 8. The reflexive transitive closure of an SKS is an SKS.

Proof: Let M = 〈S,−→, L〉 be a TS and B be an SKS on M. The reflexive,

transitive closure of B, written B∗, is 〈∪i ∈ ω :: Bi〉. First we show that for all i ∈ ω,

Bi is an SKS using induction on natural numbers. In the base case, B0, the identity

relation, is clearly an SKS. For i ≥ 0, we have that Bi+1 = B;Bi; from Lemma 7

and the induction hypothesis, we have that Bi+1 is an SKS on M. Finally, from

Lemma 4, we have that 〈∪i ∈ ω :: Bi〉, i.e., B∗ is an SKS onM.

Theorem 9. Given a TSM, the greatest SKS onM is a preorder.

Proof: Let G be the greatest SKS on M. From Theorem 8, G∗ is an SKS.

Hence G∗ ⊆ G. Furthermore, since G ⊆ G∗, we have that G = G∗, i.e., G is

reflexive and transitive.

2.3 Skipping Refinement

In this section, we use the notion of skipping simulation, which is defined in terms

of a single transition system to define the notion of skipping refinement, a notion

that relates two transition systems: an abstract transition system and a concrete

transition system. Informally, if a concrete system is a skipping refinement of an

abstract system, then its observable behaviors are also behaviors of the abstract

system, modulo skipping (which includes stuttering). The notion is parameterized

by a refinement map, a function that maps concrete states to their corresponding

abstract states. A refinement map along with a labeling function determines what

17

Skipping Refinement

is observable at a concrete state. Using the algebraic properties of skipping simula-

tion proved in the previous section, we show that skipping refinement can be used

for the modular reasoning of complex reactive systems using a stepwise refinement

methodology.

Note that we do not place any restriction on the state space size or the branching

factor of the transition relations of the abstract and the concrete systems, and both

can be of arbitrary infinite cardinalities. Thus, the theory of skipping refinement

and sound and complete proof methods for reasoning about skipping refinement

(developed in the Section 2.4) provide a reasoning framework that can be used to

analyze a large class of reactive systems.

Definition 12 (Skipping Refinement). LetMA = 〈SA,
A−→, LA〉 and

MC = 〈SC ,
C−→, LC〉 be transition systems and let r : SC → SA be a refinement map.

We sayMC is a skipping refinement ofMA with respect to r, writtenMC .rMA,

if there exists a binary relation B such that all of the following hold.

1. 〈∀s ∈ SC :: sBr.s〉 and

2. B is an SKS on 〈SC] SA,
C−→] A−→,L〉 where L.s = LA(s) for s ∈ SA, and

L.s = LA(r.s) for s ∈ SC .

Notice that the above definition does not place any restriction on the choice of

refinement map and depending on the systems under analysis one has great flexi-

bility in its choice. In particular, the refinement map is not restricted to a simple

projection function [4] that projects the observable component of a concrete state.

In conjunction with the sound and complete proof methods presented in the next

section, this provides a theory of refinement and a reasoning framework that is ap-

plicable to a large class of optimized reactive systems. The flexibility in the choice

of refinement map is also useful in developing computationally efficient methods for

18

Chapter 2. Skipping Simulation

verification and testing [43, 26]. However, one should be prudent in the choice of

refinement map; a complicated refinement map may bypass the verification problem.

We discuss this aspect in more detail in Chapter 5.

Next, we use the property that skipping simulation is closed under relational

composition to show that skipping refinement supports modular reasoning using a

stepwise refinement approach. In order to verify that a low-level complex imple-

mentation MC refines a simple high-level abstract specification MA one proceeds

as follows: starting withMA define a sequence of intermediate lower level systems

leading to the final complex implementation MC . At each step in the sequence,

show that system at the current step is a refinement of the previous one. This ap-

proach is often more scalable than a monolithic approach. This is primarily because

at each step, the verification effort is largely focused only on the difference between

two systems under consideration. Note that this methodology is orthogonal to (hor-

izontal) modular reasoning that infers correctness of a system from the correctness

of its sub-components.

The following lemma is useful for lifting the notion of skipping simulation, which

is defined on single transition system, to the notion of skipping refinement, which

relates two transition system.

Lemma 10. Let S, S1, S2 be a set of states such that S1 ∩ S2 = ∅ and S1 ∪ S2 ⊆ S.

Let B be an SKS onM = 〈S,−→, L〉 such that any state in S1 can only reach states

in S1, and any state in S2 can only reach states in S2, then B′ = {(s1, s2) | s1 ∈

S1 ∧ s2 ∈ S2 ∧ s1Bs2} is an SKS onM.

Proof: Let s1B′s2. We show that SKS1 and SKS2 holds for B′. From definition

of B′, we have that s1 ∈ S1, s2 ∈ S2, and s1Bs2. Since B is an SKS onM, we have

that L.s1 = L.s2 ; hence SKS1 holds for B′. Next let σ and δ be fullpaths in M

starting at s1 and s2 respectively and π, ξ ∈ INC such that 〈∀i ∈ ω :: 〈∀s ∈ πσi ::

19

Skipping Refinement

sBδ(ξ.i)〉〉 holds. Next from the assumptions that any state in S1 can only reach

states in S1, and σ is a fullpath inM starting at s1 ∈ S1, all states in πσi are in S1.

Also, since any state in S2 can only reach states in S2, state δ(ξ.i) ∈ S2. Hence we

have that 〈∀i ∈ ω :: 〈∀s ∈ πσi :: sB′δ(ξ.i)〉〉, i.e., SKS2 holds for B′.

Theorem 11. Let M1 = 〈S1,
1−→, L1〉, M2 = 〈S2,

2−→, L2〉, and M3 = 〈S3,
3−→, L3〉 be

transition systems, p : S1 → S2 and r : S2 → S3. If M1 .p M2 and M2 .r M3,

thenM1 .p;rM3.

Proof: Since M1 .p M2, we have an SKS, say A, such that 〈∀s ∈ S1 ::

sA(p.s)〉. Furthermore, from Lemma 10, without loss of generality we can assume

that A ⊆ S1 × S2. Similarly, since M2 .r M3, we have an SKS, say B, such that

〈∀s ∈ S2 :: sB(r.s)〉 and B ⊆ S2 × S3. Define C = A;B. Then we have that

C ⊆ S1 × S3 and 〈∀s ∈ S1 :: sCr(p.s)〉. Also, from Theorem 8, C is an SKS on

〈S1] S3,
1−→] 3−→,L〉, where L.s = L3(s) if s ∈ S3 else L.s = L3(r(p.s)).

Formally, to establish that a complex low-level implementation MC refines a

simple high-level abstract specification MA, one defines intermediate systems M1,

. . .Mn, where n ≥ 1 and establishes the following: MC = M0 .r0 M1 .r1

. . . .rn−1 Mn = MA. Then from Theorem 11, we have that MC .r MA, where

r = r0; r1; . . . ; rn−1. We illustrate the utility of this approach in Chapter 4 by proving

correctness of two optimized event processing systems.

Theorem 12. Let M = 〈S,−→, L〉 be a transition system. Let M′ = 〈S′,−→ ′
, L〉

where S′ ⊆ S, −→′ ⊆ S′ × S′, −→′ is a left-total subset of −→+, and L′ = L|S′ . Then

M′ .I M, where I is the identity function on S′.

Proof: Let B be I. Let σ be a fullpath starting at anM′ state. To show that

B is an SKS relation, the key observation is that since −→′ ⊆−→+, there is a fullpath

20

Chapter 2. Skipping Simulation

starting from the correspodning M state, say δ, such that a step in σ corresponds

to a finite, positive number of steps in δ. We choose such a fullpath δ as a witness

and show σ and δ smatch under B. We consider the partitioning of σ such that a

partition has only one state. Next we define the partitioning of δ. The ith partition

of δ includes (1) the state, say s, inM corresponding to the state in the ith partition

of σ, and (2) intermediate states inM required to reach from s to the state inM

corresponding to the state in the (i + 1)th partition of σ. It is easy to see that σ, δ

and their partitions defined above satisfy scorr in Definition 10.

Corollary 13. Let MC = 〈SC ,
C−→, LC〉 and MA = 〈SA,

A−→, LA〉 be transition sys-

tems, r : SC → SA be a refinement map. LetM′C = 〈S′C ,
C−→′ , L′C〉 where S′C ⊆ SC ,

C−→′ is a left-total subset of C−→+, and L′C = LC |S′C . IfMC .rMA thenM′C .r′ MA,

where r′ is r|S′C .

Proof: From Lemma 12,M′C .I MC , where I is the identity function on SC′ .

SinceMC .rMA, from Theorem 11, we have thatM′C .I;rMA =M′C .r′ MA.

We now illustrate the usefulness of the theory of skipping refinement using our

running example of event processing systems. Consider MPEPS, an optimized EPS

that uses a priority queue to find a non-empty set of events to execute next. As in

Section 2.1, a state of MPEPS is a three tuple 〈t,Sch, St〉. The transition relation of

MPEPS is defined as follows. Let t be the current time, and Et be the set of events

in Sch that are scheduled to execute at time t. If Et is empty, then MPEPS uses the

priority queue to find the minimum time t′ > t at which an event is scheduled for

execution and updates the time to t′. Otherwise, MPEPS uses the priority queue to

choose a non-empty subset of events in Et and executes them. Note that we allow

the priority queue in MPEPS to be deterministic or nondeterministic. For example,

21

Skipping Refinement

the priority queue may deterministically select a single event in Et to execute, or

based on considerations such as resource utilization it may execute some subset of

events in Et in a single step. When reasoning about the correctness of MPEPS, one

thing to notice is that there is a difference in the data structures used in the two

systems: MPEPS uses a priority queue to effectively find the next set of events to

execute in the scheduler, while AEPS uses a simple abstract set representation for

the scheduler. Another thing to notice is that MPEPS can run “faster” than AEPS

in two ways: it can increment time by more than 1 and it can execute more than one

event in a single step. The theory of skipping refinement developed in this chapter

enables us to separate out these concerns and apply a stepwise refinement approach

to effectively analyze MPEPS.

First, we account for the difference in the data structures between MPEPS and

AEPS. Towards, this we define an intermediate system MEPS that is identical to

MPEPS except that the scheduler in MEPS is now represented as a set of event-time

pairs. Under a refinement map, say p, that extracts the set of event-time pairs in

the priority queue of MPEPS, a step in MPEPS can be matched by a step in MEPS.

Hence, MPEPS .p MEPS. Next we account for the difference between MEPS and

AEPS in the number of events the two systems may execute in a single step. Towards

this, observe that the state space of MEPS and tEPS are equal and the transition

relation of MEPS is a left-total subset of the transitive closure of the transition

relation of tEPS. Hence, from Theorem 12, we infer that MPEPS is a skipping

refinement of tEPS using the identity function, say I1, as the refinement map, i.e.,

MEPS .I1 tEPS. Next observe that the state space of tEPS and AEPS are equal

and the transition relation of tEPS is left-total subset of the transition relation of

AEPS. Hence, from Theorem 9, we infer that tEPS is a skipping refinement of AEPS

using the identity function, say I2, as the refinement map, i.e., tEPS .I2 AEPS.

22

Chapter 2. Skipping Simulation

Finally, from the transitivity of skipping refinement (Theorem 11), we conclude that

MPEPS .p′ AEPS, where p′ = p; I1; I2.

2.4 Mechanised Reasoning

To prove that a transition systemMC is a skipping refinement of a transition system

MA using Definition 11, requires us to show that for any fullpath inMC , we can find

a matching fullpath inMA. However, reasoning about nested quantifiers over infinite

sequences is often problematic using automated tools. To redress the situation, we

propose four alternative characterizations of skipping simulation that are amenable

for mechanical reasoning.

2.4.1 Reduced Well-Founded Skipping Simulation

We first introduce reduced well-founded skipping simulation (RWFSK). The intuition

is that for any pair of states s, w that are related and a state u such that s → u,

there are two cases to consider (Figure 2.4.1): (a) either the step from s to u is a

stuttering step and u is related to w or (b) we can match the step from s to u with

one or more steps from w.

s w

u

B

B

(a)

s w

u v

B

B ≥ 1

(b)

Figure 2.3: Reduced well-founded skipping simulation (a solid line with arrow indi-
cates the transition relation, a dashed orange line indicates that states are related
by B)

Definition 13 (Reduced Well-founded Skipping [25]). B ⊆ S × S is a reduced

well-founded skipping relation on TSM = 〈S,−→, L〉 iff :

23

Mechanised Reasoning

(RWFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉

(RWFSK2) There exists a function, rankt : S × S → W , such that 〈W,≺〉 is well-

founded and

〈∀s,u, w ∈ S : s −→ u ∧ sBw :

(a) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨

(b) 〈∃v : w →+ v : uBv〉〉

Observe that RWFSK2b accounts for both stuttering and skipping on the right.

This is possible because skipping subsumes stuttering. Moreover, notice that the

condition RWFSK2a is local, i.e., it requires reasoning only about state and its suc-

cessor. In contrast, the condition RWFSK2b is not local and in general may require

unbounded reachability analysis, which can often be problematic for automated veri-

fication tools. Nevertheless, RWFSK is a useful proof method in case both stuttering

and skipping on the right are bounded by a constant.

RWFSK characterizes skipping simulation, i.e., it is a sound and complete proof

method for reasoning about skipping simulation. We first prove the soundness, i.e.,

RWFSK implies SKS.

Lemma 14 ([25]). Let M be a transition system. If B is an RWFSK on M, then

B is an SKS onM.

Proof: To show that B is an SKS on M = 〈S,−→, L〉, we show that for any

x, y ∈ S such that xBy, SKS1 and SKS2 hold. SKS1 follows directly from condition

1 of RWFSK.

Next we show that SKS2 holds. We start by recursively defining δ. In the process,

we also define partitions π and ξ. For the base case, we let π.0 = 0, ξ.0 = 0 and

δ.0 = y. By assumption σ(π.0)Bδ(ξ.0). For the recursive case, assume that we have

24

Chapter 2. Skipping Simulation

defined π.0, . . . , π.i as well as ξ.0, . . . , ξ.i and δ.0, . . . , δ(ξ.i). We also assume that

σ(π.i)Bδ(ξ.i). Let s be σ(π.i); let u be σ(π.i+ 1); let w be δ(ξ.i). We consider two

cases.

First, say that RWFSK2b holds. Then, there is a v such that w →+ v and uBv.

Let #»v = [v0 = w, . . . , vm = v] be a finite path from w to v where m ≥ 1. We define

π(i+ 1) = π.i+ 1, ξ(i+ 1) = ξ.i+m, ξδi = [v0, . . . , vm−1] and δ(ξ(i+ 1)) = v.

If the first case does not hold, i.e., RWFSK2b does not hold, and RWFSK2a does

hold. We define J to be the subset of the positive integers such that for every j ∈ J ,

the following holds.

¬〈∃v : w →+ v : (σ(π.i+ j)Bv)〉 ∧ (2.1)

σ(π.i+ j)Bw ∧ rankt(σ(π.i+ j), w) ≺ rankt(σ(π.i+ j − 1), w)

The first thing to observe is that 1 ∈ J because σ(π.i+ 1) = u, RWFSK2b does

not hold (so the first conjunct is true) and RWFSK2a does (so the second conjunct

is true). The next thing to observe is that there exists a positive integer n > 1 such

that n 6∈ J . Suppose not, then for all n ≥ 1, n ∈ J . Now, consider the (infinite) suffix

of σ starting at π.i. For every adjacent pair of states in this suffix, say σ(π.i+k) and

σ(π.i+k+1) where k ≥ 0, we have that σ(π.i+k)Bw and that only RWFSK2a applies

(i.e., RWFSK2b does not apply). This gives us a contradiction because rankt is well-

founded. We can now define n to be min({l : l ∈ ω ∧ l > 0 ∧ l 6∈ J}). Notice that

only RWFSK2a holds between σ(π.i+n−1)), σ(π.i+n) and w, hence σ(π.i+n)Bw

and rankt(σ(π.i+n), w) ≺ rankt(σ(π.i+n−1), w). Since Formula 2.1 does not hold

for n, there is a v such that w →+ v ∧ σ(π.i+ n)Bv. Let #»v = [v0 = w, . . . , vm = v]

be a finite path from w to v where m ≥ 1. We are now ready to extend our recursive

definition as follows: π(i+1) = π.i+n, ξ(i+1) = ξ.i+m, and ξδi = [v0, . . . , vm−1].

25

Mechanised Reasoning

Now that we defined δ we can show that SKS2 holds. We start by unwinding

definitions. The first step is to show that fp.δ.y holds, which is true by construction.

Next, we show that smatch(B , σ, δ) by unwinding the definition of smatch. That

involves showing that there exist π and ξ such that scorr(B , σ, π, δ, ξ) holds. The

π and ξ we used to define δ can be used here. Finally, we unwind the definition of

corr , which gives us a universally quantified formula over the natural numbers. This

is handled by induction on the segment index; the proof is based on the recursive

definitions given above.

Next we prove the completeness of RWFSK, i.e., SKS implies RWFSK.

Lemma 15 ([25]). LetM be a transition system. If B is an SKS onM, then B is

an RWFSK onM.

Let B be an SKS on M. To show that B is an RWFSK on M, we exhibit as

witness the existence of a well-founded domain and a ranking function rankt that

satisfy the conditions in RWFSK. Towards this, we first introduce a few definitions

and lemmas.

Definition 14. Given a transition system M = 〈S,−→, L〉, the computation tree

rooted at a state s ∈ S, denoted ctree(M, s), is obtained by “unfolding” M from s.

Nodes of ctree(M, s) are finite sequences over S and ctree(M, s) is the smallest tree

satisfying the following.

1. The root is 〈s〉.

2. If 〈s, . . . , w〉 is a node and w −→ v, then 〈s, . . . , w, v〉 is a node whose parent is

〈s, . . . , w〉.

Our next definition is used to construct the ranking function appearing in the

definition of RWFSK.

26

Chapter 2. Skipping Simulation

Definition 15 (ranktCt). Given a transition system M = 〈S,−→, L〉, s, w ∈ S

and an SKS B on M, ranktCt(M, B, s, w) is the empty tree if ¬(sBw), other-

wise ranktCt(M, B, s, w) is the largest subtree of ctree(M, s) rooted at s such that

for any non-root node 〈s, . . . , x〉 of the tree ranktCt(M, B, s, w), we have that xBw

and 〈∀v : w →+ v : ¬(xBv)〉.

A basic property of our construction is the finiteness of paths.

Lemma 16. Let B be an SKS onM. Every path of ranktCt(M, B, s, w) is finite.

Proof: The proof is by contradiction, so we start by assuming that there

exists an infinite path, σ, in ranktCt(M, B, s, w). The path has to start at s.

Let σ(1) = u and let σ′ be the suffix of σ starting at u. Since all states in σ′

appear in ranktCt(M, B, s, w), by construction for any state x in σ′, xBw and

¬〈∃v : w →+ v : xBv〉. Since B is an SKS and uBw, there is a fullpath δ starting at

w and π, ξ ∈ INC such that scorr(B , σ′, π, δ, ξ)) holds. In particular, σ(π.1)Bδ(ξ.1),

and we have our contradiction because σ(π.1) is in ranktCt(M, B, s, w) and can’t

be related by B to states reachable from w.

A node in a computation tree is a finite sequence of states. This induces a natural

partial order “is an initial segment of” on nodes. A computation tree rooted at s ∈ S

tree has a root node 〈s〉 and is the maximum node. In the case of finite-path trees

we can also refer to minimal nodes. Furthermore, we can use ordinal numbers to

classify finite-path trees. Given Lemma 16, we define a function, size, that given a

non-empty finite-path tree, say T , maps a node in the tree to an ordinal number. The

ordinal assigned to a node x ∈ T is defined as follows: if x is a leaf node in T , then

size(T, x) = 0, else size(T, x) = (∪c∈children(T,x)size(T, c)) + 1, where children(T, x)

returns a subset of nodes that are immediate successors of x in T . We let the size

of a computation tree to be the size of its root.

27

Mechanised Reasoning

Note that we are using the standard set-theoretic representation for ordinal num-

bers, where an ordinal number is defined to be the set of ordinal numbers below it

(e.g., 2 = {0, 1}), which also explains the notation union of ordinal numbers.

We define the size of a ranktCt(M, B, s, w) to be size(ranktCt(M, B, s, w), 〈s〉).

We use � to compare ordinal numbers (and therefore cardinal numbers as well).

Lemma 17 ([41]). If |S| � κ, where ω � κ then for all s, w ∈ S, size(ranktCt(M, B, s, w))

is an ordinal of cardinality � κ.

Lemma 17 shows that we can use the cardinal max (|S|+, ω) as the domain of our

well-founded function in RWFSK2: either ω if the state space is finite, or |S|+, the

cardinal successor of the size of the state space otherwise.

Lemma 18. If sBw, s→ u, 〈s, u〉 ∈ ranktCt(M, B, s, w) then size(ranktCt(M, B, u, w)) ≺

size(ranktCt(M, B, s, w)).

Proof: Since 〈s, u〉 ∈ ranktCt(M, B, s, w), from Lemma 16 and the definition

of size, it follows that size(ranktCt(M, B, u, w)) ≺ size(ranktCt(M, B, s, w)).

We are now ready to prove that SKS implies RWFSK.

Proof: RWFSK1 follows directly from SKS1. To show that RWFSK2 holds, let

W be max (|S|+, ω) and let rankt(a, b) be size(ranktCt(M, B, a, b)). Given s, u, w ∈

S such that s→ u and sBw, we show that either RWFSK2(a) or RWFSK2(b) holds.

There are two cases. First, suppose that 〈∃v : w →+ v : uBv〉 holds, then

RWFSK2(b) holds. If not, then 〈∀v : w →+ v : ¬(uBv)〉, but B is an SKS so let σ

be a fullpath starting at s and σ.1 = u. Then there is a fullpath δ such that fp.δ.w

and smatch(B , σ, δ). Hence, there exists π, ξ ∈ INC such that scorr(B , σ, π, δ, ξ).

By the definition of corr , we have that uBδ(ξ.i) for some i, but i cannot be greater

than 0 because then uBx for some x reachable from w, violating the assumptions

28

Chapter 2. Skipping Simulation

of the case we are considering. So, i = 0, i.e., uBw. By Lemma 18, rankt(u,w) =

size(ranktCt(M, B, u, w)) ≺ size(ranktCt(M, B, s, w)) = rankt(s, w).

2.4.2 Well-founded Skipping Simulation

We next introduce the notion of well-founded skipping simulation (WFSK). The

intuition is that for any pair of states s, w that are related and a state u such that

s→ u, there are four cases to consider (Figure 2.4.2): (a) either we can match the

move from s to u in a single step, i.e., there is a v such that w → v and u is related

to v, or (b) a move from s to u is a stuttering step and u is related to w, or (c) w

can make a move to v that is a stuttering step and v is related to s, or (d) a move

from s to u skips one or more steps starting from w.

s w

u v

B

B

(a)

s w

u

B

B

(b)

s w

u v

B

B

(c)

s w

u v

B

B ≥ 2

(d)

Figure 2.4: Well-founded skipping simulation (a solid line with arrow indicates the
transition relation, a dashed orange line indicates that states are related by B)

Definition 16 (Well-founded Skipping (WFSK) [25]). B ⊆ S ×S is a well-founded

skipping relation on TSM = 〈S,−→, L〉 iff :

(WFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉

(WFSK2) There exist functions, rankt : S × S → W , rankl : S × S × S → ω, such

29

Mechanised Reasoning

that 〈W,≺〉 is well-founded and

〈∀s,u, w ∈ S : s −→ u ∧ sBw :

(a) 〈∃v : w −→ v : uBv〉 ∨

(b) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨

(c) 〈∃v : w −→ v : sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉 ∨

(d) 〈∃v : w →≥2 v : uBv〉〉

Observe that, reasoning about stuttering both on left (WFSK2b) and right

(WFSK2c) is now local. Consider a scenario where we are verifying a system that has

a bound—determined early early in the design—on the number of skipping steps pos-

sible but no such bound can be a priori determined for stuttering. If we use RWFSK,

notice that RWSFK2b forces us to deal with stuttering and skipping steps in the

same way, while WFSK enables us to distinguish the stuttering and skipping and

locally deal with any amount of stuttering. However, the condition WFSK2d that

accounts for skipping on the right still in general requires reachability analysis.

The following lemma asserts that WFSK and RWFSK are equivalent and there-

fore WFSK is also a sound and complete proof method to reason about skipping

simulation.

Lemma 19 ([25]). LetM be a transition system. B is a WFSK onM iff B is an

RWFSK onM.

Proof: (⇐ direction): This direction is straightforward.

(⇒ direction): Let s, u, w ∈ S, s → u, and sBw. RWFSK1 follows directly from

WFSK1.

Next we show that RWFSK2 holds. The key insight is that if we removeWFSK2c,

then WFSK and RWFSK definitions are semantically equivalent. Therefore, it must

be that WFSK2c is redundant. To see this, note that it allows finite stuttering on

30

Chapter 2. Skipping Simulation

the right (because rankl is well-founded), but finite stuttering is just a special case

of more permissive skipping allowed by WFSK2a,d.

Let s, u, w ∈ S, s→ u, and sBw. If WFSK2a or WFSK2d holds then RWFSK2b

holds. If WFSK2b holds, then RWFSK2a holds. So, what remains is to assume that

WFSK2c holds and neither of WFSK2a, WFSK2b, or WFSK2d hold. From this we

will derive a contradiction.

Let δ be a path starting at w, such that only WFSK2c holds between s, u, δ.i.

There are non-empty paths that satisfy this condition, e.g., let δ = 〈w〉. In addition,

any such path must be finite. If not, then for any adjacent pair of states in δ, say

δ.k and δ(k + 1), rankl(δ(k + 1), s, u) < rankl(δ.k, s, u), which contradicts the well-

foundedness of rankl . We also have that for every k > 0, u 6B δ.k; otherwise WFSK2a

or WFSK2d holds. Now, let δ be a maximal path satisfying the above condition,

i.e., every extension of δ violates the condition. Let x be the last state in δ. We

know that sBx and only WFSK2c holds between s, u, x, so let y be a witness for

WFSK2c, which means that sBy and one of WFSK2a,b, or d holds between s, u, y.

WFSK2b can’t hold because then we would have uBy (which would mean WFSK2a

holds between s, u, x). So, one of WFSK2a,d has to hold, but that gives us a path

from x to some state v such that uBv. The contradiction is that v is also reachable

from w, so WFSK2a or WFSK2d held between s, u, w.

2.4.3 Reduced Local Well-founded Skipping Simulation

Next we introduce the notion of reduced local well-founded skipping simulation

(RLWFSK). Recall the event processing systems AEPS and tEPS described in Sec-

tion(2.1). When no events are scheduled to execute at a give time, say t, tEPS

increments time to the earliest time in future, say k > t, at which an event is sched-

31

Mechanised Reasoning

uled to execute. Consider the scenario k ≥ t + 1. Since AEPS increments time by

at most 1, in this scenario tEPS skips multiple states of AEPS. Moreover, execution

of an event may add a new event to be executed at an arbitrary time in future.

Therefore, one cannot a priori determine an upper-bound on k. Using WFSK to

analyze correctness of such systems would require unbounded reachability analysis,

a task often difficult for automated verification tools. In contrast, RLWFSK requires

reasoning about states and their successors and can be used to effectively analyze

systems that exhibit finite unbounded skipping.

Definition 17 (Reduced Local Well-founded Skipping (RLWFSK)). B ⊆ S × S is

a local well-founded skipping relation on TSM = 〈S,−→, L〉 iff:

(RLWFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉

(RLWFSK2) There exist functions, rankt : S ×S −→W , rankls : S ×S −→ ω such

that 〈W,≺〉 is well founded, and, a binary relation O ⊆ S × S such that

〈∀s, u, w ∈ S : sBw ∧ s→ u :

(a) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨

(b) 〈∃v : w → v : uOv〉〉

and

〈∀x, y ∈ S : xOy :

(c) xBy ∨

(d) 〈∃z : y → z : xOz ∧ rankls(z, x) < rankls(y, x)〉〉

As is the case with RWFSK and WFSK, RLWFSK also characterizes skipping

simulation, i.e., it is a sound and complete proof method for reasoning about skipping

simulation. To prove the completeness, i.e., SKS implies RLWFSK, we first prove

that RWFSK implies RLWFSK. Then from Lemma 15, we infer that SKS implies

RLWFSK. The soundness of RLWFSK follows from Theorem 22 proved later in the

32

Chapter 2. Skipping Simulation

s w

u

B

B

(a)

s w

u v

B

O

(b)

x yB

(c)

x y

z

O

O

(d)

Figure 2.5: Reduced local well-founded skipping simulation (a solid line with arrow
indicates the transition relation, a dashed orange line indicates that states are related
by B and a solid blue line indicate the states are related by O)

section.

Lemma 20. LetM be a transition system. If B is an RWFSK onM, then B is an

RLWFSK onM.

Proof: Let B be an RWFSK onM. RLWFSK1 follows directly from RWFSK1.

To show that RLWFSK2 holds, we use any rankt function that can be used to

show that RWFSK2 holds. We define O as follows.

O = {(u, v) : 〈∃z : v →+ z : uBz〉}

We define rankls(u, v) to be the minimal length of aM-segment that starts at v and

ends at a state, say z, such that uBz, if such a segment exists and 0 otherwise.

Let s, u, w ∈ S, sBw and s → u. If RWFSK2a holds between s, u, and w, then

RLWFSK2a also holds. Next, suppose that RWFSK2a does not hold but RWFSK2b

holds, i.e., there is anM-segment 〈w, a, . . . , v〉 such that uBv; therefore, uOa and

RLWFSK2b holds.

To finish the proof, we show that O and rankls satisfy the constraints imposed

by the second conjunct in RLWFSK2. Let x, y ∈ S, xOy and x 6B y. From the

definition of O, we have that there is an M-segment from y to a state related to

x by B; let #»y be such a segment of minimal length. From the definition of rankls,

we have rankls(y, x) = | #»y |. Observe that y cannot be the last state of #»y and

33

Mechanised Reasoning

| #»y | ≥ 2. This is because the last state in #»y must be related to x by B, but from

the assumption we know that x 6B y. Let y′ be a successor of y in #»y . Clearly, xOy′;

therefore, rankls(y′, x) < | #»y | − 1, since the length of a minimalM-segment from y′

to a state related to x by B, must be less or equal to | #»y | − 1.

Lemma 21. Let M be a transition system. If B is an SKS on M, then B is an

RLWFSK onM.

Proof: Follows directly from Lemma 20 and Lemma 15.

2.4.4 Local well-founded Skipping Simulation

Reduced local well-founded skipping simulation introduced above requires only local

reasoning and therefore is amenable for mechanical reasoning. However, note that

RLWFSK (like RWFSK), does not differentiate between skipping and stuttering on

the right. Such a differentiation can often be useful in practice. To redress this,

we define local well-founded skipping simulation (LWFSK), a characterization of

skipping simulation that separates reasoning about skipping from reasoning about

stuttering on the right.

Definition 18 (Local Well-founded Skipping (LWFSK)). B ⊆ S×S is a local well-

founded skipping relation on TSM = 〈S,−→, L〉 iff:

(LWFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉

(LWFSK2) There exist functions, rankt : S × S −→ W , rankl : S × S × S −→ ω,

and rankls : S × S −→ ω such that 〈W,≺〉 is well founded, and, a binary relation

34

Chapter 2. Skipping Simulation

s w

u v

B

B

(a)

s w

u

B

B

(b)

s w

u v

B

B

(c)

s w

u v

B

O

(d)

x yB

(e)

x y

z

O

(f)

Figure 2.6: Local well-founded skipping simulation (a solid line with arrow indicates
the transition relation, a dashed orange line indicates that states are related by B
and a solid blue line indicate the states are related by O)

O ⊆ S × S such that

〈∀s, u, w ∈ S : sBw ∧ s→ u :

(a) 〈∃v : w → v : uBv〉 ∨

(b) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨

(c) 〈∃v : w → v : sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉∨

(d) 〈∃v : w → v : uOv〉〉

and

〈∀x, y ∈ S : xOy :

(e) xBy ∨

(f) 〈∃z : y → z : xOz ∧ rankls(z, x) < rankls(y, x)〉〉

As was the case with RLWFSK, to prove that a relation is an LWFSK, reasoning

about single steps of the transition system suffices. However, LWFSK2c accounts for

stuttering on the right, and LWFSK2d along with LWFSK2e and LWFSK2f account

for skipping on the right. Also observe that states related by O are not required to

be labeled identically.

35

Mechanised Reasoning

We conclude by showing that the four notions, RWFSK, WFSK, RLWFSK, and

LWFSK, introduced in this section are equivalent and completely characterize skip-

ping simulation.

Theorem 22. Let M = 〈S,−→, L〉 be a transition system and B ⊆ S × S. The

following statements are equivalent:

(i) B is an SKS onM;

(ii) B is an RLWFSK onM;

(iii) B is an LWFSK onM;

(iv) B is a WFSK onM;

(v) B is an RWFSK onM;

Proof: That (ii) implies (iii) follows from the simple observation that RL-

WFSK2 implies LWFSK2. That (iv) implies (v) follows from Lemma 19, that (v)

implies (i) follows from Lemma 14, and that (i) implies (ii) follows from Lemma 21.

To complete the proof, we prove that (iii) implies (iv) in Lemma 23,

Lemma 23. LetM be a transition system. If B is an LWFSK onM, then B is a

WFSK onM.

Proof: Let B be an LWFSK onM. WFSK1 follows directly from LWFSK1.

Let rankt , rankl , and rankls be functions, and O be a binary relation such that

LWFSK2 holds. To show that WFSK2 holds, we use the same rankt and rankl

functions and let s, u, w ∈ S and s → u and sBw. LWFSK2a, LWFSK2b and

LWFSK2c are equivalent to WFSK2a, WFSK2b and WFSK2c, respectively, so we

show that if only LWFSK2d holds, then WFSK2d holds. Since LWFSK2d holds,

there is a successor v of w such that uOv. Since uOv holds, either LWFSK2e or

36

Chapter 2. Skipping Simulation

LWFSK2f must hold between u and v. However, since LWFSK2a does not hold,

LWFSK2e cannot hold and LWFSK2f must hold, i.e., there exists a successor v′ of

v such that uOv′ ∧ rankls(v′, u) < rankls(v, u). So, we need a path of at least 2

steps from w to satisfy the universally quantified constraint on O. Let us consider

an arbitrary path, δ, such that δ.0 = w, δ.1 = v, δ.2 = v′, uOδ.i, LWFSK2e does not

hold between u and δ.i for i ≥ 1, and rankls(δ.(i + 1), u) < rankls(δ.i, u). Notice

that any such path must be finite because rankls is well founded. Hence, δ is a

finite path and there exists a k ≥ 2 such that LWFSK2e holds between u and δ.k.

Therefore, WFSK2d holds, i.e., there is a state in δ reachable from w in two or more

steps which is related to u by B.

Theorem 22 shows that under no restrictions on systems under consideration,

RLWFSK (Definition 17) and LWFSK (Definition 18) are complete proof methods

and require only local reasoning. Thus, to prove that a concrete system is a skipping

refinement of an abstract system, one can always prove it using local reasoning about

states and their successors and do not require global reasoning about infinite paths.

We discuss this in more detail in Chapter 5.

2.5 Summary

In this chapter, we introduced a new notion of skipping simulation. We showed

that skipping simulation enjoys several useful algebraic properties and developed a

compositional theory of skipping refinement that aligns with a stepwise refinement

verification methodology [61, 5]. Finally, we developed four alternative character-

izations of skipping simulation that are amenable for mechanised reasoning using

formal-methods tools.

In Chapter 4, we present four case studies that highlight the applicability of

37

Summary

the proof methods: a JVM-inspired stack machine, a simple memory controller, a

scalar to vector compiler transformation, and an optimized event processing system.

Our experimental results demonstrate that current model-checking and automated

theorem proving tools have difficulty analyzing these systems using existing notions

of correctness, but they can effectively analyze the systems using skipping refinement.

38

Chapter 3

Reconciling Simulation

In this chapter, we first define the notion of reconciling simulation. Then we study

its algebraic properties and develop a theory of reconciling refinement. Finally,

we develop sound and complete proof methods that are amenable for automated

reasoning about reconciling refinement.

3.1 Running Example (Continued)

Consider event processing systems AEPS and MPEPS described in Chapter 2. If no

event is scheduled to execute at the current time, say t, AEPS increments time to

t+ 1 while MPEPS updates time to the earliest time in future at which an event is

scheduled to execute. Otherwise, AEPS picks an event while MPEPS picks a non-

empty subset of events from the set of events scheduled to execute at t. AEPS and

MPEPS do not stutter. Earlier, we had argued that MPEPS is a skipping refinement

of AEPS. But that there is a sense in which AEPS refines MPEPS. Suppose AEPS

and MPEPS are in related states and Et be the set of events scheduled for execu-

tion at current time t. At each step, AEPS nondeterministically chooses events to

execute from Et in some order. Then MPEPS can also choose to execute events in

39

Reconciling Simulation

the same order though it may execute more than one event in a single step. Hence,

a single AEPS step neither corresponds to stuttering nor corresponds to skipping.

Therefore, skipping refinement (and stuttering refinement) is not an appropriate no-

tion of refinement to directly analyze the correctness of AEPS. But the two systems

eventually reconcile after executing all events in Et. In this chapter, we define rec-

onciling refinement, a new notion of refinement that can be used to directly analyze

correctness of such reactive systems. Reconciling refinement is strictly weaker than

skipping refinement, and extends the domain of applicability of the refinement-based

approach to verification of a larger class of reactive systems. We develop the theory

of reconciling refinement using an approach that is analogous to one used to develop

the theory of skipping refinement (Chapter 2). We first define the notion of recon-

ciling simulation using a single transition system and study its algebraic properties.

Then we use the notion of reconciling simulation and a refinement map to define

the notion of reconciling refinement, a notion that relates two transition systems:

an abstract transition system and a concrete transition system. Finally, we develop

sound and complete proof methods for reasoning about reconciling refinement that

require only local reasoning, and are amenable for mechanised verification.

3.2 Reconciling Simulation

The notion of reconciling simulation is based on rmatch, a new notion of matching

fullpaths. Informally, we say a fullpath σ rmatches a fullpath δ under the relation

B if the fullpaths can be partitioned in to non-empty, finite segments such that the

first element in a segment of σ is related to the first element in the corresponding

segment of δ. Using the notion of rmatch, reconciling simulation is defined as follows:

a relation B is a reconciling simulation on a transition systemM = 〈S,−→, L〉, if for

any s, w ∈ S such that sBw, s and w are labeled identically and any fullpath starting

40

Chapter 3. Reconciling Simulation

at s can be rmatched by some fullpath starting at w.

Definition 19 (rmatch). LetM = 〈S,−→, L〉 be a transition system, σ, δ be fullpaths

inM. For π, ξ ∈ INC and binary relation B ⊆ S × S, we define

rcorr(B , σ, π, δ, ξ) ≡ 〈∀i ∈ ω :: σ(π.i)Bδ(ξ.i)〉 and

rmatch(B , σ, δ) ≡ 〈∃π, ξ ∈ INC :: rcorr(B , σ, π, δ, ξ)〉.

Definition 20 (Reconciling Simulation). B ⊆ S × S is a reconciling simulation

(RES) on a TSM = 〈S,−→, L〉 iff for all s, w such that sBw, both of the following

hold.

(RES1) L.s = L.w

(RES2) 〈∀σ : fp.σ.s : 〈∃δ : fp.δ.w : rmatch(B , σ, δ)〉〉

Notice that the definition reconciling simulation differs from skipping simulation

only in the notion of matching fullpaths used to define them. Both require that

matching fullpaths σ and δ be partitioned into finite non-empty segments. But they

differ in what states in a segment of σ relate to the first state in the corresponding

segment of δ: while SKS requires that all states in a segment of σ are related to the

first state in the corresponding segment of δ, RES only requires that first state in a

segment of σ is related to the first state in the corresponding segment of δ. Clearly,

RES is strictly weaker than SKS.

Theorem 24. If B is an SKS onM, then B is an RES onM.

Proof: Follows directly from the definitions of SKS(Definition 11), smatch(Definition 10),

RES(Definition 20), and rmatch(Definition 19) .

41

Algebraic Properties

3.3 Algebraic Properties

We next study the algebraic properties of reconciling simulation. RES is closed under

arbitrary union. However, it is not closed under relational composition.

Lemma 25. Let M be a transition system and C be a set of RES’s on M, then

G = 〈∪B : B ∈ C : B〉 is an RES onM.

Proof: Let s, w ∈ S and sGw. We show that RES1 and RES2 holds for G.

Since G = 〈∪B : B ∈ C : B〉, there is an RES B ∈ C on M such that sBw. Since

B is an RES on M, we have that L.s = L.w. Hence, RES1 holds for G. Next

RES2 also holds for B, i.e., for any fullpath σ starting at s, there is a fullpath δ

starting at w such that rmatch(B , σ, δ) holds. From Definition 19 of rmatch, there

exists π, ξ ∈ INC such that 〈∀i ∈ ω :: σ(π.i) B δ(ξ.i)〉. Since B ⊆ G, we have that

〈∀i ∈ ω :: σ(π.i) G δ(ξ.i)〉. Hence, from Definition 19, rmatch(G , σ, δ) holds, i.e.,

RES2 holds for G.

Corollary 26. For any transition systemM, there is a greatest RES onM.

Proof: Let C be the set of all RES’s on M and G = 〈∪B : B ∈ C : B〉. By

construction, G is the greatest and from Lemma 25, G is an RES onM.

The following lemma shows that RES is not closed under intersection and nega-

tion, as was the case with stuttering simulation [40] and skipping simulation 2.2.

Lemma 27. RESs are not closed under negation or intersection.

Proof: The example TSs used in the proof in Lemma 6 provide counterexam-

ples.

42

Chapter 3. Reconciling Simulation

However, unlike stuttering simulations and skipping simulations, RESs are not

closed under relational composition.

Lemma 28. RESs are not closed under relational composition.

Proof: A counterexample appears in Figure 3.1.

0

0

0

1

1 −1

−1

2

2 −2

−2

3

3 −3

−3σ

δ

γ

Figure 3.1: An example showing that RESs are not closed under relational compo-
sition. Consider a TSM that consists of three fullpaths σ, δ, and γ. The transition
relation for the TS is represented by →. The labeling function is defined as follows:
L(σ.0) = L(δ.0) = L(γ.0) = 0. And for all i ≥ 1, L(σ.i) = −i, L(δ.i) = (i− 1)/2 + 1
if i is odd and L(δ.i) = −i/2 if i is even, and L(γ.i) = i. The two reconciling
simulations, B and B′, are denoted by squiggly and dashed lines. We have that
(σ.0)B(δ.0) and (δ.0)B′(γ.0). However, (σ.0)B;B′(γ.0) does not hold because they
have no rmatching successors. In fact there is no RES that relates σ.0 with γ.0.

3.4 Reconciling refinement

In this section, we use the notion of reconciling simulation to define the notion of

reconciling refinement, a notion that relates two transition systems: an abstract tran-

sition system and a concrete transition system. The notion is parameterized by a

refinement map, a function that maps a concrete state to an abstract state. Infor-

mally, if a concrete system, say C, is a reconciling refinement of an abstract system,

43

Reconciling refinement

say A, under a refinement map r, then observable behaviors of C are observable be-

haviors of A up to reconciliation (reconciliation subsumes skipping and stuttering).

Recall that a refinement map along with the labeling function determines what is

observable at a concrete state.

Note that we do not place any restriction on the state space sizes and the branch-

ing factor of the transition relation of the abstract and the concrete systems, and

both can be of arbitrary infinite cardinalities. Thus the theory of reconciling refine-

ment, like the theory of skipping refinement developed in Chapter 2, and sound and

complete proof methods for reasoning about reconciling refinement (developed in the

Section 3.5) provide a reasoning framework that can be used to analyze a large class

of reactive systems.

Definition 21 (Reconciling Refinement). LetMA = 〈SA,
A−→, LA〉 andMC = 〈SC ,

C−→, LC〉

be transition systems and let r : SC → SA be a refinement map. We say MC is a

reconciling refinement ofMA with respect to r, writtenMC �rMA, if there exists

a binary relation B such that all of the following hold.

1. 〈∀s ∈ SC :: sB(r.s)〉 and

2. B is an RES on 〈SC] SA,
C−→] A−→,L〉 where L.s = LA(s) for s ∈ SA, and

L.s = LA(r.s) for s ∈ SC .

Observe that our definition of reconciling refinement is quite general, e.g., the

state space and the branching factor of the transition relation of the systems can be of

arbitrary infinite cardinality and there are no restrictions on the choice of refinement

map. In the next section, we develop sound and complete proof methods that are

amenable for mechanised reasoning. This provides a general theory of refinement

and a reasoning framework that is applicable for analyzing a large class of optimized

reactive systems. However, in general reconciling refinement is not compositional

44

Chapter 3. Reconciling Simulation

and therefore, unlike skipping refinement, reconciling refinement does not align with

the stepwise refinement verification methodology.

3.5 Mechanised reasoning

We turn our attention to the mechanical verification of correctness of systems using

reconciling refinement. If we use Definition 21 to prove that transition systemMC is

a reconciling refinement of transition systemMA with respect to a refinement map

r, we must show that for any fullpath inMC there is an rmatching fullpath inMA.

However, reasoning about formulas with nested quantifiers over infinite sequences

using formal-methods tools tends to be difficult, e.g., SMT solvers and model checkers

either do not allow or do not fully support quantifiers and the manual effort required

to prove such theorems with interactive theorem provers can be quite high. To redress

this situation, we introduce alternative characterizations of reconciling simulation

that are amenable for mechanised reasoning.

3.5.1 Reduced Well-founded Reconciling Simulation

As a first step, we introduce the notion of reduced well-founded reconciling simulation

(RWRS). It localizes reasoning about reconciliation on the left using an additional

binary relation over states and a rank function. However, reasoning about recon-

ciliation on the right still requires reachability analysis and in general is not local.

Nevertheless, RWRS is a useful proof method in scenarios where number of steps

required to reconcile with a state on the right can be bounded by a constant.

Definition 22 (Reduced Well-founded Reconciling Simulation (RWRS)). B ⊆ S×S

is a reduced well-founded reconciling relation on a TSM = 〈S,−→, L〉 iff :

(RWRS1) 〈∀s, w ∈ S : sBw : L.s = L.w〉

45

Mechanised reasoning

s w

u v

B

B

(a)

≥ 1

s w

u

B

R

(b)

x z

y a

R

B

(c)

≥ 1

x z

y

R

R

(d)

Figure 3.2: Reduced well-founded reconciling simulation (a solid line with an arrow
indicates the transition relation, a dashed orange line indicates that states are related
by B and a squiggly green line indicates that states are related by R).

(RWRS2) There exist a function rankts : S × S −→ W such that 〈W,≺〉 is well

founded and a binary relation R ⊆ S × S such that

〈∀s, u, w ∈ S : sBw ∧ s→ u :

(a) 〈∃v : w →+ v : uBv〉 ∨

(b) uRw〉

and

〈∀x, y, z ∈ S : xRz ∧ x→ y :

(c) 〈∃a : z →+ a : yBa〉 ∨

(d) yRz ∧ rankts(y, z) ≺ rankts(x, z)〉

RWRS characterizes reconciling simulation, i.e., it is a sound and complete proof

method for reconciling simulation. The soundness of RWRS, i.e., RWRS implies

RES, is proved later in Theorem 36. Here we prove the completeness, i.e., RES

implies RWRS. Towards this, we first introduce some definitions and lemmas.

Definition 23 (ranktsCt). LetM = 〈S,−→, L〉 be a transition system and B be an

RES onM. Given x, z ∈ S, ranktsCt(M, B, x, z) is the empty tree if ¬〈∃s : s→+ x : sBz〉,

otherwise ranktsCt(M, B, x, z) is the largest subtree of ctree(M, x) such that for any

node 〈x, . . . , y〉 in ranktsCt(M, B, x, z), we have that 〈∀a : z →+ a : ¬(yBa)〉.

Remark 1. Observe that the computation tree ranktsCt(M, B, x, z) does not depend

46

Chapter 3. Reconciling Simulation

on the choice of s ∈ S that can reach x and is related by B to z.

A basic property of our construction is the finiteness of paths in ranktsCt .

Lemma 29. Let M = 〈S,−→, L〉 be a transition system, B be an RES on M, and

x, z ∈ S. Every path of ranktsCt(M, B, x, z) is finite.

Proof: We consider two cases. First, let ¬〈∃s : s →+ x : sBz〉. Then

ranktsCt(M, B, x, z) is empty and the conclusion trivially holds. Second, let s ∈ S

such that s →+ x and sBz. The proof for this case is by contradiction. We start

by assuming that there exists an infinite path σ in ranktsCt(M, B, x, z). From any

such path we can construct a fullpath, say σ, that starts at s and σ.i = x for some

positive integer i. Since sBz, and B is an RES onM, from Definition 20, there is

a fullpath δ starting at z such that rmatch(B , σ, δ) holds. From Definition 19, there

is a k > i and a state in δ that is related by B to σ.k . However, by assumption

and from Definition 23 of ranktsCt , we have for all j ≥ i, 〈x = σ.i, . . . , σ.j〉 is a node

in ranktsCt(M, B, x, z) and z cannot reach a state that is related by B to σ.j. In

particular, 〈x = σ.i, . . . , σ.k〉 is a node in ranktsCt(M, B, x, z) and z cannot reach a

state that is related by B to σ.k. We have our contradiction.

Given Lemma 29, we define a function size, that given a ctree(M, s), say T ,

all of whose paths are finite, assigns an ordinal to T . The ordinal assigned to a

node x ∈ T is defined as follows: if x is a leaf node in T then size(T, x) = 0, else

size(T, x) = (
⋃
c∈children(T,x) size(T, c)) + 1, where children(T, x) returns a subset of

nodes that are immediate successor of x in T . The size of a computation tree is the

size of its root.

Lemma 30 ([41]). If |S| � κ, where ω � κ then for all s, w ∈ S, size(ranktsCt(M, s, w))

is an ordinal of cardinality � κ.

47

Mechanised reasoning

We use the cardinal max (|S|+, ω), where |S|+ is the cardinal successor of the size

of the state space, as the well-founded domain for rankts in Definition 22. Next we

define the binary relation FR such that the second universal quantifier in RWRS2 of

Definition 22 holds.

Definition 24 (FR). Let M = 〈S,−→, L〉 be a transition system and B be an

RES on M. We define FR(M, B) as the set of pairs (x, z) ∈ S × S such that

ranktsCt(M, B, x, z) is non-empty.

Lemma 31. LetM = 〈S,−→, L〉 be a transition system, B be an RES onM, x, y, z ∈

S, x → y, and (x, z) ∈ FR(M, B). If 〈∀a : z →+ a : ¬(yBa)〉 then (y, z) ∈

FR(M, B) and size(ranktsCt(M, y, z)) ≺ size(ranktsCt(M, x, z)).

Proof: To show that (y, z) ∈ FR(M, B), we show that ranktsCt(M, B, y, z) is

non-empty. Towards this observe that there is a s ∈ S such that s →+ y ∧ sBz.

This is because by assumption x → y and from Definition 24 and Definition 23,

ranktsCt(M, B, x, z) is non-empty and 〈∃s : s →+ x ∧ sBz〉. Also, 〈x, y〉 ∈

ranktsCt(M, B, x, z). This is because, by assumption, x → y and 〈∀a : z →+

a : ¬(yBa)〉. Hence, ranktsCt(M, B, y, z) is non-empty. Also, since y ∈ children(x)

in the tree ranktsCt(M, B, x, z), from the definition of size above, we infer that

size(ranktsCt(M, y, z)) ≺ size(ranktsCt(M, x, z)).

We are now ready to prove the completeness of RWRS.

Theorem 32 (Completeness). LetM be a transition system. If B is an RES onM,

then B is an RWRS onM.

Proof: Let B be an RES on M. RWRS1 follows directly from RES1. To

show that RWRS2 holds, let W be max (|S|+, ω). Let a, b ∈ S, rankts(a, b) be

size(ranktsCt(M, a, b)), and R = FR(M, B) be as defined in Definition 24. From

48

Chapter 3. Reconciling Simulation

Lemma 31, we have that R and the rank function rankts satisfy the second universal

quantifier in RWRS2 of Definition 22.

Next let s, u, w ∈ S, s → u, and sBw. We consider two cases. First, suppose

that 〈∃v : w →+ v : uBv〉 holds, then RWRS2a holds. If not, then 〈∀v : w →+ v :

¬(uBv)〉. Hence, ranktsCt(M, B, u, w) is non-empty. This is because B is an RES

onM, s→ u, and sBw. Finally, from the definition of FR we have that (u,w) ∈ FR

and uRw holds, i.e., RWRS2b holds.

3.5.2 Well-founded Reconciling Simulation

Next, we introduce the notion of well-founded reconciling simulation that requires

only local reasoning, i.e., reasoning about states and their successors. Unlike RWRS,

it can be used to effectively analyze systems that may take finite but unbounded

number of steps to reconcile on the left.

s w

u v

B

O

(a)

s w

u

B

R

(b)

x zO
B

(c)

x z

a

O

O

(d)

x z

y a

R

B

(e)

x z

y

R

R

(f)

Figure 3.3: Well-founded reconciling simulation (a solid line with an arrow indicates
the transition relation, a dashed orange line indicates that states are related by B, a
solid blue line indicate the states are related by O, and a squiggly green line indicates
that states are related by R).

49

Mechanised reasoning

Definition 25 (Well-founded Reconciling Simulation (WRS)). B ⊆ S×S is a well-

founded reconciling relation on a TSM = 〈S,−→, L〉 iff:

(WRS1) 〈∀s, w ∈ S : sBw : L.s = L.w〉

(WRS2) There exist functions, rankls : S × S −→ ω, and rankts : S × S −→W such

that 〈W,≺〉 is well founded, and binary relations R,O ⊆ S × S such that

〈∀s, u, w ∈ S : sBw ∧ s→ u :

(a) 〈∃v : w → v : uOv〉 ∨

(b) uRw〉

and

〈∀x, z ∈ S : xOz :

(c) xBz ∨

(d) 〈∃a : z → a : xOa ∧ rankls(a, x) < rankls(z, x)〉

and

〈∀x, y, z ∈ S : xRz ∧ x→ y :

(e) 〈∃a : z → a : yOa〉 ∨

(f) yRz ∧ rankts(y, z) ≺ rankts(x, z)〉

Intuitively, the condition RWRS2a in Definition 22, that required reachability

analysis, is replaced by conditions WRS2a, WRS2c and WRS2d in Definition 25.

Similarly, the condition RWRS2c in Definition 22, that required reachability analysis,

is replaced by conditions WRS2e, WRS2c and WRS2d in Definition 25. To show

that a binary relation is a WRS, we have to provide as witness binary relations R

and O, and rank functions rankts and rankls. O and rankls enable local reasoning

about reconciliation on the right and R and rankts as was the case with RWRS

enable local reasoning about reconciliation on the left. In fact, RWRS and WRS

50

Chapter 3. Reconciling Simulation

are equivalent. Here we show that RWRS implies WRS. The other direction, WRS

implies RWRS, is inferred from Theorem 36 proved later in the section.

Theorem 33. LetM be a transition system. If B is an RWRS onM, then B is a

WRS onM.

Proof: Let B be an RWRS on M. WRS1 follows directly from RWRS1.

Next we have to show that RWRS2 implies WRS2. Let 〈W,≺〉 be a well-founded

domain, rankts : S × S → W and R ⊆ S × S such that RWRS2 holds. To

show that WRS2 holds, we use the same rank function rankts and the binary

relation R as in RWRS2. The binary relation O ⊆ S × S is defined as follows:

O = {(u, v) : 〈∃v′ : v →∗ v′ : uBv′〉}. The rank function rankls : S × S → ω is de-

fined as follows: let u, v ∈ S then rankls(u, v) is the minimal length of anM-segment

that starts at v and ends in a state that is related to u by B, if such a segment exists

and 0 otherwise.

Let s, u, w ∈ S, s → u, and sBw. If RWRS2b holds then WRS2b holds. Next

suppose that RWRS2b does not hold and RWRS2a holds, i.e., 〈∃v : w →+ v :

uBv〉. Let 〈w, v1, . . . , vk = v〉, where k ≥ 1, be such an M-segment. Hence, from

construction of O we have that uOv1, and WRS2a holds.

Next let x, y, z ∈ S, xRz, and x → y. Since R satisfies the second conjunct in

RWRS2, one of RWRS2c or RWRS2d must hold. If RWRS2d holds then WRS2f

holds. Next suppose RWRS2d does not hold and RWRS2c holds, i.e., 〈∃a : z →+

a : yBa〉. Let 〈z, a1, . . . , ak = a〉, where k ≥ 1, be such anM-segment. Hence. from

the definintion of O, we have that yOa1, i.e., WRS2e holds.

To finish the proof we show that O and rank function rankls, as defined above,

satisfy the constraints imposed by the second conjunct in WRS2. Let x, y ∈ S, xOy,

and WRS2c does not hold, i.e., ¬(xBy). From the definition of O, we have that there

is anM-segment from y to a state related to x by B; let #»y be such a segment with

51

Mechanised reasoning

the minimal length. From the definition of rankls, we have that rankls(y, x) = | #»y |.

Since the last state in #»y must be related to x by B, and from the assumption ¬(xBy),

we have that y cannot be the last state of #»y and | #»y | > 1. Let y′ be the successor of

y in #»y . Then from construction of O, we have that xOy′. Observe that the length

of the minimalM-segment from y′ to a state that is related to x by B must be less

or equal to | #»y | − 1. Hence rankls(y′, x) = | #»y | − 1 < rankls(y, x).

3.5.3 Well-founded Reconciling Simulation with Explicit Stuttering

Next we introduce the notion of well-founded reconciling simulation with explicit

stuttering (WRSS). Like WRS, it only requires reasoning about a state and its suc-

cessors. However, unlike WRS, it distinguishes between stuttering and reconciling.

Figure 3.4 illustrates the conditions in WRSS. The intuition is, for any pair of

states s, w which are related by B, a state u such that s → u, there are five cases

to consider (a) either we can rmatch the move from s to u with a single step from

w, or (b) there is stuttering on the left, or (c) there is stuttering on the right, or (d)

there is reconciling on the right, or (e) there is reconciling on the left. Additionally

conditions (f) and (g) together ensure that reconciling on the right is finite, and

conditions (h) and (i) ensure that reconciling on the left is finite.

Definition 26 (Well-founded Reconciling With Explicit Stuttering (WRSS)). B ⊆

S × S is a well-founded reconciling relation with explicit stuttering on a transition

systemM = 〈S,−→, L〉 iff:

(WRSS1) 〈∀s, w ∈ S : sBw : L.s = L.w〉

(WRSS2) There exist functions, rankt : S × S −→W , rankl : S × S × S −→ ω, and

rankls : S × S −→ ω, and rankts : S × S −→ W such that 〈W,≺〉 is well founded,

52

Chapter 3. Reconciling Simulation

and binary relations R,O ⊆ S × S such that

〈∀s, u, w ∈ S : sBw ∧ s→ u :

(a) 〈∃v : w → v : uBv〉 ∨

(b) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨

(c) 〈∃v : sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉 ∨

(d) 〈∃v : w → v : uOv〉 ∨

(e) uRw〉

and

〈∀x, z ∈ S : xOz :

(f) xBz ∨

(g) 〈∃a : z → a : xOa ∧ rankls(a, x) < rankls(z, x)〉

and

〈∀x, y, z ∈ S : xRz ∧ x→ y :

(h) 〈∃a : z → a : yOa〉〉 ∨

(i) yRz ∧ rankts(y, z) ≺ rankts(x, z)〉

We next prove that WRSS implies RES.

Theorem 34. Let M be a transition system. If B is a WRSS on M then B is an

RES onM.

Proof: Let B be a WRSS onM = 〈S,−→, L〉, x, y ∈ S, and xBy. To show that

B is an RES onM, we show that RES1 and RES2 hold. RES1 follows directly from

WRSS1.

Next we show that RES2 holds, i.e., for any fullpath σ starting at x in M,

there is a fullpath δ starting at y in M such that rmatch(B , σ, δ) holds. We start

by recursively defining π, ξ ∈ INC, and a fullpath δ in M. For the base case,

53

Mechanised reasoning

s w

u v

B

B

(a)

s w

u

B

B

(b)

s w

u v

B

B

(c)

s w

u v

B

O

(d)

s w

u

B

R

(e)

x zO
B

(f)

x z

a

O

O

(g)

x z

y a

R

O

(h)

x z

y

R

R

(i)

Figure 3.4: Well-founded reconciling simulation with explicit stuttering (a solid line
with an arrow indicates the transition relation, a dashed orange line indicates that
states are related by B, a solid blue line indicate the states are related by O, and a
squiggly green line indicates that states are related by R).

let π.0 = 0, ξ.0 = 0, and δ.0 = y. From assumption, we have that σ(π.0)Bδ(ξ.0).

For the recursive case, we assume that π.0, . . . , π.i, ξ.0, . . . , ξ.i, and δ.0, . . . , δ(ξ.i) are

defined, and that σ(π.i)Bδ(ξ.i). Let s = σ(π.i), u = σ(π.i+1), and w = δ(ξ.i). Since

WRSS2 holds there exists a well-founded domain 〈W,≺〉, rank functions rankt , rankl ,

rankls, rankts, and binary relation R,O satisfying the three conjuncts in WRSS2.

Before we proceed, we prove the following helpful lemma.

Lemma 35. LetM = 〈S,−→, L〉 be a transition system, x, z ∈ S, O, B ⊆ S×S, and

rankls : S × S → ω. Let O, B, and rankls satisfy the second universal quantifier in

WRSS2. If xOz then there is a non-empty finite M-segment starting from z to a

state that is related to x by B.

Proof: Let xOz. First suppose xBz holds. Then 〈z〉 is anM-segment such that

xBz. Next, suppose ¬(xBz) and 〈∃a : z → a : xOa ∧ rankls(a, x) < rankls(z, x)〉.

Let δ be anM-path starting at z such that only WRSS2g holds, i.e., for all i ≥ 0,

xOδ.i and rankls(δ(i+ 1), x) < rankls(δ.i, x) and ¬(xBδ.i). Observe that δ must be

a finite path inM. Otherwise, it contradicts the well-foundedness of rankls. Let a

be the last state of δ. Also since xOa and ¬〈∃a′ : a → a′ : xOa′ ∧ rankls(a′, x) <

54

Chapter 3. Reconciling Simulation

rankls(a, x)〉, it must be the case that xBa holds.

We now return to the proof of Theorem 34. We consider five cases.

1. Suppose WRSS2a holds, i.e., there is a successor v of w such that uBv holds.

Let u and v mark the beginning of the next segment in σ and δ respectively.

We define π(i+ 1) = π.i+ 1, ξ(i+ 1) = ξ.i+ 1, and ξδi = 〈w〉.

2. Suppose WRSS2a does not hold and WRSS2d holds, i.e., there is a successor

v of w such that uOv. From the second universal quantifier in WRSS2, and

Lemma 35, we have that there is anM-segment 〈v1 = v, . . . , vm〉, wherem ≥ 1

such that uBvm. Let u and vm mark the beginning of the next segment in

σ and δ respectively. We define π(i + 1) = π.i + 1, ξ(i + 1) = ξ.i + m,

ξδi = 〈w, . . . , vm−1〉, and δ(ξ(i+ 1)) = vm.

3. Suppose WRSS2a and WRSS2d do not hold and WRSS2e holds, i.e., ¬〈∃v :

w → v : uBv〉, ¬〈∃v : w → v : uOv〉 and uRw. Let σ(π.i+2) = u′. We consider

two cases. First, suppose that WRSS2h holds between u, u′, and w, i.e., there

is a successor v of w such that u′Ov. From the second universal quantifier in

WRSS2 and Lemma 35, we have that there is anM-segment 〈v1 = v, . . . , vm〉,

where m ≥ 1 such that u′Bvm holds. Let u′ and vm mark the beginning

of the next segment in σ and δ respectively. We define π(i + 1) = π.i + 2,

ξ(i+1) = ξ.i+m, ξδi = 〈w, . . . , vm−1〉 and, δ(ξ(i+1)) = vm. Second, suppose

that WRSS2h does not hold and WRSS2i holds between u, u′, and w. We

define J to be the subset of the positive integers ≥ 2 such that for every j ∈ J ,

the following holds.

55

Mechanised reasoning

〈∀v : w → v : ¬(σ(π.i+ j)Ov)〉 ∧ (3.1)

〈σ(π.i+ j)Rw ∧ rankts(σ(π.i+ j), w) ≺ rankts(σ(π.i+ j − 1), w)〉

First observe that 2 ∈ J because σ(π.i + 2) = u′, WRSS2h does not hold by

assumption (so the first conjunct is true) and WRSS2i does (so the second

conjunct is true). Next observe that there is an integer n > 2 such that n 6∈ J .

Suppose not, then for all n ≥ 2, n ∈ J . Now, consider the (infinite) suffix of

σ starting at σ(π.i + 1). For every adjacent pair of states in this suffix, say

σ(π.i + k) and σ(π.i + k + 1) where k ≥ 1, we have that only WRSS2i holds

(i.e., WRSS2h does not hold). This gives us a contradiction because rankts

is well-founded. We now define n = min({l ∈ ω : l > 2 ∧ l 6∈ J}). Notice

that only WRSS2i holds between σ(π.i + n − 1)), σ(π.i + n) and w, hence

σ(π.i + n)Rw and rankts(σ(π.i + n), w) ≺ rankts(σ(π.i + n − 1), w). Since

Formula 3.1 does not hold for n, one of the conjuncts has to be false, and

above we determined that it must be the first one, i.e., there is a successor v of

w such that σ(π.i+ n)Ov. From the third universal quantifier in WRSS2 and

Lemma 35, we have that there is anM-segment 〈v1 = v, . . . , vm〉, wherem ≥ 1,

such that σ(π.i+n)Bvm. We are now ready to extend our recursive definitions

as follows: π(i+ 1) = π.i+ n, ξ(i+ 1) = ξ.i+m, and ξδi = 〈w, . . . , vm−1〉.

4. Suppose only WRSS2b holds between s = σ(π.i), u = σ(π.i+1) and w. Let K

be the set of positive integers such that for every k ∈ K only WRSS2b holds

between σ(π.i + k − 1), σ(π.i + k), and w. First observe that 1 ∈ K. This is

because by assumption σ(π.i)Bw, σ(π.i + 1)Bw, and rankt(σ(π.i + 1), w) ≺

rankt(σ(π.i), w). Next observe that there exists an integer n > 1 such that

n 6∈ K. Suppose not, then for all n ≥ 1, n ∈ K. Consider the infinite suffix of

σ starting at σ(π.i) and the next state σ(π.i + 1). For every adjacent pair of

56

Chapter 3. Reconciling Simulation

states in this suffix, say σ(π.i+ l−1) and σ(π.i+ l) where l ≥ 1, only WRSS2b

holds. This gives us a contradiction because rankt is well-founded. We now

define n = min({l ∈ ω : l > 1 ∧ l 6∈ K}). Since σ(π.i+n−1)Bw and WRSS2b

does not hold between σ(π.i+ n− 1), σ(π.i+ n), and w, it must be that one

of WRSS2a, WRSS2c, WRSS2d, or WRSS2e must between σ(π.i + n − 1),

σ(π.i+ n), and w.

If WRSS2c holds, i.e., there exists a v such that w → v , σ(π.i+n−1)Bv, and

rankls(v, σ(π.i+n−1), σ(π.i+n)) < rankls(w, σ(π.i+n−1), σ(π.i+n))holds. In

this case, we extend our recursive definitions as follows: let π(i+1) = π.i+n−1,

ξ(i+ 1) = ξ.i+ 1 and ξδi = 〈w〉.

If WRSS2c does not hold and WRSS2a holds, then there is a v such that w → v

and σ(π.i+ n)Bv. In this case we extend our recursive definitions as follows:

let π(i+ 1) = π.i+ n, ξ(i+ 1) = ξ.i+ 1 and ξδi = 〈w〉

Next if WRSSS2c and WRSS2a do not hold and WRSS2d holds, then from the

second universal quantifier in WRSS2 and Lemma 35,there is an M-segment

〈w = v0, . . . , vm〉, where m ≥ 1, such that σ(π.i + n)Bvm. We extend our

recursive definitions as follows: π(i + 1) = π.i + n, ξ(i + 1) = ξ.i + m and

ξδi = 〈w, . . . , vm−1〉.

Finally, if WRSS2a, WRSS2c, and WRSS2d do not hold and WRSS2e holds,

then as in the third case above, there exists p,m ≥ 1 such that we can extend

our recursive definition as follows: π(i+ 1) = π.i+ n+ p, ξ(i+ 1) = ξ.i+m,

and ξδi = 〈w, . . . , vm−1〉.

5. Finally, we consider the case when only WRSS2c holds between s, u and w, i.e.,

there is a successor v of w such that sBv and rankl(v, s, u) < rankl(w, s, u).

Let γ be an M-path starting at w such that only WRSS2c holds between

57

Mechanised reasoning

s, u and a state in γ. There is a non-empty path that satisfy this condition,

e.g., let γ = 〈w〉. Notice that any such M-path must be finite. If not, then

for any adjacent pair of states in γ, say γ.k and γ(k + 1), where k ∈ ω,

rankl(γ(k + 1), s, u) < rankl(γ.k, s, u), which contradicts the well-foundedness

of rankl . Let #»v = 〈v0 = w, . . . , vm〉, where m ≥ 1, be a maximalM-segment

satisfying the above condition. Since sBvm holds, one of WRSS2a, WRSS2b,

WRSS2d, or WRSS2e must hold between s, u, and vm.

Suppose WRSS2a holds, then, as in the first case above, we can extend our

recursive definitions as follows: π(i+ 1) = π.i+ 1, ξ(i+ 1) = ξ.i+m+ 1, and

ξδi = 〈w, . . . , vm〉.

Suppose WRSS2a does not hold and WRSS2b holds between s, u, vm, i.e.,

uBvm and rankt(u, vm) ≺ rankt(s, vm). In this case we extend our recursive

definitions as follows: π(i + 1) = π.i + 1, ξ(i + 1) = ξ.i +m, and ξδi = 〈v0 =

w, . . . , vm−1〉.

Suppose WRSS2a does not hold, and WRSS2d holds. Then, as in second case

above, we can extend our recursive definitions as follows: there exists n ≥ 1

such that π(i+1) = π.i+1, ξ(i+1) = ξ.i+m+n and ξδi = 〈w, . . . , vm+n−1〉.

Suppose WRSS2a and WRSS2d do not hold and WRSS2e hold. Then, as in

the third case above, we can extend our recursive definitions as follows: there

exits p > 2 and n ≥ 1 such that π(i+1) = π.i+ p, ξ(i+1) = ξ.i+m+ n, and

ξδi = 〈w, . . . , vm+n−1〉.

Now we show that RES2 holds. We start by unwinding definitions. The first

step is to show that fp.δ.y holds, which is true by construction. Next, we show that

rmatch(B , σ, δ) by unwinding the definition of rmatch. That involves showing that

there exist π and ξ such that rcorr(B , σ, π, δ, ξ) holds. The π and ξ we used to

58

Chapter 3. Reconciling Simulation

define δ can be used here. Finally, we unwind the definition of rcorr , which gives

us a universally quantified formula over the natural numbers. This is handled by

induction on the segment index; the proof is based on the recursive definitions given

above.

The following theorem states that all the three characterizations of reconciling

simulation introduced above are equivalent.

Theorem 36. Let M = 〈S,−→, L〉 be a transition system and B ⊆ S × S. The

following are equivalent

(i) B is an RES onM;

(ii) B is an RWRS onM;

(iii) B is a WRS onM;

(iv) B is WRSS onM

Proof: (i) implies (ii) follows from Theorem 32, (ii) implies (iii) follows from

Theorem 33, and (iv) implies (i) in Theorem 34. To conclude the proof, we show

that (iii) implies (iv).

WRSS1 follows directly from WRS1. To prove that WRSS2 holds, we use the

same rank functions rankts and rankls and binary relations R and O. If WRS2a or

WRS2b holds then WRSS2d or WRSS2e holds. Clearly, O and R satisfy the second

and the third conjunct in WRSS2.

59

Summary

3.6 Summary

In this chapter, we introduced a new notion of reconciling simulation, studied its

algebraic properties, and based on it developed a theory of reconciling refinement.

Unlike skipping refinement, reconciling refinement is not compositional. We devel-

oped three alternative characterizations of reconciling simulation that are amenable

for mechanised reasoning using formal-methods tools.

Well-founded reconciling simulation (Definition 25) and well-founded reconcil-

ing simulation with explicit stuttering (Definition 26) are complete proof methods

that require only local reasoning, i.e., reasoning about states and their successors.

Thus, if a concrete system is reconciling refinement of an abstract system under a

refinement map, one can always prove it using local reasoing about states and their

successors and do not require global reasoning about infinite paths. Furthermore,

reconciling simulation is a strictly weaker notion of correctness than skipping sim-

ulation (and stuttering simulation). Together, these results significantly extend the

domain of applicability of refinement-based methodology to verification of a large

class of reactive systems.

The approach we followed towards developing a sound and complete proof meth-

ods for mechanised reasoning of reconciling simulation is similar to the approach

for skipping simulation in Chapter 2. We first defined an intermediate characteriza-

tion, RWRS (Definition 22), that localizes reasoning on the left by introducing an

auxiliary binary relation on states (conditions RWRS2b-2d), while reasoning about

reconciling on the left is accounted for by transitive closure (condition RWRS2a) and

in general requires reachability analysis. Then, similar to RLWFSK (Definition 17),

we defined WRS (Definition 25) that localizes reasoning about reconciling on the

right by introducing another auxiliary binary relation on states (conditions WRS2a,

WRS2c-2d). Finally, similar to LWFSK (Definition 18), we define WRSS that ex-

60

Chapter 3. Reconciling Simulation

plicitly accounts for stuttering. In fact, one can look at LWFSK as WRSS modulo

conditions WRSS2e, WRSS2h-2i, conditions that account for reconciling on the left,

a scenario that does not occur when reasoning about skipping simulation.

Finally, observe that one can envision defining other equivalent characterizations.

For example, we can define a notion that distinguishes between stuttering and recon-

ciling on the left (as in condition WRSS2b and WRSS2e) and use transitive closure

(as in RWRS2a) to combine stuttering and skipping the right. Such a characteri-

zation is justified as it can be useful when skipping on the right is bounded (and

small). The three characterizations of reconciling simulation that we choose to study

are interesting in the sense that they highlight the considerations when designing a

sound and complete proof method that involves only local reasoning.

61

Summary

62

Chapter 4

Case Studies

In this chapter, we present case studies that enable us to explore the conceptual

aspects of the theory of skipping refinement and the applicability of associated proof

methods. When verifying that an implementation system refines a specification sys-

tem two primary choices are: (1) selecting an appropriate notion of refinement, and

(2) selecting a proof-method that can be used to mechanically prove it. We high-

light these choices in analysing correctness of four optimized reactive systems (1) a

vectorizing compiler transformation (2) a JVM-inspired stack machine, (3) an opti-

mized memory controller, and (4) an asynchronous event-processing system. (1), (2),

and (3) are examples of optimized reactive systems that exhibit bounded skipping

while (4) is an example of an optimized reactive system that exhibits unbounded

(but finite) skipping. To facilitate understanding and focus on evaluating the theory

of refinement, we only model certain aspects of the systems. All case studies are

performed using ACL2s, an interactive theorem prover [13]. In particular, for case

study (4), we present in detail, a formalization of the specification system and the

implementation system and the proof of correctness in ACL2s. Using finite state

models of the systems in case studies (2) and (3), we also evaluate the impact of

63

Superword Level Parallelism with SIMD instructions

these choices on the specification cost and the effectiveness of proof methods when

using model-checkers. We compare two notions of correctness: skipping refinement

and input-output equivalence. The finite-state models of the systems are compiled to

sequential AIGs. We will see that when correctness is based on input-output equiva-

lence, model-checkers quickly start timing out as the complexity (size) of the systems

increases. In contrast, when skipping refinement is used, much larger systems can

be automatically verified. The proof scripts are publicly available [1].

4.1 Superword Level Parallelism with SIMD instructions

An effective way to improve the performance of multimedia programs running on

modern commodity architectures is to exploit Single-Instruction Multiple-Data (SIMD)

instructions (e.g., the SSE/AVX instructions in x86 microprocessors). Compilers

analyse programs for superword level parallelism and when possible replace multi-

ple scalar instructions with a compact SIMD instruction that operates on multiple

data in parallel [35]. In this case study, we illustrate the applicability of skipping

refinement to verify the correctness of such a compiler transformation using ACL2s.

The source language consists of scalar instructions and the target language consists

of both scalar and vector instructions. We model the transformation as a function

that takes as input a program in the source language and outputs a program in the

target language. Instead of proving that the compiler is correct, we use the trans-

lation validation approach [6] and prove the equivalence of the source program and

the generated target program.

We make some simplifying assumptions for modeling purpose: the state of the

source and target programs (modeled as transition systems) is a three-tuple consist-

ing of a sequence of instructions, a program counter, and a store. We also assume

that a SIMD instruction operates on two sets of data operands simultaneously and

64

Chapter 4. Case Studies

a = b + c
d = e + f→

a
d

= b
e

+SIMD
c
f

u = v × w
x = y × z→

u
x

= v
y
×SIMD

w
z

Figure 4.1: An example of superword parallelism optimization

that the transformation identifies parallelism at the basic block level. Therefore, we

do not model any control flow instructions. Note that we do not reorder instruc-

tions in the source program. Figure 4.1 shows how two add and two multiply scalar

instructions are transformed into corresponding SIMD instructions.

The syntax and operational semantics of source and target programs are given

in Figure 4.2. Adding element e to the beginning or end of list (or array) l is

denoted by e :: l and l::e, respectively. Each transition consists of a state:condition

pair above a line, followed by the next state below the line. If a state matches the

state in a transition and satisfies the conditions associated with it, then the state

can transition to the state below the line. Every condition implicitly contains the

condition pc < n. We denote that x, . . . , y are variables with values vx, . . . , vy in

store by {〈x, vx〉, . . . , 〈y, vy〉} ⊆ store.[[(sop vx vy)]] denotes the result of the scalar

operation sop and [[(vop 〈va vb〉〈vd ve〉)]] denotes the result of the vector operation

vop. Finally, we use store|x:=vx,...,y:=vy to denote that variables x, . . . , y are updated

(or added) to store with values vx, . . . , vy.

What is an appropriate notion of refinement to analyse the correctness of the

compiler transformation? Since the target program can execute multiple scalar in-

structions in a single step, the notion of stuttering simulation is too strong to relate

the source and the target program produced by the compiler, no matter what re-

finement map we use. To see this, note that the target program might run exactly

twice as fast as the source program and during each step the scalar program might

be modifying the memory. Since both the programs do not stutter, in order to use

65

Superword Level Parallelism with SIMD instructions

loc := {x , y , z , a, b, c, . . .} (Variables)
sop := add | sub | mul | and | or | nop (Scalar Ops)
vop := vadd | vsub | vmul | vand | vor | vnop (Vector Ops)
sinst := sop〈z x y〉 (Scalar Inst)
vinst := vop〈c a b〉〈f d e〉 (Vector Inst)
sprg := [] | sinst :: sprg (Scalar Program)
vprg := [] | (sinst | vinst) :: vprg (Vector Program)
store := [] | 〈x , vx 〉 :: store (Registers)

Scalar Machine (A−→)
〈sprg , pc, store〉, {〈x , vx 〉, 〈y , vy〉} ⊆ store,
sprg [pc] = sop〈z x y〉, vz = [[(sop vx vy)]]

〈sprg , pc + 1 , store|z :=vz 〉

Vector Machine (C−→)
〈vprg , pc, store〉, {〈x , vx 〉, 〈y , vy〉} ⊆ store,
vprg [pc] = sop〈z x y〉, vz = [[(sop vx vy)]]

〈vprg , pc + 1 , store|z :=vz 〉

〈vprg , pc, store〉, vprg [pc] = vop〈c a b〉〈f d e〉,
{〈a, va〉, 〈b, vb〉, 〈d , vd 〉, 〈e, ve〉} ⊆ store,
〈vc , vf 〉 = [[(vop 〈va vb〉〈vd ve〉)]]
〈vprg , pc + 1 , store|c:=vc ,f :=vf 〉

Figure 4.2: Syntax and Semantics of Scalar and Vector Program

stuttering refinement the length of run of the source and target program must be

equal, which is not in our case. On the other hand, skipping refinement directly

accounts for such differences in behavior between a specification and an optimized

implementation. Therefore, we use skipping refinement to analyse the correctness of

the transformation.

Let MA and MC be transition systems of the source and target programs, re-

spectively. The set of states SA and SC and the transition relation A−→ and C−→ are

as described in Figure 4.2, and labeling function LA and LC are just the identity

functions. We begin by defining the refinement map. Let sprg be the source pro-

66

Chapter 4. Case Studies

gram and vprg be the compiled target program. The refinement map R : SC → SA

is defined as follows.

R(〈vprg , pc, store〉) = 〈sprg , pcT (pc), store〉

In the above definition, pcT is a function that maps values of the target program

counter to the corresponding values of the source program counter; and sprg is

the scalar program obtained by scalarizing each of the vector instructions in vprg .

Note that scalarizing a vector program is in some sense the inverse of the compiler

transformation. However, it is significantly simpler because the complexity of the

compiler transformation typically lies in the analysis phase that determines if the

transformation is even feasible and not in the transformation phase. Also, note that

pcT (pc) can alternatively be determined using a history variable.

To show that MC is a skipping refinement of MA under the refinement map

R we must show as witness a binary relation that satisfies the two conditions in

Definition 12: (1) it agrees with the refinement map R, and (2) it is a skipping

simulation on the disjoint union ofMC andMA.

Let B = {〈s,R.s〉 | s ∈ SC}. It is easy to see that the first condition holds for B.

To show that B is a skipping simulation relation we choose RWFSK (Definition 13).

This is because in this case, it is simple to determine j, an upper-bound on skipping:

observe that a step of the target program corresponds to at most 2 steps of the

source program; hence j = 3 suffices. This reduces condition RWFSK2b, that in

general requires reachability analysis, to bounded reachability. Moreover, MA and

MC do not stutter, therefore we ignore RWFSK2a and do not define rankt . We can

further simplify our proof obligation by using our knowledge about the machines.

Since the scalar machine is deterministic we can eliminate the existential quantifier

67

Superword Level Parallelism with SIMD instructions

in RWFSK2b. Finally, our proof obligation is: for all s ∈ SC such that s C−→ u:

R.s
A−−→< 3R.u (4.1)

Furthermore, since the semantics of the vector machine is deterministic, u is a

function of s, so we can remove u from the above formula, if we wish. Also, we can

expand out A−−→< 3 to obtain a formula using only A−→ instead.

For this case study we used ACL2s to model and prove the correctness of the

compiler transformation. A state of the scalar machine and the vector machine is

described using the Defdata framework in ACL2s [13, 12] and their operational se-

mantics is formalized in ACL2s using standard methods. The sizes of the program

and store are unbounded. After the data definitions and function definitions mod-

eling the transition systems for the two systems were in place, we proved additional

lemmas to discharge the proof obligation 4.1. The additional lemmas can be roughly

categorized into two categories. First, the set of lemmas related to the data struc-

tures used to model the operational semantics of scalar and vector machines. Second,

the set of lemmas that establish a relationship between the current instruction (as

pointed by the program counter) in a state of the vector machine, say s, to the cur-

rent instruction in R.s, the (scalar) state obtained by applying the refinement map.

In total, we introduced 15 data definitions and 21 function definitions to model the

two machines and the refinement map. We have in total 44 lemmas. The entire

proof takes about 3 minutes on a machine with 2.2 Ghz Intel Core i7 with 16 GB

main memory. The models and the proof script are publicly available [1].

68

Chapter 4. Case Studies

4.2 JVM-inspired Stack Machine

In this case study we verify a stack machine inspired by the Java Virtual Machine

(JVM). Java processors have been proposed as an alternative to just-in-time compil-

ers to improve the performance of Java programs. Java processors such as JME [22]

fetch bytecodes from an instruction memory and store them in an instruction buffer.

The bytecodes in the buffer are analysed to perform instruction-level optimizations

e.g., instruction folding. In this case study, we verify BSTK, a simple hardware

implementation of a part of the JVM. BSTK is an incomplete and inaccurate model

of JVM that only models an instruction memory, an instruction buffer and a stack.

Only a small subset of JVM instructions are supported (push, pop, top,nop). How-

ever, even such a simple model is sufficient to exhibit benefits of using skipping

refinement and its associated proof methods for mechanical reasoning in comparison

to existing notions of correctness.

A state of BSTK is a four tuple 〈imem, pc, ibuf , stk〉, where imem is the instruc-

tion memory, pc is the program counter, and stk is the stack. The capacity of the

instruction buffer is a constant positive integer. BSTK fetches the instruction from

the imem at location pc, and if the fetched instruction is not top and the instruc-

tion buffer is not full, it enqueues the instruction to the end of the buffer ibuf and

increments the pc by 1. Otherwise, BSTK executes all buffered instructions in the

order they were enqueued in a single step, thereby draining the buffer, and obtaining

a new stack. To verify the correctness of BSTK, we define an abstract high-level

specification STK that serves as a specification. A state of STK is a three tuple

〈imem, pc, stk〉. STK fetches an instruction from the imem at location pc, executes

it, increments the pc by 1 and possibly modifies the stk .

The syntax and operational semantics are shown in Figure 4.3 using the conven-

tions described earlier in Section 4.1. If none of the transition rules match (which

69

JVM-inspired Stack Machine

happens when pc = n), then STK and BSTK stutters (this is not shown as a tran-

sition rule in Figure 4.3).

What is an appropriate notion of refinement to analyse the correctness of BSTK?

Observe that if the buffer is full or the instruction fetched is top, BSTK executes

all buffered instructions in ibuf in a single step. This neither corresponds to a

stuttering step nor can be matched by a single step of STK. Therefore, stuttering

refinement cannot be directly used to prove the correctness of BSTK. On the other

hand, skipping refinement directly accounts for such differences in behaviors of STK

and BSTK and therefore is appropriate to prove the correctness of BSTK. We remark

that reconciling refinement can also be used to prove the correctness of BSTK. How-

ever, skipping refinement is preferable since it is a stronger notion than reconciling

refinement. Alternatively, one could construct a new specification whose transition

relation is the transitive closure of STK, i.e., we adapt the high-level specification to

align with optimizations introduced in the implementation. However, this is highly

undesirable since a specification is a part of the trusted computing base, and should

be as simple as possible. Moreover, reasoning about transitive closure of a transition

relation often requires finding a closed form characterization of the set of reachable

states and increases the challenges during mechanical reasoning.

Let MA = 〈SA,
A−→, LA〉 and MC = 〈SC ,

C−→, LC〉 be the transition systems of

STK and BSTK machines respectively. The set of states SA and SC and the tran-

sition relation A−→ and C−→ are as described in Figure 4.3, and labeling function LA

and LC are just the identity functions. We show thatMC is a skipping refinement

ofMA under the refinement map R : SC → SA, where R is defined as follows:

R(〈imem, pc, ibuf , stk〉) = 〈imem, abs(pc− n), stk〉

where n is the number of instructions in ibuf and abs is a function that takes as

70

Chapter 4. Case Studies

stk := ∅ | 〈v〉 :: stk (Stack)
inst := 〈push v〉 | 〈pop〉 | 〈top〉 | 〈nop〉 (Instruction)
imem := [inst1 , . . . , instn] (Program)
pc := 0 | 1 | · · · | n (Program Counter)
ibuf := ∅ | ibuf :: 〈inst〉 (Instruction Buffer)
SA := 〈imem, pc, stk〉 (STK State)
SC := 〈imem, pc, ibuf , stk〉 (BSTK State)

STK (A−→) where s = capacity of stk , t = |stk |

〈imem, pc, stk〉 : imem[pc] = 〈push v〉, t < s

〈imem, pc + 1 , v :: stk〉

〈imem, pc, stk〉 : imem[pc] = 〈push v〉, t = s

〈imem, pc + 1 , stk〉

〈imem, pc, []〉 : imem[pc] = 〈pop〉
〈imem, pc + 1 , []〉

〈imem, pc, v :: stk〉 : imem[pc] = 〈pop〉
〈imem, pc + 1 , stk〉

〈imem, pc, stk〉 : imem[pc] = 〈top〉
〈imem, pc + 1 , stk〉

〈imem, pc, stk〉 : imem[pc] = 〈nop〉
〈imem, pc + 1 , stk〉

BSTK (C−→) where k = capacity of ibuf , m = |ibuf |

〈imem, pc, ibuf , stk〉 : m < k , imem[pc] 6= top

〈imem, pc + 1 , ibuf :: imem[pc], stk〉

〈imem, pc, ibuf , stk〉 : imem[pc] = top,

〈ibuf , 0 , stk〉 A−−→m〈ibuf ,m, stk ′〉
〈imem, pc + 1 , [], stk ′〉

〈imem, pc, ibuf , stk〉 : m = k ,

〈ibuf , 0 , stk〉 A−−→m〈ibuf ,m, stk ′〉
〈imem, pc + 1 , [imem[pc]], stk ′〉

Figure 4.3: Syntax and Semantics of Stack and Buffered Stack Machine

71

JVM-inspired Stack Machine

input an integer and returns its absolute value.

From Definition 12, we must show as witness a binary relation that satisfies the

two conditions: (1) it agrees with the refinement map R and (2) it is a skipping

simulation on the disjoint union ofMC andMA.

Let B = {〈s,R.s〉 | s ∈ SC}. It is easy to see that the first condition above holds

for B. Next we have to choose a proof-method to effectively show that B is an SKS

relation. First observe that one step of BSTK corresponds to the largest number of

STK steps when the instruction buffer is full or the current instruction is top. In this

case, the BSTK machine executes all instructions in the instruction buffer and if the

current instruction is top it executes it as well. Hence, the largest number of steps

that BSTK can skip is bounded by k + 2, where k is the capacity of the instruction

buffer. Thus the conditions RWFSK2b (Definition 13) and WFSK2d (Definition 16),

that in general require reachability analysis, can be reduced to bounded reachability.

It is not enough to know an upper bound on skipping; the choice of proof method

depends on its value. If the upper bound is small, unrolling the transition relation

is a viable option and therefore it is feasible to use either RWFSK or WFSK to

show that B is an SKS relation. However, with increasing value of the upper bound,

unrolling quickly becomes impractical for mechanical reasoning. In such cases it is

preferable to use RLWFSK and LWFSK proof methods since they only require local

reasoning, i.e., reasoning about states and their successors and therefore amenable

for mechanical reasoning. In this case study, we illustrate the case when the upper

bound is small and choose RWFSK to show that BSTK is a skipping refinement of

STK.

We use our knowledge of the systems to simplify our proof obligations. First,

observe that STK and BSTK are deterministic machines, therefore for RWFSK2a we

only need to define rankt , from the set of states to non-negative integers. Next, as

72

Chapter 4. Case Studies

discussed above, skipping is bounded by k + 2, therefore we reduce the reachability

analysis in RWFSK2b to bounded reachability analysis. Thus, our proof obligations

are

For all s ∈ SC and s C−→ u:

(RWFSK2b) 〈R.s = R.u ∧ rankt(u) < rankt(s)〉 ∨

(RWFSK2d) 〈R.s A−→
<(k+2)

R.u〉 (4.2)

Note that since BSTK is a deterministic machine, u is a function of s, so we can

remove u from the above formula, if we wish. Also k is a (small) constant and we

can expand A−→
k+2

using only A−→.

We now experimentally evaluate how effective is the analysis with RWFSK is

when using existing verification tools. Our goals are to evaluate the specification

costs and determine the impact that the use of skipping refinement and the choice

of proof method has on verification tools in terms of capacity and verification times.

Towards this, we analyse the correctness of BSTK using ACL2s and state-of-the-art

model-checkers. For the later, we analyse finite-state models only.

We formalized the operational semantics of BSTK and STK in ACL2s using stan-

dard methods. The sizes of the imem and stk are unbounded. Once the definitions

were in place, proving skipping refinement with ACL2s was straightforward. We also

evaluated the amenability of RWFSK when using only symbolic simulation and no

additional lemmas in ACL2s1. We model BSTK with instruction buffer capacity of

2, 3, and 4. Note that the instruction memory (imem) and the stack (stk) compo-

nent of the state for BSTK and STK machines are still unbounded. The experiments

were run on a 2.2 GHz Intel Core i7 with 16 GB of memory. For the BSTK with
1By “additional lemma” we mean lemmas that are specific to the systems under consideration.

We still use several theorems in ACL2s, e.g., theorems introduced by defdata about the data
structures used to model the systems.

73

JVM-inspired Stack Machine

instruction buffer capacity of 2 instructions, it took ∼ 12 minutes to complete the

proof and for a BSTK with instruction buffer capacity of 3 instructions, it took ∼ 2

hours. For BSTK with instruction buffer capacity of 4 instructions the proof did not

finish in over 3 hours.

stk depth stk word ibuf imem inputs latches(io) gates(io) gates(sks)
8 8 8 16 227 552 24460 120598
8 8 16 64 707 1597 51019 307185
8 8 32 128 1347 3040 114380 859186
8 8 32 256 2627 5602 134112 897243
8 8 32 512 5186 10724 173557 935298
16 16 16 32 836 1981 255683 863083
16 16 16 64 1412 3135 264472 990759
16 16 32 128 2564 5730 539129 2080698
16 16 32 256 4868 10340 574221 2118753
16 16 32 512 9476 19558 644385 2152063

Table 4.1: Configurations of BSTK and STK machines and size of AIGs for input-output equiv-
alence(io) and skipping refinement(sks).

Next, we evaluate the amenability our approach when using off-the-shelf model-

checkers to analyse the correctness of finite state models of BSTK. Towards this we

create a benchmark suite parameterized by the size of imem, ibuf , and stk . We

compare the running times of model-checkers based on two notions of correctness:

skipping refinement and input-output equivalence. We choose input-output equiva-

lence since that is the most straightforward notion of correctness: if the specification

and the implementation systems state in equivalent initial states and are given the

same input then if both systems terminate, the final states of the two systems are

equivalent. Notice that skipping refinement is a stronger notion of correctness than

input-output equivalence, e.g., the later holds even if the concrete system diverges

and the abstract system does not diverge. In contrast, skipping refinement distin-

guishes systems that differ in their divergence behavior. Moreover, earlier we had

argued why existing notions of refinement cannot be used to analyse the correctness

74

Chapter 4. Case Studies

of BSTK.

We describe the transition systems of STK and BSTK, and encode the correctness

conditions based on input-output equivalence and RWFSK using the BAT specifica-

tion language and tool [46]. We extend the BAT back-end to compile these problems

to sequential AIG’s and use finite-state model-checkers to perform the verification.

Table 4.1 shows the size of the AIG’s generated in terms of number of state elements

and gates. In Figure 4.4, we plot the running times (in seconds) for four model-

checkers: SUPER_PROVE (SP), TIP, IIMC and BLIMC [2] on a machine with an

Intel Xeon X5677 with 16 cores running at 3.4GHz and 96GB main memory. We

chose SUPER_PROVE and IIMC as they are the top 2 model-checkers in the single

safety property track [2]. TIP and BLIMC are chosen to cover temporal decomposi-

tion and bounded model-checking based tools. The timeout limit for model-checker

runs is set to 900 seconds. While SUPER_PROVE and IIMC are multi-threaded,

BLIMC and TIP use only single core of the machine. The x-axis represents the run-

ning time of model-checkers using input-output equivalence and y-axis represents

the running time using skipping refinement. A point with x = 900 s indicates that

the model-checker timed out for input-output equivalence while y = 900 s indicates

that the model-checker timed out for skipping refinement. Results show that model-

checkers timeout for most of the configurations when using input-output equivalence

while all model-checkers except TIP can solve all the configurations using skipping

refinement. Notice that the number of latches for the skipping refinement tables are

0. We believe, based on our experience with these problems, that if we encoded the

problem as a sequential AIG, then performance would tend to improve. Given that

performance was already so much better than the performance on the input-output

equivalence problems, we did not try to further simplify the skipping proof (but no-

tice that we did use sequential AIGs for the input-output equivalence proofs because

75

Memory Controller

the combinatorial AIGs would have been too large due to unrolling).

1

10

100

1000

1 10 100 1000

Sk
ip
pi
ng

R
efi

ne
m
en
t
(s
ec
)

Input-output Equivalence (sec)

tip iimc blimc sp

Figure 4.4: Running time (log scale) of model-checkers for stack machine

4.3 Memory Controller

Modern microprocessors operate at a higher clock frequency than their main mem-

ories. Thus it is essential for a memory controller, the interface between the CPU

and main memory, to buffer requests and responses and synchronize communication

between the CPU and memory. Moreover, current memory controllers implement

optimizations to maximize available memory bandwidth utilization. In this case

study, we model such a memory controller, OptMEMC. OptMEMC fetches a mem-

ory request from location pt in a queue of CPU requests, reqs. It enqueues the

fetched request in the request buffer, rbuf and increments pt to point to the next

CPU request in reqs. If the fetched request is a read or the request buffer is full (the

capacity of rbuf is k, a fixed positive integer), then before enqueuing the request

into rbuf , OptMEMC first analyses the request buffer for consecutive write requests

to the same address in the memory (mem). If such a pair of writes exists in the

buffer, it marks the older write requests in the request buffer as redundant. Then it

76

Chapter 4. Case Studies

executes all the requests in the request buffer except the marked (redundant) ones in

a single step. Requests in the buffer are executed in the order they were enqueued.

To reason about the correctness of OptMEMC using refinement, we define a

simple, high-level specification system, MEMC, that serves as a specification. It

fetches memory requests from the CPU one at a time and immediately executes the

read or write request. The syntax and the semantics of MEMC and OPTMEMC

are given in Figure 4.5, using the conventions described in Section 4.1.

Like BSTK in Section 4.2, existing notions of refinement cannot be used to

directly use to prove the correctness of OptMEMC. This is because when the fetched

request is read or the request buffer is full, OptMEMC executes all requests in

the request buffer, excluding the redundant ones, in a single step. This neither

corresponds to a stuttering step not a single step of MEMC. Therefore, stuttering

refinement cannot be directly used to prove the correctness of BSTK. On the other

hand, skipping refinement directly accounts behaviors introduced when an optimized

implementation system runs faster than the specification system.

LetMA = 〈SA,
A−→, LA〉 andMC = 〈SC ,

C−→, LC〉 be transition systems for MEMC

and OptMEMC respectively. The set of states SA and SC and the transition relation
A−→ and C−→ are as described in Figure 4.5, and labeling function LA and LC are just

the identity functions. We show thatMC is a skipping refinement ofMA under the

refinement map R : SC → SA, where

R(〈〈reqs, pt , rbuf ,mem〉〉) = 〈〈reqs, abs(pt − n),mem〉〉

where n is the number of requests in rbuf and abs is a function that takes as

input an integer and returns its absolute value.

Like in Section 4.2, to show that MC is a skipping refinement map of MS , we

define a binary relation and show that it satisfies the conditions in Definition 12

77

Memory Controller

mem := [v1, . . . ,] (Memory)
req := 〈write addr v〉 | 〈read addr〉

| 〈refresh〉, addr < n (Request)
reqs := [req1 , . . .] (Requests)
rbuf := [req1 , . . .] (Request Buffer)
SA := 〈reqs, pt ,mem〉 (MEMC State)
SC := 〈〈reqs, pt , rbuf ,mem〉〉 (OptMEMC State)

MEMC (A−→)

〈reqs, pt ,mem〉 : reqs[pt] = 〈write addr v〉
〈reqs, pt + 1 ,mem[addr]← v〉

〈reqs, pt ,mem〉 : reqs[pt] = 〈read addr〉
〈reqs, pt + 1 ,mem〉

〈reqs, pt ,mem〉 : reqs[pt] = 〈refresh〉
〈reqs, pt + 1 ,mem〉

OptMEMC (C−→)
Let |rbuf | = j

〈reqs, pt , rbuf ,mem〉 : j < k , req 6= top

〈reqs, pt , rbuf :: reqs[pt],mem〉

〈reqs, pt , rbuf ,mem〉, reqs[pt] = 〈read addr〉 :
〈rbuf , 0 ,mem〉 A−−→ j 〈rbuf , j ,mem ′〉

〈reqs, pt ,nil ,mem ′〉

〈reqs, pt , rbuf ,mem〉 : j = k ,

〈rbuf , 0 ,mem〉 A−−→ j 〈rbuf , k ,mem ′〉
〈reqs, pt , [reqs[pt]],mem ′〉

Figure 4.5: Syntax and Semantics of MEMC and OptMEMC

78

Chapter 4. Case Studies

using RWFSK 13. In fact, since MEMC and OptMEMC are deterministic machines

and MEMC does not stutter, it is easy to see that we can simplify our proof obliga-

tion to Equation 4.2. We describe the transition systems of MEMC and OptMEMC

and the correctness conditions using BAT and compile the problem to a sequen-

tial AIG. Table 4.2 shows the size of the AIG’s generated in terms of the number

of state elements and gates. The running times for model checkers are shown in

Figure 4.6. While model-checkers timeout for many configurations (points with x

= 900s in Figure 4.6) when using input-output equivalence, all except TIP solve

all the configurations when using skipping refinement. Furthermore, the running

times with skipping refinement show improvement of several orders of magnitude.

Also, the performance of SUPER_PROVE when using skipping refinement is much

more robust with respect to the size of the system than when using input-output

equivalence.

msize mword rbuf reqs input latches(io) gates(io) gates(sks)
8 8 8 32 480 1082 26429 119075
8 8 8 64 896 1916 32817 117454
8 8 16 32 480 1187 48610 293098
8 8 16 64 896 2021 54998 302956
16 16 32 64 1664 4054 534746 2057352
16 16 32 128 3072 6872 556142 2097336
16 16 32 256 5888 12506 598914 2135409
16 16 32 512 11520 23772 684438 2173481

Table 4.2: Configurations of OPTMEMC and MEMC machines and size of AIGs for input-output
equivalence(io) and skipping refinement(sks).

4.4 Event Processing System

Asynchronous event-based programming is a widely accepted methodology to de-

sign responsive and efficient user interfaces (UI) [37, 9]. In this methodology, a

programmer designates the main UI thread that only performs short-running tasks

79

Event Processing System

1

10

100

1000

1 10 100 1000

Sk
ip
pi
ng

R
efi

ne
m
en
t
(s
ec
)

Input-output Equivalence (sec)

tip iimc blimc sp

Figure 4.6: Running time (log scale) of model-checkers for memory controller

in response to a user event, while more computationally demanding tasks are per-

formed asynchronously. The programming methodology is asynchronous in the sense

the tasks may be scheduled for execution at some time in the future. This is in con-

trast with a synchronous programming methodology where the task corresponding

to a user event must be executed immediately and the main UI thread block until

the task is completed. In the asynchronous programming methodology, the time at

which a task is scheduled to execute may depend on its priority and the computa-

tional resources available on the execution platform.

In this case study we study correctness of PEPS, a simple asynchronous event-

based processing system. PEPS uses a priority queue to find the next event to

execute and events interact with each other using a shared memory. The execution

of an event may result in adding to the scheduler a finite number of new events

scheduled for later execution as well as removing existing events from the scheduler.

We make no assumptions on the type of events and place no limits on the number

of events in the scheduler.

We first briefly describe the ACL2s constructs used in the formalization of the

80

Chapter 4. Case Studies

transition systems and the correctness condition. For a more detailed exposition

of the constructs we refer the reader to the tool documentation [27, 13]. We use

the Defdata framework [12] to specify the data definition. It maintains both a

predicative characterization and an enumerative characterization of the data type.

The later is particularly useful in counterexample generation. The framework also

generates a useful theory for reasoning about the data definitions and increases

the amount of automation in ACL2s. For example, it generates type predicate,

construction function, and accessor functions for the record data type and a suitable

theory to reason about it. We use defunc to introduce a function definition along

with its input-contract (pre-condition) and output-contract (post-condition). When

a function definition is admitted in ACL2s using defunc, it is guaranteed that it

terminates, that it satisfies its input-output contract, and that for every function call,

say f , inside the body of the function being defined, all the arguments of f satisfy

the input contracts of f . defunbc is a special case of defunc and is used to describe

functions that return boolean values. In our experience, the later was particularly

useful in automatically discharging type like proof obligations. ACL2 supports first-

order quantifiers, exists and forall, by way of the defun-sk construct. We use

defun-sk with exists construct to model the transition relation of AEPS. We use

encapsulate to introduce a new function symbol, its signature and a (consistent)

set of axioms about it.

We begin by defining the operational semantics of the AEPS, a simple abstract

event-processing system that serves as a specification for analysing the correctness

of PEPS (Section 2.1). An AEPS state is a three-tuple 〈tm, tevs, mem〉, where tm is a

natural number denoting current time, tevs is a set of timed-event pairs denoting the

scheduler, and mem is a collection of variable-integer pairs denoting the shared mem-

ory. We require that all events in tevs are scheduled to execute at a time ≥ tm. An

81

Event Processing System

(defdata time nat)

;; An event is a string (any type with a total ordering suffices)
(defdata event string)

;; A timed-event is a record consisting of a time and an event.
(defdata timed-event

(record (tm . time)
(ev . event)))

;; A set of timed-events
(defdata lo-te (listof timed-event))

;; A memory is a collection of a global variable (var) and integer pair
(defdata memory (alistof var integer))

(defdata aeps-state
(record (tm . time)

(tevs . lo-te)
(mem . memory)))

AEPS state, aeps-state, is described using the Defdata framework [12]. The frame-

work generates type predicates (aeps-statep), constructor function (aeps-state),

and accessor functions for state components (aeps-state-tm, aeps-state-tevs,

and aeps-state-mem).

We say two AEPS-states w and v are equivalent, aeps-state-equal, iff if they

are equal or their current time components are equal, and their scheduler components

and their memory components are set equivalent.

The transition relation of AEPS, aeps-transp, is defined as follows: if no event

is scheduled to be executed at the current time tm, then tm is incremented by 1. Oth-

erwise, AEPS nondeterministically picks an event in the scheduler that is scheduled

to execute at tm and executes it. The execution of an event may remove existing

timed-events (remove-tevs) in the scheduler and add a finite number of new timed-

events (append) in the scheduler. We require that any new event added to scheduler

82

Chapter 4. Case Studies

(defunbc aeps-state-equal (s w)
:input-contract t
(or (equal s w)

(and (aeps-statep s)
(aeps-statep w)
(equal (aeps-state-tm s)

(aeps-state-tm w))
(set-equiv (aeps-state-mem s)

(aeps-state-mem w))
(set-equiv (aeps-state-tevs s)
(aeps-state-tevs w)))))

;; aeps-state-equal is an equivalence relation
(defequiv aeps-state-equal)

must be scheduled to execute at time > tm. Execution of an event may also update

the memory mem. Finally, execution involves removing the picked event from otevs.

We use defun-sk with exists quantifier to model the nondeterminism in AEPS.

The function events-at-tm returns the set of all events in the scheduler that are

scheduled to execution at time tm. The function remove-tev removes all occurrences

of a timed-event tev from the scheduler. remove-tevs removes all occurrences of

timed-events in a list of timed-events from the scheduler. step-events-add is an

uninterpreted function constrained to return the set of timed-events to add as a result

of an event execution. We use encapsulate to introduce the function signature and

then constrain it to return a set of timed-events that are scheduled for later execution.

Moreover, we require that when given set-equivalent memories mem and mem-equiv,

step-events-add returns the same set of timed-events for an event at a given time.

Similarly, we introduce uninterpreted functions step-events-rm that return the

set of timed-events to remove from the scheduler and step-memory that returns the

updated memory.

We next describe the transition system of PEPS. A PEPS state, peps-state, is

83

Event Processing System

(defunbc aeps-transp (w v)
"transition relation of AEPS"
:input-contract (and (aeps-statep w) (aeps-statep v))
(let ((w-tm (aeps-state-tm w))

(w-tevs (aeps-state-tevs w))
(w-mem (aeps-state-mem w)))

(if (not (events-at-tm w-tevs w-tm))
(aeps-state-equal v (aeps-state (1+ w-tm) w-tevs w-mem))

(aeps-ev-transp w v))))

(defun-sk aeps-ev-transp (w v)
(exists tev

(let ((tm (aeps-state-tm w))
(tevs (aeps-state-tevs w))
(mem (aeps-state-mem w)))

(and (timed-eventp tev)
(equal (timed-event-tm tev) tm)
(member-equal tev tevs)
(let* ((ev (timed-event-ev tev))

(add-tevs (step-events-add ev tm mem))
(rm-tevs (step-events-rm ev tm mem))
(new-mem (step-memory ev tm mem))
(new-tevs (remove-tevs rm-tevs (remove-tev tev tevs)))
(new-tevs (append new-tevs add-tevs)))

(aeps-state-equal v (aeps-state tm new-tevs new-mem)))))))

a three-tuple 〈tm, otevs, mem〉 where tm is a natural number denoting current time,

otevs is a set of timed-event pairs denoting the scheduler that is ordered with respect

to a total order te-< on timed-event pairs, and mem is a collection of variable-integer

pairs denoting the shared memory. We remark that the particular choice of the total

order on timed-event pairs is irrelevant to the proof of correctness of PEPS.

The transition function of PEPS is defined as follows: if there are no events in

otevs, then PEPS just increments the current time by 1. Else it picks the first timed-

event pair, say 〈e, t〉 in otevs, executes it, and updates the time to t. The execution of

an event may result in adding new timed-events to the scheduler (step-events-add),

removing existing timed-events from the scheduler (step-events-rm), and update

84

Chapter 4. Case Studies

(encapsulate
(((step-events-add * * *) => *)
((step-events-rm * * *) => *)
((step-memory * * *) => *))

; constraints on step-events-add
(defthm step-events-add-contract

(implies (and (eventp ev)
(timep tm)
(memoryp mem))

(and (lo-tep (step-events-add ev tm mem))
(valid-lo-tevs (step-events-add ev tm mem)

(1+ tm)))))

(defthmd step-events-add-congruence
(implies (and (memoryp mem)

(memoryp mem-equiv)
(eventp ev)
(timep tm)
(set-equiv mem mem-equiv))

(set-equiv (step-events-add ev tm mem)
(step-events-add ev tm mem-equiv))))

...
)

to the memory (step-memory). Finally, the executed timed-event is removed from

the scheduler. Labeling function is just the identity function.

We show that PEPS refines AEPS using a stepwise refinement approach: first we

define an intermediate system HPEPS obtained by augmenting PEPS with history

information and show that PEPS is a skipping refinement of HPEPS. Second, we

show that HPEPS is a skipping refinement of AEPS. Finally, we appeal to The-

orem 11 to infer that PEPS refines AEPS. Alternatively, we could have directly

proved that PEPS is a skipping refinement of AEPS. This is possible because the

proof-methods (Section 2.4) to reason about SKS are complete, i.e., if PEPS is a

skipping refinement of AEPS under a refinement map then we can always use any

85

Event Processing System

(defdata peps-state
(record (tm . time)

(otevs . o-lo-te)
(mem . memory)))

(defunbc o-lo-tep (l)
"An OptAEPS schedule recognizer"
:input-contract t
(and (lo-tep l)

(ordered-lo-tep l)))

(defunbc ordered-lo-tep (l)
"Check if a list of timed-events, l, is ordered"
:input-contract (lo-tep l)
(cond ((endp l) t)

((endp (cdr l)) t)
(t (and (te-< (car l) (second l))

(ordered-lo-tep (cdr l))))))

(defunbc peps-state-equal (s w)
:input-contract t
(or (equal s w)

(and (peps-statep s)
(peps-statep w)
(equal (peps-state-tm s)

(peps-state-tm w))
(equal (peps-state-otevs s)

(peps-state-otevs w))
(set-equiv (peps-state-mem s)

(peps-state-mem w)))))

(defequiv peps-state-equal)

of the four proof-methods to locally reason about it. However, we will see later that

the history information in HPEPS is helpful in defining the constructs required to

prove skipping refinement and enables us to separate some of the concerns in the

proof. Moreover, we will see that it is relatively easy to prove that PEPS refines

HPEPS.

86

Chapter 4. Case Studies

(defunc peps-transf (s)
"transition function for PEPS"
:input-contract (peps-statep s)
:output-contract (peps-statep (peps-transf s))
(let ((tm (peps-state-tm s))

(otevs (peps-state-otevs s))
(mem (peps-state-mem s)))

(if (endp otevs)
(peps-state (1+ tm) otevs mem)

(let* ((tev (car otevs))
(ev (timed-event-ev tev))
(et (timed-event-tm tev))
(add-tevs (step-events-add ev et mem))
(rm-tevs (step-events-rm ev et mem))
(new-mem (step-memory ev et mem))
(new-otevs (cdr otevs))
(new-otevs (remove-tevs rm-tevs new-otevs))
(new-otevs (insert-otevs add-tevs new-otevs))
(new-tm et))

(peps-state new-tm new-otevs new-mem)))))

An HPEPS state, hpeps-state, is a four-tuple 〈tm, otevs,mem, h〉, where tm,

otevs, mem are respectively the current time, an ordered set of timed events and

a collection of variable-integer pairs, and h is the history information. The history

information h consists of a boolean variable valid, time tm, and an ordered set

of timed-event pairs otevs and the memory mem. Informally, h records the state

preceding the current state. Finally, labeling function is just the identity function.

(defdata hpeps-state
(record (tm . time)

(otevs . o-lo-te)
(mem . memory)
(h . history)))

(defdata history
(record (valid . boolean)

(tm . time)
(otevs . o-lo-te)
(mem . memory)))

87

Event Processing System

The transition function HPEPS is same as the transition function peps-transf

of PEPS except that HPEPS also records the history in h.

(defunc hpeps-transf (s)
"transition function for HPEPS"
:input-contract (hpeps-statep s)
:output-contract (hpeps-statep (hpeps-transf s))
(let* ((tm (hpeps-state-tm s))

(otevs (hpeps-state-otevs s))
(mem (hpeps-state-mem s))
(hist (history t tm otevs mem)))

(if (endp otevs)
(hpeps-state (1+ tm) otevs mem hist)

(let* ((tev (car otevs))
(ev (timed-event-ev tev))
(et (timed-event-tm tev))
(add-tevs (step-events-add ev et mem))
(rm-tevs (step-events-rm ev et mem))
(new-mem (step-memory ev et mem))
(new-otevs (cdr otevs))
(new-otevs (remove-tevs rm-tevs new-otevs))
(new-otevs (insert-otevs add-tevs new-otevs))
(new-tm (timed-event-tm tev)))

(hpeps-state new-tm new-otevs new-mem hist)))))

We show that PEPS is a skipping refinement of HPEPS under a refinement

map P, a function that maps a PEPS state to an HPEPS state. Intuitively, this

implies that augmenting PEPS with the history information does not change its

observable behavior. From Definition 12, we show as witness a binary relation A

that satisfies two conditions: first it agrees with the the refinement map P and

second that A is an SKS on the disjoint union of PEPS and HPEPS. Let A =

{〈s, P.s | s is a PEPS state〉}. It is straightforward to show that the A satisfies the

first condition. Next, we use RWFSK to show that A is an SKS relation. We choose

RWFSK over the other three proof-methods (Section 2.4) based on the observation

that PEPS does not skip with respect to HPEPS. Hence, we avoid defining additional

88

Chapter 4. Case Studies

constructs that account for skipping in the other three proof methods. We can

further simplify RWFSK2 based on following two observations: (1) PEPS does not

stutter; therefore we can ignore RWFSK2a, and (2) HPEPS is a deterministic system;

therefore we can drop the existential quantifier in RWFSK2b.

(defunc P (s)
"A refinement map from an PEPS state to a HPEPS state"
:input-contract (peps-statep s)
:output-contract (hpeps-statep (P s))
(let ((tm (peps-state-tm s))

(otevs (peps-state-otevs s))
(mem (peps-state-mem s)))

(hpeps-state tm otevs mem (history nil 0 nil nil))))

(defthm A-is-a-simulation
(implies (A s w)

(A (peps-transf s)
(hpeps-transf w))))

Next we show that HPEPS is a skipping refinement of AEPS under the refinement

map R, a function that simply projects an HPEPS state to an AEPS state.

(defunc R (s)
"A refinement map from an HPEPS state to a PEPS state"
:input-contract (hpeps-statep s)
:output-contract (aeps-statep (R s))
(aeps-state (hpeps-state-tm s) (hpeps-state-otevs s) (hpeps-state-mem s)))

To show that HPEPS is a skipping refinement of AEPS under the refinement map

R, from Definition 12, we must show as witness a binary relation B that satisfies two

conditions: first, it agrees with the the refinement map R and second, B is an SKS on

the disjoint union of HPEPS and AEPS. Let B = {(s,R.s) : s is an HPEPS state}.

It is straightforward to show that B satisfies the first condition. To show that B

is an SKS on the disjoint union of HPEPS and AEPS, we have a choice of four

proof-methods (Section 2.4). Which is an appropriate one to analyse correctness of

89

Event Processing System

HPEPS? Towards this observe that when no events are scheduled to execute at the

current time tm, HPEPS skips over states of AEPS: while AEPS increments tm by

1, HPEPS updates tm to the earliest time in future when an event is scheduled for

execution. Moreover, we cannot a priori determine an upper bound on skipping. For

example, the execution of an event may add a new event that is scheduled to execute

at an arbitrary time in the future. Without an upper bound on skipping, conditions

RWFSK2b (Definition 13) andWFSK2d (Definition 16) requires reachability analysis

which is not amenable for automated reasoning. In contrast, RLWFSK and LWFSK

require only local reasoning. Finally, AEPS does not stutter; hence the distinction

between stuttering and skipping provided by LWFSK is not helpful. Therefore, we

choose RLWFSK to show that B is an SKS relation on the disjoint union of PEPS

and AEPS.

RLWFSK1 holds trivially. To prove that RLWFSK2 holds we define a binary

relation O and a rank function rankls and show that they satisfy the two universally

quantified formulas in RLWFSK2. Moreover, since HPEPS does not stutter we

ignore RLWFSK2a, and that is why we do not define rankt . Finally, our proof

obligations are as follows:

Note that the proof obligations involves only states and their successors, i.e.,

the reasoning is local. This is in contrast to reasoning about SKS using WFSK and

RWFSK, which requires reachability analysis due to unbounded skipping exhibited

by PEPS. Informally, we define O as follows: a HPEPS state x, and an AEPS state

y are related by O iff one of the following two conditions hold: (1) x and y are

related by B, or (2) a predecessor of x, obtained from the history h in x, has the

current time component less than or equal to the current time component in y,

has a non-empty scheduler that is set-equivalent to the scheduler in y, and has a

memory that is set-equivalent to the memory in y. The function rankls is defined

90

Chapter 4. Case Studies

(defthm B-is-an-RLWFSK
(implies (B s w)

(rlwfsk2b (hpeps-transf s) w)))

(defun-sk rlwfsk2b (u w)
(exists v

(and (aeps-transp w v)
(O u v))))

(defthm O-is-good
(implies (and (O x y)

(not (B x y)))
(rlwfsk2f x y)))

(defun-sk rlwfsk2f (x y)
(exists z

(and (aeps-transp y z)
(O x z)
(< (rankls z x) (rankls y x)))))

as follows: given a HPEPS state x, and an AEPS state y, rankls is equal to the

(absolute) difference between time in x and time in y plus the number of events in

the scheduler in y scheduled to execute at t in x. The witness states in the above

proof obligations were easy to determine based on whether or not there is an event

scheduled for execution at the current time.

After the data definitions and function definitions modeling the transition sys-

tems for the three systems were in place, additional lemmas were proved to discharge

the above proof obligations. They can be roughly categorized into three categories.

First, the set of lemmas to prove the input-output contracts of the functions. Second,

a set of lemmas to show that operations (remove-tevs, append, insert-otevs) on

the schedulers in AEPS, PEPS, and HPEPS preserve the invariant that all timed-

events are scheduled to execute at a time greater or equal to the current time.

Third, a set of lemmas to show that removing two equivalent sets of timed-events

from a scheduler results in equivalent schedulers. Similarly, a set of lemmas to show

91

Conclusion

that inserting two equivalent sets of timed-events to a scheduler results in equivalent

schedulers. Recall that two AEPS schedulers are equivalent if they are set equivalent

and two schedulers in PEPS and HPEPS are equivalent if they are equal. Finally,

a set of lemmas were proven to show that two ordered sets are equivalent iff they

are set equal. These lemmas play an important role in relating a state in AEPS to a

state in HPEPS and therefore proving that B is an SKS relation. Observe that the

above lemmas establish a relationship between data structures in the implementa-

tion system and the specification system. The behavioral difference between the two

systems is accounted for by the notion of skipping refinement. This separation sig-

nificantly eases understanding as well as mechanical reasoning about the correctness

of reactive systems. In total, we introduced 9 data definitions and 28 functions to

model the three systems. We have 8 top-level proof obligations and 144 supporting

lemmas. The entire proof takes about 11 minutes on a machine with 2.2 GHz Intel

Core i7 with 16GB main memory. Note that the supporting lemmas are in addition

to the set of lemmas automatically generated by the Defdata framework and those

included in ACL2s for reasoning about primitive data types. The models and the

proof script are publicly available [1].

Finally, we remark that PEPS can be seen as an instance of MPEPS system

introduced in 2.3: consider an implementation of the priority queue in MPEPS that

deterministically selects one event from the set of events scheduled to execute at the

current time. Therefore, PEPS is a skipping refinement of AEPS can also be inferred

from the proof that MPEPS is a skipping refinement of AEPS.

4.5 Conclusion

In this chapter, we experimentally validated the applicability of skipping refinement

and associated proof-methods to analyse the correctness of four optimized reactive

92

Chapter 4. Case Studies

systems. We highlighted several considerations in selecting an appropriate notion

of refinement and a proof-method to analyse it. We show that skipping refinement

enables us to directly reason about the correctness of such optimized reactive sys-

tems and is amenable for reasoning using both deductive and automated verification

methodologies. In particular, we showed that without using skipping refinement,

proving the correctness of relatively simple configurations is beyond the current

model-checking technology. But when using skipping refinement and the associated

local proof-methods, existing model-checkers scale to significantly larger configura-

tions.

93

Conclusion

94

Chapter 5

Related Work

5.1 Notions of equivalences and refinement

Pnueli [52] first proposed the use of temporal logics to specify and reason about the

correctness of reactive systems. This approach has stood the test of time and auto-

mated verification methodology based on model checking have been very successful

in analyzing the correctness of several reactive systems. The correctness of a system

is expressed as a set of formulas in a temporal logic and model checking algorithms

determine if the system satisfies the formulas. An alternative approach based on

behavioral equivalences was first studied by Milner. He proposed the notion of sim-

ulation to compare (possibly) non-terminating and deterministic systems [47]. It was

used as the basis for a method to prove the correctness of a concrete data represen-

tation with respect to it abstract version [24]. However, concurrent systems cannot

be analyzed using this notion. This is because when comparing concurrent systems,

we must also account for nondeterminism introduced as a result of interleaving of

its intermediate atomic operations. Therefore, a concurrent system, terminating

or non-terminating, is often modeled as a reactive system that maintains an ongo-

95

Notions of equivalences and refinement

ing interaction with its environment. With this in mind, Hennesey and Milner [23]

proposed the notion of strong bisimulation to compare the semantics of concurrent

systems. The notion strongly preserves the branching structure, including the non-

determinism exhibited by them in their intermediate states. Strong bisimulation is

an appropriate notion when all actions of a concurrent system are observable. The

definition of strong bisimulation also suggests an effective local proof-method. Two

states of a system are bisimilar if there exists a bisimulation relation between them.

David Park [51] studied bisimilarity using theory of fixpoints. He showed that bisim-

ilarity can be characterized as the greatest fixpoint of a monotone function on the

complete lattice of binary relations on states. Note that strong bisimulation implies

trace equivalence. Since the former only requires local reasoning, it is often used to

prove trace equivalence.

Strong bisimulation is often too strong a notion of correctness when relating

systems with unobservable events. Weak bisimulation, proposed in [23], abstracts

over unobservable events i.e., it identifies systems that differ only in unobservable

events. It is strictly weaker than strong bisimulation. Both strong and weak bisim-

ulation have favorable algebraic properties; they are closed under arbitrary union

and relational composition and there exists the largest strong (weak) bisimulation

relation. However weak bisimulation, unlike strong bisimulation, does not preserve

the branching structure in presence of τ -steps. That is, it does not distinguish two

systems that may differ in potential nondeterminism of intermediate states reachable

from related states through unobservable steps.

To remedy this, branching bisimulation was presented in [59]. Like weak bisim-

ulation, it abstracts over unobservable steps of a system but preserves its branching

structure. Branching bisimulation is also closed under arbitrary union. However, the

relational composition of two branching bisimulations is not a branching bisimula-

96

Chapter 5. Related Work

tion [7]. Nevertheless, the largest branching bisimulation relation, hence branching

bisimilarity, is an equivalence relation [16, 7]. Branching bisimulation can be also

characterized as a maximal fixpoint of a monotonic function on the complete lattice

of binary relations on states.

When considering unobservable τ -steps, an important factor to determine an

appropriate notion of correctness is its sensitivity to divergent behaviors: does the

notion differentiate between a system with an infinite sequence of unobservable events

from one that does not? Branching bisimulation abstracts away divergent behaviors

and identifies a system with divergent behaviors to a system that does not. Diver-

gence sensitive branching bisimulation [16] and branching bisimulation with explicit

divergence [59] are finer than branching bisimulation and distinguish a system with

divergent behaviors from one that does not. It is also closed under arbitrary union.

In [38, 18], authors also present a fixpoint characterization of branching bisimulation

with explicit divergence.

Stuttering bisimulation [14] also abstracts over unobservable steps. It differs from

weak and branching bisimulation: it is defined on a state-labeled transition system

and only identifies systems that exhibit finite stuttering. Furthermore, stuttering

bisimulation is closed under arbitrary union and relational composition. In [16] it

was shown that two states that are divergence sensitive branching bisimilar satisfy

the same class of CTL*\X properties1. This in conjunction with the result that

two states that are stuttering equivalent2 also satisfy the same class of CTL*\X

properties [14], indicates a strong relationship between divergence sensitive branching

1Notice that semantics of CTL*\X are defined on a state-labeled transition system while diver-
gence sensitive branching bisimilarity is defined on an edge-labeled transition system. Therefore
they cannot be compared directly. In [16], authors define a transformation from an edge-labeled
transition system to state-labeled transition system and use it show that two states that are diver-
gence sensitive branching bisimilar satisfy the same class of CTL*\X properties

2Two states, say s, w are stuttering equivalent if there exists a stuttering bisimulation relation
B such that sBw.

97

Notions of equivalences and refinement

bisimulation and stuttering equivalence [16].

The divergence sensitive variants of branching bisimulation require that for any

two related states, say s and w, there is an infinite τ -run starting from s iff there

is an infinite τ -run starting at w. Such reasoning about infinite τ -runs is often dif-

ficult to automate. In [38, 18], authors propose inductive branching bisimulation

(IBB), an alternative characterization of branching bisimulation with explicit diver-

gence that is expected to be useful for verification. IBB forbids infinite stuttering by

demanding that the related states also satisfy an inductive τ -matching closure prop-

erty. However, it still requires reasoning about unbounded τ -runs, and therefore is

not amenable to verification using automated reasoning tools. Well-founded bisimu-

lation (WFB), an alternative characterization of stuttering bisimulation, is proposed

in [49, 42]. The characterization is based on a rank function whose codomain is a

well-founded set. In contrast to IBB, WFB requires only local reasoning about states

and their successors. This is highly desirable when mechanically reasoning about re-

active systems; it significantly reduces proof effort and makes it more amenable to

automated reasoning tools. In [42], the author also introduce the notion of stuttering

simulation as well as a sound and complete proof method to analyze it. Stuttering

simulation is closed under arbitrary union and relational composition. Skipping

simulation (Chapter 2) is a weaker notion of correctness than stuttering simulation.

Skipping simulation is the first (as far as we know) behavioral notion of correctness

that directly supports reasoning about optimized reactive systems that may execute

faster than their specifications. Skipping simulation is also closed under arbitrary

union and relational composition. The latter property implies that skipping simu-

lation supports modular reasoning using a stepwise refinement approach. We also

develop sound and complete proof-methods that require only local reasoning, and

therefore more amenable for automated reasoning. Reconciling simulation is a notion

98

Chapter 5. Related Work

weaker than skipping simulation and further extends the domain of applicability of

refinement-based approach to reasoning about the correctness of a larger class of re-

active systems. Reconcile simulation also admits sound and complete proof-methods

that require only local reasoning about states and their successors. Like stuttering

and skipping simulation, reconcile simulation is closed under arbitrary union. How-

ever, it is not closed under relational composition.

We finally note that characterization of skipping and reconciling simulation (like

stuttering simulation and bisimulation) in terms of matching fullpaths [49, 42], are

preferable as statements of correctness. It is simpler to understand and disentangles

a statement of correctness from the intricacies associated with mechanical reasoning.

This is highly desirable since the notion of correctness is part of the trust base in a

verification methodology.

Local reasoning and refinement maps Refinement map, a function from a state

of the concrete system to a state of the abstract system, is a key ingredient in a

refinement-based verification methodology. The refinement map along with the no-

tion of refinement and the abstract system constitute the trust base. A fundamental

question about this methodology is the following: given a notion of correctness and

a refinement map, if a concrete system refines an abstract system, under what con-

ditions can we prove it using only local reasoning, i.e., reasoning about states and

their successors? This is an interesting question because it elucidates the domain of

applicability of the notion of refinement to effectively analyze correctness of reactive

systems. Abadi and Lamport [34] studied this problem in the linear-time framework

where a behavior of a system is described as a sequence (possibly infinite) of states

and refines is defined as the trace containment upto stuttering. They showed that if

systems under consideration are from a restricted class (see their paper for details),

then one can add appropriate history and prophecy variables to the concrete system,

99

Notions of equivalences and refinement

define an appropriate projection function from a state of the augmented C to a state

of A and reduce reasoning about infinite behaviors to reasoning only about single

state transitions. Lynch [39] also studied several notions of correctness like forward

simulation, backward simulation, and under what restrictions on the types of systems

does trace inclusion can be proved using only local reasoning. Manolios [41, 42] stud-

ied the problem in the branching-time framework where the behavior of a system is

defined as a computation tree. It was shown (Theorem 1) given any refinement map,

say r, if a concrete system is a stuttering refinement of an abstract system under r,

one can always prove it using only local reasoning. We also developed the theory

of skipping refinement and reconciling refinement in the branching-time framework

From the soundness and completeness results (Theorem 22 in Chapter 2 and The-

orem 36 in Chapter 3), we infer that one can always reason locally about skipping

refinement and reconciling refinement. This is analogous to the result for stuttering

refinement. It differs from the result of Abadi and Lamport in that our results hold

without any restrictions on the types of systems and without the need of augmenting

the concrete system with history or prophecy variables. Moreover, the result holds

even for systems with branching factor (nondeterminism) of arbitrary cardinality.

Also, notice that we place no restriction on the refinement map; it can be an arbi-

trary function from states of the concrete system to a state of the abstract system.

This flexibility in the choice of refinement map has been fruitfully exploited in the

past to design efficient refinement-based verification methodology [43]. However, re-

call that refinement map forms part of the trust base and one must be prudent in its

choice; by choosing a complicated refinement map, one can bypass the verification

problem. We refer the reader to [41] for a more in-depth and insightful analysis of

the differences between notions of correctness based on linear-time framework and

branching-time framework.

100

Chapter 5. Related Work

5.2 Applications

5.2.1 Processor Verification

Several variants of correctness for verification of superscalar processors are proposed

in the literature [3]. These variants can be broadly classified on the basis of whether

(1) they support deterministic or nondeterministic abstract systems (2) they support

deterministic or nondeterministic concrete systems, and (3) the kinds of refinement

map allowed by the notion. In contrast, the theory of stuttering refinement [40],

skipping refinement and reconciling refinement provides a general framework for

both deterministic and nondeterministic systems and any choice of a refinement

map; in all cases one proves the same theorem. We believe that a uniform notion

of correctness significantly ease the verification effort and increases the trust in the

verification methodology.

5.2.2 Software

The Common Criteria [11] are a standard for software verification and is used, among

others, by several government agencies to specify software assurance requirements.

It consists of seven levels of assurance, and details of what exactly is being certi-

fied, and for which application area. The highest Common Criteria evaluation level

for a software artifact mandates a formal specification of requirements, its functional

specification, and the high-level design. The low-level design and the correspondence

between low-level design and the concrete system can be done informally. To com-

pletely analyze a software artifact formally, one must establish a formal correspon-

dence between the low-level design and the concrete system in a way that assurances

established at the higher level hold for the concrete system as well. Refinement-based

approaches have been successful in the past to achieve this goal for several realis-

101

Applications

tic software artifacts [60, 8, 29]. Our work on skipping refinement and reconciling

refinement extends the domain of the applicability of refinement-based approach to

formally verify a larger class of reactive systems.

Compiler correctness In [44], it was shown how to prove the correctness of assembly

programs running on a pipelined machine by decomposing such proofs in two parts.

First, the assembly code is proven correct when running on an idealized processor

that directly implements the instruction set architecture. Second, the pipelined

machine is proven to be a WEB-refinement of the abstract machine. However, it

was noted in [45] that one cannot prove WEB-refinement for pipelined machines

that can retire multiple instructions in a single cycle (e.g., superscalar processors);

infinite executions of such a pipelined machine and its ISA will not match.

Modern compilers are highly complex software systems and among other things,

an appropriate notion of correctness and the efficiency of associated proof methods

play an important role in developing a successful verification methodology for them.

There is a large body of work in the area of compiler verification [15, 36, 56]. What is

different about verification of a compiler is that it requires us to prove full functional

correctness: given a source program, the observable behaviors of the target program

generated by the compiler must be a subset of observable behaviors of the source

program.

Several back-end compiler transformations are proven correct in Compcert [36].

The overall proof strategy is to establish a forward simulation between the source

and the target program. Since the semantics of the target program is deterministic,

forward simulation implies trace inclusion, i.e., behaviors of target program are a

subset of behaviors of the source program.

Translation validation [54] is an alternative approach to verify the correctness of

compiler transformations. In this approach, one constructs a validation tool, which

102

Chapter 5. Related Work

after every run of the compiler formally checks that the target program produced is

a correct translation of the source program. However, notice that the assurance pro-

vided by the approach is only applicable to the particular source and target program

pair. Nevertheless, this approach is especially attractive when formally verification of

a full-fledged optimizing compiler is not feasible. The work on translation validation

is restricted to programs which generate deterministic transition systems [6].

In [50], authors use an approach, similar to translation validation, to analyze

correctness of several compiler transformations. An optimization procedure is aug-

mented with an auxiliary witness generator. For every run of the compiler trans-

formation, the generator first constructs a binary relation, called witness relation,

between states of the source and the target program generated by the transforma-

tion. Then, a validation tool checks if the relation meets the conditions imposed

by stuttering refinement. The key difference between this approach and general

translation validation approach is that the former assumes that the analysis phase

of an optimization is visible to the witness generator; hence, it can make use of

the auxiliary invariants derived during the analysis in constructing an appropriate

witness relation. Moreover, in contrast to simulation refinement that is commonly

used in previous work on translation validation, authors use stuttering refinement

as a notion of correctness. Stuttering refinement, unlike simulation refinement, is

complete for the case when the target program produced by the compiler is shorter

than the source program. However, stuttering refinement is only applicable if the

instructions replaced in the source program do not change the observable component

of state. Consider the control flow graph compression transformation in the paper:

the witness relation states that a state t in the target program and a state s in

the source program are related if s and t agree on all variables except the program

counter and either the program counter at s and t are equal or the program counter

103

Applications

of s lies on the linear chain of skip statements starting from the program counter

of t. Notice that the eliminated statements are skip statement – a statement that

does not modify the value of any other variable. Now consider the following source

program: x = x+ 3;x = x+ 5 and an optimizing transformation that produces the

target program x = x + 8. The target program is shorter than the source program

but stuttering refinement cannot be used to analyze correctness of this transforma-

tion because both statements in the source program change observable component of

the state. Skipping refinement is an appropriate notion of correctness for reasoning

about such transformations. In [25], we showed that a vectorizing transformation

that replaces a sequence of scalar instructions with a SIMD instruction can be ana-

lyzed using skipping refinement.

Remark 2. Note that externally visible events in Compcert (and CompcertTSO [55])

are a procedure call and return and OS I/O statements like printf. The steps

x = x + 3;x = x + 5 in the source program and the step x = x + 8 in the tar-

get program encapsulated between a procedure call and its return, are considered

internal (unobservable) actions. Therefore such transformations can still be verified

using forward simulation in Compcert. Similarly, in CompcertTSO, an optimization

that eliminates a fence instruction induces additional nondeterminism since memory

write operations in the store buffer can be unbuffered at any point in the time until

the next fence instruction. However, unbuffering a memory write operations from a

store buffer is not an observable event. Hence this optimization can also be analyzed

with backward simulation.

Operating system kernels An operating system is at the core of several computer

systems. There are several projects targeting verification of operating systems. We

review two such projects, seL4 [30, 29] and Certikos [20, 21], from the viewpoint of

the notion of correctness used and the associated proof method, and refer the reader

104

Chapter 5. Related Work

to [28] for a more comprehensive survey.

seL4 is a high-performance microkernel written in C. The functional correctness

of seL4 is established by proving that it refines an abstract specification of the mi-

crokernel written in Isabelle/HOL, where the notion of refinement is based on data

refinement [17]. This is achieved in two steps: first, an intermediate specification is

obtained by (automatically) translating a prototype implementation of microkernel

in (a subset of) Haskel to Isabelle/HOL. It is shown that the intermediate specifica-

tion refines the abstract specification. Second, the C implementation is parsed into

Isabelle/HOL and is shown to refine the intermediate specification. The transitivity

property of data-refinement implies that the C implementation refines the abstract

specification. The proof method used to show data refinement is based on forward

simulation [17] which requires matching a step in the concrete system to a step in

the abstract system. Use of this proof method dictates that the atomicity of a step

at all levels of abstraction must be same. This is undesirable; since a lower-level

implementation often describes the computation in more detail and hence in com-

parison to a high-level abstract specification take more steps to perform the same

task.

Certikos [20, 21] is a formally verified OS kernel. The verification methodology

takes advantage of the layered architecture design of an OS kernel. Let M be an

implementation built over a layer interface Lb, let Lt be the layer interface of M

and P be a client program running on Lt. Then M is analogous to a program

transformer, that transforms a program P running on Lt to M(P) running on Lb.

With this viewpoint, the correctness of an implementation M is stated as follows:

behavior ofM(P) running on top of Lt refines that of P running on top of Lb. Like

Compcert, the notion of correctness is based on trace inclusion and the proof method

used is based on forward simulation [39]. However, notice that forward simulation

105

Applications

does not preserve liveness properties and preserving such properties was one of the

motivation to use deep specification over shallow specification (using Hoare triples).

106

Conclusions and Future Work

In this dissertation, we showed that refinement-based methodology can be used to

effectively analyze correctness of optimized reactive systems. We introduced two new

notions of correctness, skipping simulation and reconciling simulation and developed

a theory of refinement based on them. We studied their algebraic properties and

developed several sound and complete proof-methods that can be used to effectively

reason about them. The new notions of refinement and associated proof-methods

significantly extend the domain of applicability of the refinement-based approach

to a large class of optimized reactive systems. Our work can be extended across

multiple dimensions.

A logical characterization of SKS and RES An alternative approach to specify

the correctness of reactive systems is based on temporal and modal logics such as

Mu-calculus, LTL, and CTL∗ [52, 19]. In this approach, the correctness of a reactive

system is specified using a set of temporal logic properties: a reactive system is cor-

rect if its computations satisfy the set of formulas. It is natural to ask the following

question: what properties are preserved by a behavioral notion of correctness. For

example, it was shown that stuttering bisimulation preserves CTL∗\X in [10] and

stuttering simulation preserves ACTL∗\X [41]. A similar logical characterization of

SKS and RES will shed more light on the relationship between the two systems that

107

are related by a new notion.

A spectrum of notions of correctness LetM = 〈S,−→, L〉 be a transition system,

σ and δ be fullpaths in M and B ⊆ S × S. Notions of matching studied in the

dissertation (Definition 4, Definition 10, Definition 19) partition σ and δ in finite

non-empty segments but differ in the size of the partitions and the relationship

between states in a segment in σ and states in the corresponding segment in δ.

The difference can be captured using the following three parameters: (1) number

of states in a segment: all partitions in a fullpath (σ or δ) are of length 1 or ≥ 1;

(2) labeling of states in a segment: all states in a segment of a fullpath (σ or δ)

are labeled identically or not, and (3) what states in the corresponding segments of

σ and δ are required to be related by B: {all, first} states in a segment in σ are

related by B to {all, first} states in the corresponding segment in δ. It is easy to

see that the notions of matching fullpaths and therefore the notions of correctness

(Definition 2, Definition 5, Definition 11, Definition 20) studied in this dissertation

can be expressed using these three parameters. In addition, the parameterization

suggests several new notions of correctness. For example, consider the notion of

correctness that allows skipping in the concrete system but only allows stuttering in

the abstract system. It can be defined using the following notion of match: fullpaths

σ and δ match under B iff the fullpaths can be partitioned in to non-empty finite

segments such that the first state in a segment in σ is related to all states in the

corresponding segment in δ. It would be interesting to present a unified exposition

of all the notions of refinement and study the associated proof-methods.

We expect such a classification to be also useful in practice. When using a

refinement-based approach to verification, the specification system and the notion

of correctness constitute the trust base. Hence, it is essential that the specification

is as-simple-as-possible to understand and the notion of correctness as-strong-as-

108

Chapter 5. Conclusions and Future Work

possible. Therefore, it is useful to have access to a collection of different notions of

correctness. Thereby we avoid a situation where one is required to convolute the

specification because the weakest notion of refinement available is unduly restrictive

and cannot be used to directly reason about the correctness of the implementation.

Recall that reconciling simulation is not compositional (Lemma 28). Hence, a natural

question is the following: what is the weakest notion in the collection that admits

compositional reasoning. A set of notions of correctness, their algebraic properties,

associated proof-methods, and a classification such as above will be extremely helpful

in practice to systematically choose an appropriate verification methodology.

Refinement-based testing Formal verification techniques provide guarantees about

the correctness of a system, but in spite of great advancements, they are often in-

tractable for large, complex system designs. On the other hand, dynamic verification

based on testing, though incomplete, scales well for systems of arbitrary complexity.

The current methodology that is prevalent in practice is based on specifying a set

of properties, compile them into runtime checks and validate them during simula-

tion. However, it is difficult to determine if the set of properties and tests under

consideration is complete. An alternative approach is based on refinement: given an

abstract system that serves as a specification for the implementations, compile the

refinement conjecture into a runtime check that is validated during simulation. We

anticipate that the local proof-methods developed in this thesis for formal analysis

shall also result in efficient runtime checkers.

109

110

Bibliography

[1] Experimental artifacts http://www.ccs.neu.edu/home/jmitesh/dissertation.

[2] Results of hardware model checking competition, 2013

(http://fmv.jku.at/hwmcc13/hwmcc13.pdf).

[3] M. Aagaard, B. Cook, N. Day, and R. Jones. A framework for microprocessor

correctness statements. Correct Hardware Design and Verification Methods,

2001.

[4] M. Abadi and L. Lamport. The existence of refinement mappings. In Theoretical

Computer Science, 1991.

[5] R.-J. Back. Refinement calculus, part II: Parallel and reactive programs. In

Stepwise Refinement of Distributed Systems Models, Formalisms, Correctness,

1990.

[6] C. W. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L. D. Zuck. TVOC:

A translation validator for optimizing compilers. In CAV, 2005.

[7] T. Basten. Branching bisimilarity is an equivalence indeed! Inf. Process. Lett.,

1996.

[8] W. R. Bevier. Kit and the short stack. Journal of Automated Reasoning, 5:519–

530, 1989.

111

BIBLIOGRAPHY

[9] A. Bouajjani, M. Emmi, C. Enea, B. K. Ozkan, and S. Tasiran. Verifying ro-

bustness of event-driven asynchronous programs against concurrency. In ESOP,

2017.

[10] M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite kripke

structures in propositional temporal logic. In Theoretical Computer Science,

1988, 1988.

[11] CC. Common criteria for information technology security evaluation CC v3.1,

2017.

[12] H. R. Chamarthi, P. C. Dillinger, and P. Manolios. Data definitions in the ACL2

sedan. In ACL2, 2014.

[13] H. R. Chamarthi, P. C. Dillinger, P. Manolios, and D. Vroon. The ACL2 sedan

theorem proving system. In TACAS, 2011.

[14] E. M. Clarke, O. Grumberg, and M. C. Browne. Reasoning about networks

with many identical finite-state processes. In PODC, 1986.

[15] M. A. Dave. Compiler verification: A bibliography. SIGSOFT Softw. Eng.

Notes, 2003.

[16] R. De Nicola and F. Vaandrager. Three logics for branching bisimulation. Jour-

nal of the ACM (JACM), 1995.

[17] W.-P. de Roever. Data refinement: model-oriented proof methods and their

comparison. 2003.

[18] R. W. Dockins. Operational Refinement for Compiler Correctness. PhD thesis,

Princeton University, 2012.

112

BIBLIOGRAPHY

[19] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer

Science, Volume B: Formal Models and Sematics, 1990.

[20] L. Gu, A. Vaynberg, B. Ford, Z. Shao, and D. Costanzo. Certikos: a certified

kernel for secure cloud computing. In APSys, 2011.

[21] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. Wu, S.-C. Weng, H. Zhang,

and Y. Guo. Deep specifications and certified abstraction layers. In POPL,

2015.

[22] D. S. Hardin. Real-time objects on the bare metal: an efficient hardware real-

ization of the java tm virtual machine. In ISORC, 2001, 2001.

[23] M. Hennessy and R. Milner. On observing nondeterminism and concurrency.

In ICALP, 1980.

[24] C. A. R. Hoare. Proof of correctness of data representation. In Language

Hierarchies and Interfaces, 1975.

[25] M. Jain and P. Manolios. Skipping refinement. In CAV, 2015.

[26] M. Jain and P. Manolios. An efficient runtime validation framework based on

the theory of refinement. CoRR, abs/1703.05317, 2017.

[27] M. Kaufmann and J. S. Moore. ACL2 homepage. 2006.

[28] G. Klein. Operating system verification-an overview. 2009.

[29] G. Klein, J. Andronick, K. Elphinstone, T. C. Murray, T. Sewell, R. Kolanski,

and G. Heiser. Comprehensive formal verification of an os microkernel. ACM

Trans. Comput. Syst., 2014.

113

BIBLIOGRAPHY

[30] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elka-

duwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-

wood. sel4: formal verification of an os kernel. In SOSP, 2009.

[31] S. S. Lam and A. U. Shankar. Protocol verification via projections. IEEE

Transactions on Software Engineering, SE-10:325–342, 1984.

[32] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transac-

tions on Software Engineering, SE-3:125–143, 1977.

[33] L. Lamport. What good is temporal logic. Information processing, 1993.

[34] L. Lamport and M. Abadi. The existence of refinement mappings. Theoretical

Computer Science, 1991.

[35] S. Larsen and S. P. Amarasinghe. Exploiting superword level parallelism with

multimedia instruction sets. In PLDI, 2000, 2000.

[36] X. Leroy and S. Blazy. Formal verification of a c-like memory model and its

uses for verifying program transformations. Journal of Automated Reasoning,

2008.

[37] Y. Lin, S. Okur, and D. Dig. Study and refactoring of android asynchronous

programming. 2015.

[38] X. Liu, T. Yu, and W. Zhang. Analyzing divergence in bisimulation semantics.

In POPL, 2017.

[39] N. A. Lynch and F. W. Vaandrager. Forward and backward simulations: I.

untimed systems. Information and Computation, 1995.

[40] P. Manolios. Correctness of pipelined machines. In FMCAD, 2000.

114

BIBLIOGRAPHY

[41] P. Manolios. Mechanical verification of reactive systems. PhD thesis, University

of Texas, 2001.

[42] P. Manolios. A compositional theory of refinement for branching time. In

CHARME, 2003.

[43] P. Manolios and S. K. Srinivasan. A computationally effecient method based

on commitment refinement maps for verifying pipelined machines. In MEM-

OCODE, 2005.

[44] P. Manolios and S. K. Srinivasan. A framework for verifying bit-level pipelined

machines based on automated deduction and decision procedures. 2006.

[45] P. Manolios and S. K. Srinivasan. Automatic verification of safety and liveness

for pipelined machines using web refinement. In TODAES, 2008.

[46] P. Manolios, S. K. Srinivasan, and D. Vroon. Bat: The bit-level analysis tool.

CAV, 2007.

[47] R. Milner. An algebraic definition of simulation between programs. Proceedings

of the 2nd International Joint Conference on Artificial Intelligence, 1971.

[48] J. Misra. Distributed discrete-event simulation. ACM Computing Survey, 1986.

[49] K. S. Namjoshi. A simple characterization of stuttering bisimulation. In Foun-

dations of Software Technology and Theoretical Computer Science. Springer,

1997.

[50] K. S. Namjoshi and L. D. Zuck. Witnessing program transformations. Static

Analysis Symposium, 2013.

[51] D. Park. Concurrency and automata on infinite sequences. Theoretical computer

science, 1981.

115

BIBLIOGRAPHY

[52] A. Pnueli. The temporal logic of programs. In Foundations of Computer Science,

1977., 18th Annual Symposium on, 1977.

[53] A. Pnueli. Linear and branching structures in the semantics and logics of reac-

tive systems. Automata, Languages and Programming, 1985.

[54] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. TACAS, 1998.

[55] J. Sevcík, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and P. Sewell. Com-

pcerttso: A verified compiler for relaxed-memory concurrency. J. ACM, 2013.

[56] J.-B. Tristan and X. Leroy. A simple, verified validator for software pipelining.

In ACM Sigplan Notices, number 1, 2010.

[57] R. J. van Glabbeek. The linear time-branching time spectrum (extended ab-

stract). In CONCUR, 1990.

[58] R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction in

bisimulation semantics (extended abstract). In IFIP Congress, 1989.

[59] R. J. Van Glabbeek and W. P. Weijland. Branching time and abstraction in

bisimulation semantics. Journal of the ACM (JACM), 1996.

[60] B. J. Walker, R. A. Kemmerer, and G. J. Popek. Specification and verification

of the ucla unix security kernel (extended abstract). In SOSP, 1979.

[61] N. Wirth. Program development by stepwise refinement. Communications of

the ACM, 1971.

116

	Introduction
	Preliminaries
	Notations
	Transition systems
	Notions of correctness
	Summary

	Skipping Simulation
	Running Example
	Skipping Simulation
	Algebraic Properties

	Skipping Refinement
	Mechanised Reasoning
	Reduced Well-Founded Skipping Simulation
	Well-founded Skipping Simulation
	Reduced Local Well-founded Skipping Simulation
	Local well-founded Skipping Simulation

	Summary

	Reconciling Simulation
	Running Example (Continued)
	Reconciling Simulation
	Algebraic Properties
	Reconciling refinement
	Mechanised reasoning
	Reduced Well-founded Reconciling Simulation
	Well-founded Reconciling Simulation
	Well-founded Reconciling Simulation with Explicit Stuttering

	Summary

	Case Studies
	Superword Level Parallelism with SIMD instructions
	JVM-inspired Stack Machine
	Memory Controller
	Event Processing System
	Conclusion

	Related Work
	Notions of equivalences and refinement
	Applications
	Processor Verification
	Software

	Conclusions and Future Work

