A case for 10 efficiency as a research
metric for storage systems

Shuwen Sun,
Isaac Khor, Peter Desnoyers, Orran Krieger

Northeastern University
Boston University

2nd Northeastern University Systems Day (NUSD ’'24), Jan 22, 2024

How can we measure and understand the
performance of a large-scale storage system?

o Simple metrics for storage devices
» capacity, IOPS, throughput, and latency
 These perf. metrics are intrinsic to a hardware device

* No such metric for storage system (database, key/value or object store)
* Performance is not intrinsic

 But instead is strongly affected by the speed and scale of the storage
devices, network, and CPUs of the infrastructure on which it is deployed

The problem

o Storage systems are not storage devices, but we seem to treat them as if they
are

 [hese measurements are important—most such systems aim to deliver as
much performance as possible

 However, hardware-dependent metrics do not paint a complete picture

 Little insight into the internals of a system

* Also difficult to compare unless measured on similar hardware

Key Insight

 Augment the standard storage perf. metrics with appropriate hardware
independent measures of storage system efficiency

* Such as IO or write amplification: physical/logical written to storage

* |O efficiency is not the only determinant of performance, as an 10-efficient
system can have bottlenecks in other areas

* |O efficiency is difficult to predict in today’s complex, layered storage systems
* varied operations for redundancy, consistency, and metadata maintenance

* layered operations which may expand or merge higher-layer requests

Methodology

 Measure the request efficiency of various storage systems

By capturing all backend write requests issued by the system and analyzing
them offline

» |solate the storage backend from other services by configuring virtual disks that
are only used by the storage backend

* record all system calls issued with strace

 all block-level I/O requests with blktrace

Test bed

* Qur testbed has three nodes, all default Ubuntu 22.04 VMs with a separate disk
on which the storage systems are configured to use as their backend.

<——client , remote—>

|
|
Write
Storage backend

r‘ 7
[v A

Storage node

6

Object store, key-value store, and database studied.

Name Type Distributed

Ceph (BlueStore) Object store Triple replication
Minio Object store Triple replication
etcd (Raft) Key-value store Triple replication

PostgreSQL Relational Database Primary with two streaming replicas

Benchmark operations and workload

Storage Operation type

Object write

Ceph, Minio s3.upload_object (object, bucket, key)
etcd etcd.put (key, object)
PostgreSQL psgl: INSERT INTO table (key, object)

Object delete

Ceph, Minio s3.delete_object (bucket, key)
etcd etcd.delete (key)
PostgreSQL psqgl: DELETE FROM table WHERE key

YCSB workload

Ceph, Minio S3 binding in YCSB
etcd Etcd binding in YCSB
PostgreSQL PostgreSQL binding in YCSB

Local deployment, total number of dispatched write
operations observed during uploading a sinilge object. Both
axises are In log scale.

{ === Ceph

i Minio

| —&— etcd

| —<€— PostgreSQL

Y
-
\S

e
<
' |

of dispatched write ops

10! 103 109 107
Object size [byte]

9

Distributed deployment, total number of dispatched write
operations observed during uploading a sinige object.

e
-
oY)

== (Ceph
Minio

—— etcd

—<&— PostgreSQL

of dispatched write ops
=

10! 103 10° 10’
Object size [byte]

YCSB bindings and workload write operations

Storage YCSB binding
insert/update
S3: Ceph, Minio bucket, HashMap (key, object)
etcd key, object
PostgreSQL table, HashMap (key, object)

YCSB workload Workload writes

50% update

3% update

Read only (skipped)
3% 1nsert

3% 1nsert

50% read-modity-write

Hh © Q. 0O T Q

11

Local deployment, total number of dispatched write
operations observed during YCSB workloads.

/2 Ceph @ Minio Il etcd AT PostgreSQL

- o
~J -
N S

-
Lél
NN NN N

ANONNNNNN
AN

-
NONONONONONNNNNNY

>
-
S

Normalized # of dispatched write ops

YCSB workload

Distributed deployment, total number of dispatched
write operations observed during YCSB workloads.

/2 Ceph BN Minio M etcd A" PostgreSQL

] n
1% A 7 /
i /

- a b d e f

YCSB workload

W
-
O

—
~]
N

.
N
-

—
b
N

&
-
S

Normalized # of dispatched write ops

13

Discussion

* Trade-off between WA and capacity amplification

* Capacity amplification is a measure of how efficiently the file system is using
storage

» Capacity amplification is often bounded, and is bounded by the architecture or
design.

 Because total writes is bounded by the design, it is often easier to predict the
amplification factor.

e | imitation and future solution

* Reliance on usage of blktrace for each operation/workload, and the offline
analysis on the blktraces

* |n the future, we can extend with eBPF tracing.

14

Takeaways

* TJoday’s storage system performance metric hides details of the underlying system
 However, such a metric does not provide internal information
* This is enough for customers, but not to researchers

* We propose the adopting write efficiency as a more research oriented metric for
storage system.

* We show that efficiency metric can be used to contract different storage systems.

* We show that with such a metric, researchers can gain more in-depth knowledge of
the storage system, which is otherwise hard to obtain with performance metric.

15

