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Abstract
The state-of-the-art multi-agent reinforcement learning (MARL) methods provide promising solutions to a variety of
complex problems. Yet, these methods all assume that agents perform primitive actions in a synchronized manner, making
them impractical for long-horizon real-world multi-robot tasks that inherently require robots to asynchronously reason
about action selection at varying time durations. To solve this problem, we first propose a group of value-based cooperative
MARL approaches for asynchronous execution using temporally extended macro-actions. Here, agents perform asyn-
chronous learning and decision-making with macro-action-value functions in three paradigms: decentralized learning and
control, centralized learning and control, and centralized training for decentralized execution (CTDE). Building on the
above work, we formulate a set of macro-action-based policy gradient algorithms under the three training paradigms,
where agents directly optimize their parameterized policies in an asynchronous manner. We evaluate our methods both in
simulation and on real robots over a variety of realistic domains. Empirical results demonstrate the effectiveness of our
algorithms for learning high-quality and asynchronous solutions with macro-actions in large multi-agent problems that
were previously unsolvable via primitive-action-based approaches. The proposed approaches represent the first general
MARL methods for temporally extended actions and serve as the foundation for future methods in the area.
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1. Introduction

More and more autonomous robots are (going to be) de-
ployed in a variety of real-world applications. Examples
include office service (Ahn et al., 2022), package delivery
(Murray and Raj, 2020), and agriculture inspection (Liu
et al., 2018), search and rescue (Queralta et al., 2020),
autonomous vehicles (Rosenband, 2017; Tang, 2019),
sports (Jolly et al., 2007; Liu et al., 2021), and others. For
example, consider an assembly warehouse (Figure 1(a))
where a team of autonomous robots is assisting two humans
by delivering tools. In order to support humans more ef-
ficiently, robots have to be able to predict when each human
will need each tool and collaborate with each other to search
for tools on a table (Figure 1(a)), pass tools (Figure 1(b)),
and deliver them (Figure 1(c)). Performing these high-
quality coordination behaviors in large, stochastic, and
uncertain environments is challenging for the robots be-
cause it requires the robots to operate asynchronously using
local information while reasoning about cooperation be-
tween teammates.

Multi-agent reinforcement learning (MARL) is a
promising framework to generate solutions for these kinds
of multi-robot problems. Recently, by leveraging deep
neural networks to deal with large state and observation
input, deep MARL has solved many challenging multi-
agent problems. Unfortunately, the state-of-the-art deep
MARL methods (Foerster et al., 2018; Iqbal and Sha, 2019;
Lowe et al., 2017; Omidshafiei et al., 2017b; Rashid et al.,
2018, 2020; Son et al., 2019; Su et al., 2021; Wang et al.,
2021b, 2021c;Wang and Dong, n.d.) struggle to solve large-
scale real-world multi-robot problems that involve long-
term reasoning and asynchronous behavior, because they
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were developed for cases where agents synchronously
execute primitive actions at every time step.

Temporally-extended actions have been widely used in
both learning and planning to improve scalability and re-
duce complexity in single-robot domains. For example, they
have come in the form of motion primitives (Dalal et al.,
2021; Stulp and Schaal, 2011), skills (Konidaris et al., 2011,
2018), spatial action maps (Wu et al., 2020), or macro-
actions (He et al., 2010; Hsiao et al., 2010; Lee et al., 2021;
Theocharous and Kaelbling, 2004). The idea of temporally-
extended actions has also been incorporated into multi-
agent approaches. In particular, we consider the Macro-
Action Decentralized Partially Observable Markov Deci-
sion Process (MacDec-POMDP) (Amato et al., 2014,
2019).1

The MacDec-POMDP is a general model for cooperative
multi-agent problems with partial observability and po-
tentially different action durations. As a result, agents can
start and end macro-actions at different time steps so
decision-making can be asynchronous. MacDec-POMDPs
assume the macro-actions are given (like primitive methods
assume the primitive actions are given). This is well mo-
tivated by the fact that, in real-world multi-robot systems,
each robot is already equipped with certain controllers (e.g.,
a navigation controller, and a manipulation controller) that
can be modeled as macro-actions (Amato et al., 2015a;
Omidshafiei et al., 2017; Wu et al., 2021a; Xiao and
Hoffman, n.d.).

The MacDec-POMDP framework has shown strong
scalability with planning-based methods (Amato et al.,
2015a, 2015; Hoang et al., 2018; Omidshafiei et al.,
2016, 2017). These methods allowed complex solutions
to be generated for multi-robot problems ranging from
warehouse (Amato et al., 2015b), logistics (Omidshafiei
et al., 2016), and aerial delivery (Omidshafiei et al., 2017a).
As planning methods, the approaches assume the problem
model is known, but what we propose are model-free RL
methods.

While several hierarchical multi-agent reinforcement
learning (MARL) approaches have been developed, they
don’t typically address asynchronicity since they assume
agents have high-level decisions with the same duration

(de Witt et al., 2019; Han et al., 2019; Nachum et al., 2019;
Wang et al., 2020b, 2021a; Xu et al., 2021; Yang et al.,
2020a). Notably, none of them provides a general formu-
lation for multi-agent reinforcement learning that allows
agents to asynchronously learn and execute.

The focus of our proposed algorithms is then on learning
asynchronous high-level policies over macro-actions. Our
contributions can be categorized into two groups:

· Value-based frameworks. We first propose asynchro-
nous value-based macro-action algorithms for the three
major classes of MARL: decentralized training and
execution, centralized training and execution, and cen-
tralized training for decentralized execution (CTDE)
(Kraemer and Banerjee, 2016; Oliehoek et al., 2008).
These approaches are based on Deep Q-Networks
(DQN) (Mnih et al., 2015) but require new buffers
and updates to account for the multi-agent asynchronous
decision-making.

· Actor-critic-based frameworks. Building upon the
value-based frameworks, we also develop a set of
asynchronous macro-action-based actor-critic methods
that generalize their primitive-action counterparts for the
three MARL classes. Here, we develop new approaches
to deal with asynchronicity. For example, current
primitive-action-based multi-agent actor-critic methods
typically use a centralized critic to optimize each de-
centralized actor. However, the asynchronous joint
macro-action execution from the centralized perspective
could be very different from each agent’s decentralized
perspective due to varying completion times. To this end,
we first present a Naive Independent Actor with Cen-
tralized Critic (Naive IACC) method that naively uses a
joint macro-action-value function as the critic for each
actor’s policy gradient estimation (Section 3.6); and then
propose a novel Independent Actor with Individual
Centralized Critic (Mac-IAICC) method that learns in-
dividual critics using centralized information to address
the above challenge (Section 3.6.1).

These methods represent all the major classes of MARL
algorithms and serve as a foundation for extending

Figure 1. Example of a real-world multi-robot tool delivery task.
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primitive-action methods to the asynchronous case. To our
knowledge, this is the first general formalization of macro-
action-based multi-agent frameworks under the three state-
of-the-art training paradigms that allow multiple agents to
asynchronously learn and execute.

We evaluate our proposed frameworks on diverse
macro-action-based multi-robot problems: a benchmark
Box Pushing domain, a variant of the Overcooked do-
main (Wu et al., 2021b), and a large warehouse service
domain. Experimental results: (1) demonstrate that our
methods are able to learn high-quality solutions while
primitive-action-based methods cannot; (2) validate the
proposed macro-action-based CTDE Q-learning ap-
proaches can learn better decentralized policies than
fully decentralized learning methods in most of the
domains; and (3) show the strength of Mac-IAICC for
learning decentralized policies over Naive IAICC and
Mac-IAC. Overall, we find that Mac-IAICC is more
robust and scalable than other proposed algorithms,
achieving the best overall performance in learning de-
centralized policies, while the utility of value-based
approaches is very domain-dependent. Additionally,
decentralized policies learned by using Mac-IAICC are
successfully deployed on real robots to solve two
warehouse tool delivery tasks in an efficient way.

This work extends our earlier conference papers
(Amato et al., 2015; Xiao et al., 2022; Xiao and
Hoffman, n.d.) in three ways: (1) we present all pro-
posed approaches in a coherent and systematic fashion;
(2) we conduct extensive extra simulated experiments to
compare the two families of algorithms with a deep
analysis of their different pros and cons; and (3) we
showcase new real-robot experiments in a warehouse
tool delivery scenario, where a team of robots shows
more complex and interesting collaborative behaviors.

2. Background

This section introduces the formal definitions of the Dec-
POMDP and the MacDec-POMDP and provides an over-
view of single-agent and multi-agent reinforcement learning
algorithms with primitive actions.

2.1. Dec-POMDPs

The decentralized partially observable Markov decision
processes (Dec-POMDP) (Oliehoek and Amato, 2016)
is a general model for fully cooperative multi-agent
tasks, where agents make decisions in a decentralized
way based on only local information. A Dec-POMDP is
formally defined by a tuple hI , S,A,V,T ,O,R,H, γi,
where I is a set of agents; S is the environmental state
space; A = ×i2IAi is the joint primitive-action space
over each agent’s primitive-action set Ai; V = ×i2IVi

is the joint primitive-observation space over each
agent’s primitive-observation set Vi. At every time step,
under a state s, agents synchronously execute a joint

primitive-action a⃗ ¼ ×i2I ai, each individually selected
by an agent using a policy πi :HA

i →ΔAi, a mapping from
local primitive observation-action history HA

i to primitive-
action execution probabilities. The environment then
transits to a new state s0 according to a state transition
function Tðs, a⃗ , s0Þ ¼ Pðs0js, a⃗ Þ. Agents receive a global
reward issued by a reward function R : S ×A→R, and
obtain a joint primitive-observation o⃗ ¼ ×i2I oi drawn from
an observation function Oðo⃗ , a⃗ , s0Þ ¼ Pðo⃗ j a⃗ , s0Þ in state
s0. The objective of solution methods is to find a joint policy
π⃗ ¼ ×iπi that optimizes the expected sum of discounted
rewards from an initial state s0:

V π⃗ ðsð0ÞÞ ¼ E

XH�1

t¼0

γtr st, a⃗tð Þ j s0, π⃗
" #

(1)

where γ 2 [0, 1] is a discount factor, and H is the number of
(primitive) time steps until the problem terminates (the
horizon).

2.2. MacDec-POMDPs

The macro-action decentralized partially observable
Markov decision process (MacDec-POMDP) (Amato
et al., 2014, 2019) incorporates the option framework
(Sutton et al., 1999) into the Dec-POMDP by defining
each agent’s macro-action as a tuple mi ¼ hImi, πmi, βmi

i,
where the initiation set Imi � HM

i defines how to initiate
a macro-action based on macro-observation-action
history HM

i at the high-level; πmi :H
A
i →ΔAi is the

low-level policy for the execution of a macro-action;
and a stochastic termination function βmi

:HA
i → ½0; 1�

determines how to terminate a macro-action based on
primitive-observation-action history HA

i at the low-
level. A MacDec-POMDP is thus formally defined by
a tuple hI , S,A,M ,V, ζ , T ,O,Z,R,H, γi, where
I , S,A,V,T ,O,R,H and γ remain the same definitions as
in the Dec-POMDP; M = ×i2IMi is the joint macro-
action space over each agent’s macro-action space Mi;
ζ = ×i2Iζ i is the joint macro-observation space over each
agent’s macro-observation space ζ i; and Z ¼ fZigi2I is a
set of macro-observation likelihood models. During
execution, each agent independently selects a macro-
action mi using a high-level policy Ψi :HM

i →ΔMi, a
mapping from macro-observation-action history to
macro-action execution probabilities, and captures a
macro-observation zi 2 ζ i according to the macro-
observation probability function Zi(zi, mi, s0) =
P(zijmi, s0) when the macro-action terminates in a state
s0. The objective of solving MacDec-POMDPs with
finite horizon is to find a joint high-level policy Ψ⃗ ¼
×i2IΨi that maximizes the value:

V Ψ⃗ðsð0ÞÞ ¼ E

XH�1

t¼0

γtr st, a⃗ tð Þ j s0, π⃗ , Ψ⃗
" #

(2)
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2.3. Single-agent reinforcement learning

We focus on model-free reinforcement learning (RL), where
the agent aims to learn an optimal policy by interacting with
the environment without explicit world models (e.g., T, O,
and R) as prior knowledge. Model-free RL methods can be
categorized into two classes: (a) value-based approaches
that learn the values of actions and select actions based on
the learned values; and (b) policy gradient approaches that
directly learn a parameterized policy to select actions. In this
section, we review the representative single-agent deep RL
algorithms over the two classes, where deep neural net-
works are used as function approximators and policies.

2.3.1. DQN, double-DQN, and DRQN. Q-learning
(Watkins and Dayan, 1992) is a popular model-free
method to optimize a policy π by iteratively updating an
action-value function Q(s, a). Deep Q-networks (DQN)
(Mnih et al., 2015) extend Q-learning to include a deep
neural net as a function approximator. DQN learns Qθ(s, a),
parameterized with θ, by minimizing the temporal-differ-
ence (TD) error: LðθÞ¼ E<s,a,s0 ,r>∼D

�
y�Qθðs,aÞð Þ2�,

where y¼ rþ γ arg maxa0Qθ�ðs0,a0Þ. A target action-value
function Qθ� (θ� is an outdated copy of θ) and an expe-
rience replay buffer D (Lin, 1992) are implemented for
stable learning. In order to deal with the maximum bias, the
idea behind Double Q-learning (Hasselt, 2010) is gener-
alized to DQN, called Double DQN, by rewriting the target
value calculation as y ¼ r þ γQθ

�ðs0, arg maxa0Qθðs0, a0ÞÞ
(Hasselt et al., 2016). In fully observable environments, the
action-value function is expressed as Q(s, a), where s
represents the state. However, in partially observable en-
vironments, the agent cannot directly observe the state. In
such cases, Deep Recurrent Q-Networks (DRQN) is pro-
posed to handle single agent tasks with partial observability
(Hausknecht and Stone, 2015), where a recurrent layer
(LSTM (Hochreiter and Schmidhuber, 1997)) is applied to
maintain an internal hidden state from the agent’s
observation-action history h. The corresponding action-
value function Qθ(h, a) is then updated by minimizing
the following loss: LðθÞ ¼ E< o, a, o0 , r > ∼D y�ð½ Qθðh, aÞÞ2�,
where y ¼ rþ γ maxa0Qθ�ðh0, a0Þ, and h0 = hao0 represents
the next observation-action history. In our work, we in-
corporate DRQN with Double DQN to learn macro-action-
based value functions. This is done for value-based algo-
rithms presented in Section 3.1, Section 3.2, and Section
3.3.

2.3.2. Actor-critic policy gradient. In single-agent rein-
forcement learning, the policy gradient theorem (Sutton
et al., 2000) formulates a principled way to optimize a
parameterized policy πθ via gradient ascent on the policy’s
performance defined as JðθÞ ¼ Eπθ

P∞
t¼0γ

tr st, atð Þ� �
. In

POMDPs, the gradient w.r.t. parameters of an observation-
action history-based policy πθ(ajh) is expressed as:
=θJðθÞ ¼ Eπθ =θ log πθða j hÞQπθðh, aÞ½ �, where h is main-
tained by an RNN in the policy network (Hausknecht and

Stone, 2015). The actor-critic framework (Konda and
Tsitsiklis, 2000) learns an on-policy action-value function
Qπθ

f ðh, aÞ (critic) via TD learning (Sutton, 1988) to ap-

proximate the action-value for the policy (actor) updates.
Variance reduction is commonly achieved by training a
history-value function V πθ

w ðhÞ and using it as a baseline
(Weaver and Tao, 2001) as well as bootstrapping to estimate
the action-value. Accordingly, the policy gradient can be
written as:

=θJðθÞ ¼ Eπθ =θ log πθða j hÞAðh, aÞ½ � (3)

Aðh, aÞ ¼ r þ γV πθ
w ðh0Þ � V πθ

w ðhÞ
� �

(4)

and r is the immediate reward received by the agent at the
corresponding time step.

2.4. Multi-agent reinforcement learning

We consider fully cooperative multi-agent reinforcement
learning (MARL), where multiple agents interact with the
same environment by perceiving input and selecting
actions as well as considering the effect of each other in
order to optimize the global return. In this section, we
introduce three standard MARL training paradigms:
centralized learning, decentralized learning, and cen-
tralized training for decentralized execution (CTDE), and
we also discuss the corresponding algorithms under each
paradigm.

2.4.1. Centralized learning and execution. Perhaps the
most straightforward way to solve fully cooperative MARL
problems is centralized learning and execution. Specifically,
all agents are treated as a single big agent to learn a cen-
tralized policy πða⃗ j h⃗ Þ, a mapping from the joint
observation-action history space to the joint action space,
and all the single-agent RL algorithms can be directly
applied here. In theory, with access to the joint information
over agents, the centralized policy learned in this training
paradigm possesses a convergence guarantee to the globally
optimal behavior. However, in practice, this framework
suffers from two fundamental challenges: (a) the joint action
space exponentially increases with respect to the number of
agents, which potentially causes learning to be very slow
and likely converges to a local optimum due to approxi-
mation error on action-values; and (b) in order to perform
centralized control, it requires fast and perfect online
communication over agents, which is often impossible to
achieve in many real-world settings.

2.4.2. Decentralized learning and execution. Because of
the aforementioned issues in the fully centralized case,
having a decentralized policy for each agent is preferable,
where each agent independently makes decisions based on
only local information.

Independent Q-Learning (IQL) (Tan, 1993) is the
simplest approach to learn decentralized policies for agents.
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It extends Q-learning to multi-agent scenarios by allowing
each agent to independently learn its own action-value
function. In partially observable environments, each
agent i learns a history-action value function as Qθiðhi, aiÞ
using DRQN. While decentralized policies can be directly
learned in this simple decomposition manner, each inde-
pendent learner suffers from several innate limitations: the
difficulty in achieving efficient credit assignment as each
agent maintains Q-values only for individual actions but
receives global rewards depending on joint actions; the
dilemma of the environmental non-stationarity from a local
perspective caused by the existence of other learning agents;
and the tendency to settle at a local optimum (a shadowed
equilibrium (Fulda and Ventura, 2007)) due to rare infor-
mation sharing over agents, resulting in agents’ local best
choices being suboptimal system behavior.

Decentralized Hysteresis DRQN (Dec-HDRQN)
(Omidshafiei et al., 2017b) is one representative decen-
tralized learning method to improve solution quality in Dec-
POMDPs. It combines Hysteretic Q-learning (Matignon
et al., 2007) with DRQN, where each agent uses two
learning rates α and β to update its own action-value
function. Specifically, α is a normal learning rate when
the TD error is positive, and β is a smaller learning rate used
otherwise. This facilitates multi-agent learning by making
each agent robust against negative updating due to team-
mates’ mistakes. Meanwhile, a new replay buffer called
Concurrent Experience Replay Trajectories (CERTs) is
introduced to assist with the non-stationarity issue, by
sampling concurrent experiences for training, which en-
courages each agent’s policy to be optimized in the same
direction.

Independent Actor-Critic (IAC) (Foerster et al., 2018)
is a straightforward extension of the single-agent A2C to
multi-agent cases. Similar to IQL, in this framework, each
agent independently optimizes its own actor πθi and critic
V

πθi
wi purely based on local experiences. Accordingly, the

independent policy gradient is formulated as:

=θiJðθiÞ ¼ Eπ⃗ θ =θi log πθiðaijhiÞAðai, hiÞ½ � (5)

where

Aðai, hiÞ ¼ r þ V
πθi
wi ðh0iÞ � V

πθi
wi ðhiÞ (6)

and a shared reward r over agents is assigned by the global
reward function R. Although IAC may sometimes work in
practice, it still suffers from the same inherent issues
mentioned above in IQL. Nevertheless, an essential attribute
of independent learning is that agents are able to conduct
fully online learning.

2.4.3. Centralized training for decentralized execution. In
recent years, centralized training for decentralized exe-
cution (CTDE) has shown considerable promise in
learning high-quality decentralized policies in Dec-
POMDPs. To address the main difficulties encountered
in independent learning, CTDE provides agents with

access to global information during offline training while
maintaining decentralized online execution based on local
information. This paradigm is potentially more feasible to
solve real-world multi-agent tasks, where the policies are
first trained in a simulator and then deployed on the real
system.

Value Function Factorization is one of the popular
CTDE implementations that decouples a joint Q-value
function into individual Q-value functions as each agent’s
policy (Mahajan et al., 2019; Rashid et al., 2018, 2020;
Wang et al., 2021c; Wang and Dong, n.d.), naturally
avoiding the exponential size of the joint action space. This
kind of architecture is scalable to large multi-agent prob-
lems in terms of the number of agents. More concretely,
each agent optimizes its own Q-net by minimizing the
following TD loss of a joint but factored Q-net:

Lðθ⃗ ,ψÞ ¼ ED ytot � Qtot
θ⃗ ,ψ

ðx, h⃗ , a⃗ Þ
� �2� 	

(7)

where

Qtot
θ⃗ ,ψ

ðx, h⃗ , a⃗ Þ ¼ fψ x, fQθiðhi, aiÞgNi¼1

� �
(8)

ytot ¼ r þ γmax
a⃗0

Qtot
θ⃗� ,ψ�ðx0, h⃗

0
, a⃗ 0 Þ (9)

and x represents extra accessible global signals (e.g., the
environment state). However, it is important to note that, in
these methods, the function fψ enforces a particular con-
straint on the relationship between the centralized Q-values
and decentralized Q-values (e.g., a linear summation con-
straint, a nonlinear monotonic constraint, or other weighted
constraints). These constraints actually place different
representational limitations on jointQ-value functions, such
as the true joint Q-value function of a given domain cannot
be represented with these constraints.

Independent Actor with Centralized Critic (IACC) is
another widespread exploitation of the CTDE paradigm.
The state-of-the-art MARL policy gradient approaches (Du
et al., 2019; Foerster et al., 2018; Iqbal and Sha, 2019; Lowe
et al., 2017; Su et al., 2021; Wang et al., 2020, 2021b; Yang
et al., 2020b; Zhou et al., 2020) utilize IACC in variant ways
and have achieved significant successes in solving many
challenging multi-agent tasks. The vital idea of the IACC
framework is to train a centralized critic that is allowed to
capture global information, and then use it to direct the
optimization of each decentralized actor that conditions on
only local information. The resulting policy gradient can be
formulated as:

=θiJðθiÞ ¼ Eπ⃗ θ =θi log πθiðaijhiÞQπ⃗ θ
f ðx, a⃗ Þ

h i
(10)

where the centralized critic, Qπ⃗ θ
f ðx, a⃗ Þ, is updated in an on-

policy learning way by minimizing the following loss:

LðfÞ ¼ Eπ⃗ θ Qπ⃗ θ
f ðx, a⃗ Þ � y

� �2
� 	

(11)

where
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y ¼ r þ γQπ⃗ θ�
f� ðx0, a01,…a0i…, a0nÞja0i ∼ πθ�

i
ðh0iÞ (12)

and each agent’s target policy πθ�i is used to sample the
next action to compute the target prediction in order to
further stabilize the learning. By accessing all agents’
actions, this centralized critic is favored for its stationary
learning targets and overcomes the major environmental
non-stationary issue in independent learning. Additionally,
many variants of global information can be included in x,
such as a true environmental state, a joint observation, a
joint action-observation history, or even certain mixed
combinations, which are helpful in facilitating the update
of decentralized policies to optimize global cooperative
performance. Apart from these positive effects of using a
centralized critic, it certainly introduces extra variance in
each agent’s decentralized policy gradient estimation de-
pending on other agents’ actions (Lyu et al., 2021; Wang
et al., 2021b). Therefore, we consider the version of IACC
with a joint history-value function as the critic to reduce
the variance, and the decentralized policy gradient can be
rewritten as:

=θiJðθiÞ ¼ Eπ⃗
θ⃗
=θi log πθiðai j hiÞAðx, a⃗ Þ½ � (13)

Aðx, a⃗ Þ ¼ r þ γV
π⃗
θ⃗

w ðx0Þ � V
π⃗
θ⃗

w ðxÞ (14)

3. Approach

Multi-agent deep reinforcement learning with asyn-
chronous decision-making and macro-actions is more
challenging as it is difficult to determine when to update
each agent’s policy and what information to use. Such
asynchronicity over agents motivates a need for a
principled way of updating values and maintaining re-
play buffers. In this section, we first introduce the
formulations for learning macro-action-value functions
in fully decentralized (Section 3.1) and fully centralized
(Section 3.2) manners based on deep Q-networks and
show the details of two replay buffers designed for each
case accordingly. In order to learn better decentralized
policies with asynchronous execution, we then present
the first value-based CTDE algorithms with macro-
actions (Section 3.3). Although these asynchronous
value-based approaches give us the base to learn macro-
action value functions, they do not directly extend to the
policy gradient case, particularly in the case of cen-
tralized training for decentralized execution (CTDE).
We thus continue proposing a group of on-policy macro-
action-based multi-agent actor-critic methods for de-
centralized learning (Section 3.4), centralized learning
(Section 3.5), and CTDE (Section 3.6).

The algorithms proposed in this paper assume the ex-
istence of macro-actions, which can be either pre-defined by
humans or learned beforehand (e.g., navigation controller
for moving to a specific waypoint and manipulation

controller for object pick and place). The algorithms then
focus on learning policies over these macro-actions. All
proposed algorithms are model-free RL methods, meaning
that agents do not have prior knowledge about state space,
observation space, transition dynamics, and the reward
model. All agents have to directly learn from the reward
signals and transitions they experience through trial and
error.

3.1. Macro-action-based decentralized
Q-learning (Mac-Dec-Q)

In the decentralized case, each agent only has access to its
own macro-actions and macro-observations as well as the
joint reward at each time step. As a result, there are several
choices for how information is maintained. For example,
each agent could maintain exactly the information men-
tioned above (as seen on the left side of Figure 2), the time-
step information can be removed (losing the duration in-
formation), or some other representation could be used that
explicitly calculates time. We choose the middle approach
(see Appendix B for a theoretical analysis of this choice). As
a result, updates only need to take place for each agent after
the completion of its own macro-action, and we introduce a
replay buffer based on Macro-Action Concurrent Experi-
ence Reply Trajectories (Mac-CERTs) visualized in
Figure 2.

More concretely, under a macro-action-observation
history hi, each agent independently selects a macro-
action mi using a macro-action-based decentralized policy
Ψ(mi|hi) and maintains an accumulating reward,

rcðhi,mi, τiÞ ¼
Ptmiþτi�1

t¼tmi
γt�tmi rt, for the macro-action from

its first time-step tmi to a termination time-step tmi þ τi � 1.
The agent then obtains a new macro-observation z0i with the
probability Pðz0i j hi,mi, τiÞ and results in a new history h0i ¼
hhi,mi, z0ii under the transition model Pðh0i, τi j hi,miÞ.
Correspondingly, the experience tuple collected by each
agent i is represented as hz,m, z0, rcii, where zi is the macro-
observation used for choosing the macro-action mi. We can
write down the Bellman equation for each agent i under a
given high-level policy Ψi as:

QΨiðhi,miÞ ¼ Eh0i , τijhi ,mi
rcðhi,mi, τiÞ þ γτiVΨiðh0iÞ
� �

(15)

In each training iteration, agents first sample a concurrent
mini-batch of sequential experiences (either random traces
with the same length or entire episodes) from the replay
buffer D. Each sampled sequential experience is further
cleaned up by filtering out the experiences when the cor-
responding macro-action is still executing. This disposal
procedure finally results in a mini-batch of ‘squeezed’ se-
quential experiences for each agent’s training. A specific
example is shown in Figure 2.

In this work, we implement Dec-HDRQN with Double
Q-learning (Section 2.3.1) to train the decentralized macro-
action-value function Qθiðhi,miÞ (in equation (15)) for each
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agent i. Each agent updates its own macro-action-value
function by minimizing the loss:

LðθiÞ ¼ E < z,m, z0 , rc > i ∼D yi � Qθiðhi,miÞð Þ2� �
(16)

yi ¼ rci þ γQθ�i ðh0i, arg max
m0
i

Qθiðh0i,m0
iÞÞ (17)

3.2. Macro-action-based centralized
Q-learning (Mac-Cen-Q)

Achieving centralized control in the macro-action setting
needs to learn a joint macro-action-value function Qðh⃗ , m⃗Þ.
This requires a way to correctly accumulate the rewards for
each joint macro-action. This is actually more complicated
than the decentralized case because there is no obvious
update step (i.e., there may never be a time when all agents
have terminated their macro-actions together). As a result,
we use the idea of updating when any agent terminates a
macro-action (Amato et al., 2014, 2019) (see Appendix B
for a theoretical analysis of this choice). But this makes
updating and maintaining a buffer more complicated than in
Section 3.1.

In this case, we introduce a centralized replay buffer that
we call Macro-Action Joint Experience Replay Trajectories
(Mac-JERTs). Instead of independently maintaining a cu-
mulative reward for each macro-action, agents share a joint

cumulative reward r⃗ cðh⃗ , m⃗, τ⃗ Þ ¼Ptm⃗þτ⃗ �1
t¼tm⃗

γt�t
m⃗ rt for each

joint macro-action m⃗, where tm⃗ is the time-step when a
joint macro-action m⃗ starts, and tm⃗ þ τ⃗ � 1 is the ending
time-step of m⃗ when any agent finishes its macro-action.
The agents who just complete their macro-actions can
obtain new macro-observations, which leads to a new
joint history h⃗

0 ¼ hh⃗ , m⃗, z⃗ 0 i under the transition model

Pðh⃗ 0
, τ⃗ j h⃗ , m⃗Þ. Here, we can write down the Bellman

equation under a centralized macro-action-based policy
Ψ as:

QΨðh⃗ , m⃗Þ ¼ E
h⃗
0
, τ⃗jh⃗ , m⃗ r⃗ cðh⃗ , m⃗, τ⃗ Þ þ γτ⃗ VΨðh⃗ 0Þ

h i
(18)

In our work, we use Double-DRQN (DDRQN) to train
the centralized macro-action-value function. In each
training iteration, a mini-batch of sequential joint experi-
ences is first sampled from Mac-JERTs, and a similar fil-
tering operation, as presented in Section 3.1, is used to
obtain the “squeezed” joint experiences (shown in Figure 3).
But, in this case, only one joint reward is maintained that
accumulates from the selection of any agent’s macro-action
to the completion of any (possibly other) agent’s macro-
action.

Using the squeezed joint sequential experiences, the
centralized macro-action-value function (in equation (18)),

Qfðh⃗ , m⃗Þ, is trained end-to-end to minimize the following
loss:

LðfÞ ¼ E< z⃗ , m⃗ , z⃗ 0 , r⃗ c > ∼D y� Qf h⃗ , m⃗
� �� �2

� 	
(19)

y ¼ r⃗ c þ γQf�ðh⃗ 0
, arg max

m⃗ 0
Qfðh⃗

0
, m⃗0ÞÞ (20)

The next joint macro-action selection part in equation (20)
implies that at the next step, all agents will switch to a new
macro-action. However, in reality, only the agents who
have terminated their current macro-actions can switch to a
new macro-action in the next step. For example, in
Figure 3, the first three squeezed sequential experiences
show that only one of the agents changes its macro-action
per step. Therefore, the more agents that are not switching
macro-actions, the less accurate the prediction that
equation (20) will make. In order to have a more correct (in
terms of matching with the true executions over agents)
value estimation for a joint macro-action, here, we propose
a conditional target prediction as:

yðtÞ ¼ r⃗ c þ γQf�ðh⃗ 0
, arg max

m⃗0
Qfðh⃗

0
, m⃗0 j m⃗undoneÞÞ (21)

Figure 2. An example of Mac-CERTs. Two agents first sample concurrent trajectories from the replay buffer; the valid experience (when
the macro-action terminates, marked as red), is then selected to compose a squeezed sequential experience for each agent. Note that we
collect agents’ high-level transition tuple at every primitive step, where each agent is allowed to obtain a new macro-observation if and
only if the current macro-action terminates, otherwise, the next macro-observation is set as same as the previous one. The superscript is for
distinguishing different macro-actions and macro-observations.
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where m⃗undone is the joint-macro-action over the agents who
have not terminated the macro-actions at the current time
step and will continue running it at the next step.

3.3. Macro-action-based CTDE Q-learning

In multi-agent environments, decentralized learning causes
the environment to be non-stationary from each agent’s
perspective as other agents’ policies change during learning.
Centralized Training for Decentralized Execution (CTDE)
is the most popular framework that can naturally stabilize
the learning of decentralized policies by overcoming the
environmental non-stationarity issue and promoting global
cooperative behavior to be achieved via decentralized ex-
ecution. VDN (Sunehag et al., 2018) and QMIX (Rashid
et al., 2018), the pioneers of CTDE Q-learning, use cen-
tralized training by first training a joint, but factored, Q-net
and later decomposing it into a decentralized Q-net for each
agent to use during execution. Differing from value-
factorization-based approaches, in this section, we first
propose a new multi-agent Double DQN-based approach,
called MacDec-DDRQN, to learn decentralized macro-
action-value functions that are trained with a centralized
macro-action-value function; and followed by a generalized
version of it, called Parallel-MacDec-DDRQN.

3.3.1. MacDec-DDRQN. Double DQN has been im-
plemented in multi-agent domains for learning either cen-
tralized or decentralized policies (Simões et al., 2017; Xiao
and Hoffman, n.d.; Zheng et al., 2018). However, in the
decentralized learning case, each agent independently
adopts double Q-learning purely based on its own local
information. Learning only from local information often
impedes agents from achieving high-quality cooperation.

In order to take advantage of centralized information
for learning decentralized action-value functions, we
train the centralized macro-action-value function Qf and
each agent’s decentralized macro-action-value function
Qθi simultaneously, and the target value for updating

decentralized macro-action-value function Qθi is then
calculated by using the centralized Qf for macro-action
selection and the decentralized target-net Qθ�i for value
estimation.

More concretely, consider a domain with N agents, and
both the centralized Q-network Qf and decentralized Q-
networks Qθi for each agent i are represented as DRQNs
(Hausknecht and Stone, 2015). Here, it is important to note
that the centralized Q-network Qf does not involve any
factorization architecture. As a result,Qf is not restricted by
any constraint and it is able to represent the true centralized
macro-action values in any given domain.

The experience replay buffer D, a merged version of
Mac-CERTs and Mac-JERTs, contains the tuples
hz,m, z0, rc, r⃗ ci, where z = {z0, …, zN}, m = {m0, …, mN}
and rc ¼ frc0,…, rcNg. In each training iteration, agents
sample a mini-batch of sequential experiences to first op-
timize the centralized macro-action-value functionQf in the
way proposed in Section 3.2, and then update each de-
centralized macro-action-value function by minimizing the
squared TD error:

LðθiÞ ¼ E< z,m, z0 , rc , r⃗ c > ∼D yi � Qθiðhi,miÞð Þ2� �
(22)

where

yi ¼ rci þ γQθ�i

�
h0i,

�
arg max

m0
Qfðh0,m0Þ�

i

�
(23)

In equation (23), arg maxm0Qfðh0,m0Þ� �
i implies se-

lecting the joint macro-action with the highest value and
then selecting the individual macro-action for agent i. In this
updating rule, not only double estimators Qθ�i and Qf are
applied to counteract overestimation on target Q-values, but
also a centralized heuristic on action selection is embedded.
Now, from each agent’s perspective, the target Q-value is
calculated by assuming all agents will behave based on the
centralized Q-net next step (Equation (23)), in which the
provided global info by the centralized Q-net will help each
agent to avoid trapping in local optima and also facilitates
them to learn cooperation behaviors.

Figure 3. An example of Mac-JERTs. A joint sequential experience is first sampled from the memory buffer, and then, depending on the
termination (red) of each joint macro-action, a squeezed sequential experience is generated for the centralized training. Each agent’s
macro-action, which is responsible for the termination of the joint one, is marked in red. For example, at t = 1, agents execute a joint
macro-action m⃗ ¼ hm1,m4i for one time step; at t = 2, the joint macro-action becomes hm1, m5i as Agent2 finished m4 at last step and
chooses a new macro-action m5; Agent1 finished its macro-action m1 at t = 2 and selects a new macro-action m2 at t = 3 so that the joint
macro-action switches to hm2, m5i which keeps running until the 4th time step. Therefore, the first two joint macro-actions have two
single-step rewards, respectively, and the reward of joint macro-action hm2, m5i is an accumulative reward over two consecutive time
steps.
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Additionally, similar to the idea of the conditional op-
eration for training centralized joint macro-action-value
function discussed in Section 3.2, in order to obtain a
more accurate prediction by taking each agent’s macro-
action executing status into account, equation (23) can be
rewritten as:

yi ¼ rci þ γQθ�i

�
h0i,

�
arg max

m0
Qfðh0,m0 j mundoneÞ�

i

�
(24)

Now, the agent who has not finished the macro-action at the
target updating time step is considered to continue running
the same macro-action in the target action-value
computation.

3.3.2. Parallel-MacDec-DDRQN. Exploration is also a
difficult problem in multi-agent reinforcement learning.
ϵ-greedy exploration has been widely used in many
methods such as Q-learning to generate training data
(Sutton et al., 1998). In DQN-based methods, as a hyper-
parameter, ϵ often acts with a linear decay along with the
training steps from 1.0 to a lower value to achieve the
trade-off between exploration and exploitation. And, ex-
ploration can be done either in a centralized way or in a
decentralized way. Centralized exploration may help to
choose cooperative actions more often that would have a
low probability of being selected from decentralized
policies, and decentralized exploration may provide more
realistic data that is actually achievable by decentralized
policies.

Therefore, in our approach, besides tuning ϵ, we introduce
a hyper-selection for performing an ϵ-greedy behavior policy
that can perform either centralized exploration based on Qf

or decentralized exploration using each agent’s Qθi.
However, without having enough knowledge about the

properties of a given domain in the very beginning, it is not
clear which exploration choice is the best. To cope with
this, we propose a more generalized version of MacDec-
DDRQN, called Parallel-MacDec-DDRQN, summarized
in Algorithm 1. The core idea is to have two parallel
environments (line 3) with agents, respectively, per-
forming centralized exploring (line 10: cen-ϵ-greedy) and
decentralized exploring (line 13: dec-ϵ-greedy) in each.
The centralized Qf is first trained purely using the cen-
tralized experiences (line 19), while each agent’s decen-
tralizedQθi is then optimized using equation (24) with only
decentralized experiences (line 23).

3.4. Macro-action-based
independent actor-critic

Similar to the idea of IAC with primitive-actions (Section
2.4.2), a straightforward extension is to have each agent
independently optimize its own macro-action-based policy
(actor) using a local macro-action-value function (critic).
Hence, we start with deriving a macro-action-based policy
gradient theorem in Appendix A.1 by incorporating the
general Bellman equation for the state values of a macro-
action-based policy (Sutton et al., 1999) into the policy
gradient theorem in MDPs (Sutton et al., 2000), and then
extend it to MacDec-POMDPs so that each agent can have
the following policy gradient w.r.t. the parameters of its
macro-action-based policy ΨθiðmijhiÞ as:

=θiJðθiÞ ¼ EΨ⃗θ⃗
=θi logΨθiðmi j hiÞQΨθi

fi
ðhi,miÞ

h i
. During

training, each agent accesses its own trajectories and
squeezes them in the same way (refer to Figure 2) as the
decentralized case (presented in Section 3.1) to train the

critic Q
Ψθi
fi

ðhi,miÞ via on-policy TD learning and perform

gradient ascent to update the policy when the agent’s
macro-action terminates. In our case, we train a local
history value function V

Ψθi
wi ðhiÞ as each agent’s critic and

use it as a baseline to achieve variance reduction. The
corresponding policy gradient is as follows:

=θiJðθiÞ ¼ EΨ⃗
θ⃗
=θi logΨθiðmi j hiÞAðhi,miÞ½ � (25)

Aðhi,miÞ ¼ rci þ γτmiV
Ψθi
wi ðh0iÞ � V

Ψθi
wi ðhiÞ (26)

where the cumulative reward rci is w.r.t. the execution of
agent i’s macro-action mi.

3.5. Macro-action-based centralized actor-critic

In the fully centralized learning case, we treat all agents as a
single joint agent to learn a centralized actorΨθðm⃗ j h⃗ Þwith
a centralized critic QΨθ

f ðh⃗ , m⃗Þ, and the policy gradient can

Xiao et al. 9



be expressed as: =θJðθÞ ¼ EΨθ =θ logΨθðm⃗ j h⃗ ÞQΨθ
f

h
ðh⃗ , m⃗Þ�. Similarly, to achieve a lower variance optimization
for the actor, we learn a centralized history value function

VΨθ
w ðh⃗ Þ by minimizing a TD-error loss over joint trajec-

tories that are squeezed w.r.t. each joint macro-action ter-
mination (when any agent terminates its macro-action,
defined in the centralized case in Section 3.2 and visualized
in Figure 3). Accordingly, the policy’s updates are per-
formed when each joint macro-action is completed by
ascending the following gradient:

=θJðθÞ ¼ EΨθ =θ logΨθðm⃗ j h⃗ ÞAðh⃗ , m⃗Þ
h i

(27)

Aðh⃗ , m⃗Þ ¼ r⃗
c þ γτ⃗ m⃗ VΨθ

w ðh⃗ 0Þ � VΨθ
w ðh⃗ Þ (28)

where the cumulative reward r⃗ c is w.r.t. the execution of the
joint macro-action m⃗.

3.6. Macro-action-based independent actor with
centralized critic

As mentioned earlier, fully centralized learning requires
perfect online communication which is often hard to
guarantee, and fully decentralized learning suffers from
environmental non-stationarity due to agents’ changing
policies. In order to learn better decentralized macro-action-
based policies, in this section, we propose two macro-
action-based actor-critic algorithms using the CTDE para-
digm. Typically, the difference between a joint macro-action
termination from the centralized perspective and a macro-
action termination from each agent’s local perspective gives
rise to a new challenge: what kind of centralized critic to
learn and how to use it to optimize decentralized policies
under such an asymmetric asynchrony from the two per-
spectives, which we mainly investigate below.

A naive way of incorporating macro-actions into a
CTDE-based actor-critic framework is to directly adapt the
idea of the primitive-action-based IACC (Section 2.4.3) to

have a shared joint macro-action-value function Q
Ψ⃗θ⃗
f ðx, m⃗Þ

in each agent’s decentralized macro-action-based policy

gradient as:=θiJðθiÞ ¼ EΨ⃗θ⃗
=θi logΨθiðmi j hiÞQΨ⃗θ⃗

f ðx, m⃗Þ
� 	

.

To reduce variance, with a value function V
Ψ⃗θ⃗
w ðxÞ as the

centralized critic, the policy gradient w.r.t. the parameters of
each agent’s high-level policy can be rewritten as:

=θiJðθiÞ ¼ EΨ⃗
θ⃗
=θi logΨθiðmi j hiÞAðx, m⃗Þ½ � (29)

Aðx, m⃗Þ ¼ r⃗ c þ γτ⃗ m⃗ V
Ψ⃗
θ⃗

w ðx0Þ � V
Ψ⃗
θ⃗

w ðxÞ (30)

Here, the critic is trained in the fully centralized manner
described in Section 3.2 while allowing it to access addi-
tional global information (e.g., joint macro-observation-
action history, ground truth state or both) represented by
the symbol x. However, updates of each agent’s policy

Ψθiðmi j hiÞ only occur at the agent’s own macro-action
termination time steps rather than depending on joint macro-
action terminations in the centralized critic training. In
Figure 4, we show an example of the trajectory squeezing
process in Naive Mac-IACC.

3.6.1. Independent actor with individual centralized critic
(Mac-IAICC). Note that naive Mac-IACC is technically
incorrect. The cumulative reward r⃗ c in equation (30) is
based on the corresponding joint macro-action’s termination
that is defined as when any agent finishes its own macro-
action, which produces two potential issues: (a)

r⃗ c þ γτ⃗ m⃗ V
Ψ⃗θ⃗
w ðx0Þ may not estimate the value of the macro-

action mi well as the reward does not depend on mi’s ter-
mination; (b) from agent i’s perspective, its policy gradient
estimation may involve higher variance associated with the
asynchronous macro-action terminations of other agents.

To tackle the aforementioned issues, we propose to learn
a separate centralized critic V

Ψ⃗θ⃗
wi ðx0Þ for each agent via TD-

learning. In this case, the TD-error for updating V
Ψ⃗θ⃗
wi ðx0Þ is

computed by using the reward rci that is accumulated purely
based on the execution of the agent i’s macro-action mi.
With this TD-error estimation, each agent’s decentralized
macro-action-based policy gradient becomes:

=θiJðθiÞ ¼ EΨ⃗
θ⃗
=θi logΨθiðmi j hiÞAðx,miÞ½ � (31)

Aðx,miÞ ¼ rci þ γτmiV
Ψ⃗
θ⃗

wi ðx0Þ � V
Ψ⃗
θ⃗

wi ðxÞ (32)

Now, from agent i’s perspective, rci þ γτmiV
Ψ⃗θ⃗
wi ðx0Þ is able

to offer a more accurate value prediction for the macro-
action mi, since both the reward, rci and the value function

V
Ψ⃗θ⃗
wi ðx0Þ depend on agent i’s macro-action termination. Also,

unlike the case in Naive Mac-IACC, other agents’ termi-
nations cannot lead to extra noisy estimated rewards w.r.t.mi

anymore, so the variance on policy gradient estimation gets
reduced. Then, updates for both the critic and the actor occur
when the corresponding agent’s macro-action ends and take
advantage of information sharing. Figure 5 shows an ex-
ample of the trajectory squeezing process in Mac-IAICC.

4. Experiments in simulation

We investigate the performance of our algorithms over a
variety of multi-robot problems with macro-actions
(Figure 6): Box Pushing (Xiao and Hoffman, n.d.), Over-
cooked (Wu et al., 2021b), and a larger Warehouse Tool
Delivery (Xiao and Hoffman, n.d.) domain. Macro-actions
are defined by using prior domain knowledge as they are
straightforward in these tasks. Typically, we also include
primitive actions in the macro-action set (as one-step macro-
actions), which gives agents the chance to learn more
complex policies that use both when it is necessary. The
horizon of each problem domain and environmental par-
titions and labels are not known to the agents. We describe
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the domains’ key properties here and have more details in
Appendix D.

4.1. Experimental setup

4.1.1. Box pushing (Figure 6(a)). Two robots are in an
environment with two small boxes and one large box. The
optimal solution is to cooperatively push the big box to the
yellow goal area for a terminal reward, but partial observ-
ability makes this difficult. Specifically, robots have four
primitive-actions: move forward, turn-left, turn-right, and
stay. In the macro-action case, each robot has three one-step
macro-actions: Turn-left, Turn-right, and Stay, as well as
three multi-step macro-actions: Move-to-small-box(i) and
Move-to-big-box(i) navigate the robot to the red spot below
the corresponding box and terminate with the robot facing the
box; Push causes the robot to keep moving forward until
arriving at the world’s boundary (potentially pushing the
small box or trying to push the big one). The big box only
moves if both robots push it together. Each robot can only
observe the status (empty, teammate, boundary, small, or big
box) of the cell in front of it. When any box is pushed to the
goal, the team receives a terminal reward (+300 for the big
box and +20 for each small box). A penalty is issued when
any robot hits the boundary or pushes the big box alone.

4.1.2. Overcooked (Figure 6(b) and (c)). Three robots must
learn to cooperatively prepare a lettuce-tomato-onion salad
and deliver it to the “star” cell. The challenge is that the
salad’s recipe (Figure 6(d)) is unknown to the robots. With
primitive actions (move up, down, left, right, and stay), robots
can move around and achieve picking, placing, chopping,
and delivering by standing next to the corresponding cell and
moving against it (e.g., in Figure 6(b), the pink robot can
move right and then move up to pick up the tomato). We
describe the major function of macro-actions below and full
details (e.g., termination conditions) are included in
Appendix D.1. Each robot’s macro-action set consists of: (a)

five one-step macro-actions that are the same as the primitive
ones; (b) Chop, cuts a raw vegetable into pieces when the
robot stands next to a cutting board and an unchopped
vegetable is on the board, otherwise it does nothing; (c) long-
term navigation macro-actions: Get-Lettuce, Get-Tomato,
Get-Onion, Get-Plate-1/2, Go-Cut-Board-1/2, and Deliver,
which navigate the robot to the location of the corresponding
object with various possible terminal effects (e.g., holding a
vegetable in hand, placing a chopped vegetable on a plate,
arriving at the cell next to a cutting board, delivering an item
to the star cell, or immediately terminating when any property
condition does not hold, e.g., no path is found or the
vegetable/plate is not found); (d)Go-Counter (only available
in Overcook-B, Figure 6(c)), navigates a robot to the center
cell in the middle of the map when the cell is not occupied,
otherwise, it moves to an adjacent cell. If the robot is holding
an object or one is in the cell, the object will be placed or
picked up. Each robot only observes the positions and status
of the entities within a 5 × 5 square centered on the robot. The
reward involves: +10 for chopping a vegetable into pieces,
+200 terminal reward for delivering a lettuce-tomato-onion
salad, �5 reward for delivering any wrong item that is then
reset to its initial position, and �0.1 for every time step.

4.1.3. Warehouse tool delivery (Figure 6(e)–6(h)). In each
workshop (e.g., W-0), a human is working on an as-
sembly task (involving four sub-tasks that each takes a
number of time steps to complete) and requires three
different tools for future sub-tasks to continue. A robot
arm (gray) must find tools for each human on the table
(brown) and pass them to mobile robots (green, blue and
yellow) who are responsible for delivering tools to hu-
mans. Note that, the correct tools needed by each human
are unknown to robots, which has to be learned during
training in order to perform efficient delivery. A delayed
delivery leads to a penalty. We consider variants with two
or three mobile robots and two to four humans to ex-
amine the scalability of our methods (Figure 6(f)–6(h)).

Figure 4. An example of the trajectory squeezing process in Naive Mac-IACC. The joint trajectory is first squeezed depending on joint
macro-action termination for training the centralized critic. Then, the trajectory is further squeezed for each agent depending on each
agent’s own macro-action termination for training the decentralized policy.
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We also consider one faster human (orange) to check if
robots can prioritize him (Figure 6(g)). Mobile robots
have the following macro-actions: Go-W(i), moves to the
waypoint (red) at workshop i; Go-TR, goes to the way-
point at the right side of the tool room (covered by the blue
robot in Figure 6(g) and (h)); and Get-Tool, navigates to
a pre-allocated waypoint (that is different for each robot
to avoid collisions) next to the robot arm and waits there
until either receiving a tool or 10 time steps have
passed. The robot arm’s applicable macro-actions are:
Search-Tool(i), finds tool i and places it in a staging
area (containing at most two tools) on the table, and
otherwise, it freezes the robot for the amount of time the
action would take when the area is fully occupied; Pass-
to-M(i), passes the first staged tool to mobile robot i;
and Wait-M, waits for 1 time step. The robot arm only
observes the type of each tool in the staging area and
which mobile robot is waiting at the adjacent waypoints.
Each mobile robot always knows its position and the
type of tool that it is carrying, and can observe the
number of tools in the staging area or the sub-task a
human is working on only when at the tool room or the
workshop, respectively. The team receives: +100 for
delivering a correct tool to a human on time, �20 for a
delayed delivery, �10 for the arm robot running Pass-
to-M(i) without the mobile robot i being next to it, and
�1 every time step.

4.2. Results

We evaluate performance of one training trial with a mean
discounted return measured by periodically (every 100
episodes) evaluating the learned policies over 10 testing
episodes. We plot the average performance of each method
over 20 independent trials with one standard error and
smooth the curves over 10 neighbors. We also show the
optimal expected return in Box Pushing domain as a dash-
dot line. To ensure a fair comparison over different ap-
proaches, we perform hyper-parameter tuning for methods
in each comparison under the same set of hyper-parameters,
and then, we choose the best performance of each method
depending on its final converged value as the first priority
and the sample efficiency as the second. More training
details are in Appendix E.

4.2.1. Advantage of learning with macro-actions. We first
present a comparison between our macro-action-based
methods and the primitive-action-based methods in fully
decentralized and fully centralized cases, and we show the
results of value-based methods and actor-critic methods in
Figures 7 and 8, respectively. The comparisons consider
various grid world sizes of the Box Pushing domain and two
Overcooked scenarios. The results show significant per-
formance improvements for using macro-actions over
primitive actions. More concretely, in the Box Pushing

Figure 5. An example of the trajectory squeezing process in Mac-IAICC: each agent learns an individual centralized critic for the
decentralized policy optimization. To better utilize centralized information, each agent’s critic should receive all the valid joint macro-
observation-action history (when any agent terminates its macro-action and obtains a new joint macro-observation). However, the critic’s
TD updates and the policy’s updates still rely on each agent’s individual macro-action termination and the accumulative reward at the
corresponding time steps. Hence, the trajectory squeezing process for training each critic still depends on joint-macro-action
termination but only retaining the accumulative rewards w.r.t. the corresponding agent’s macro-action termination for computing the TD
loss (the middle part in the above picture). Then, each agent’s trajectory is further squeezed depending on its macro-action termination to
update the decentralized policy.
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domain, reasoning about primitive movements at every time
step makes the problem intractable so the robots cannot
learn any good behaviors in primitive-action-based ap-
proaches other than to keep moving around. Conversely,
Mac-Cen-Q (solid brown) and Mac-CAC (solid orange)
reach near-optimal performance, enabling the robots to
push the big box together. Unlike the centralized critic
which can access joint information, even in the macro-
action case, it is hard for each robot’s on-policy decen-
tralized critic to correctly measure the responsibility for a
penalty caused by a teammate pushing the big box alone.
Mac-IAC (solid blue) thus converges to a local optimum of
pushing two small boxes in order to avoid getting the
penalty. Mac-Dec-Q (solid purple) learns slowly at the
early stage, but, as an off-policy learning approach, it takes
advantage of the replay buffer to re-visit the good expe-
rience of pushing the big box and eventually achieves near-
optimal performance.

In the Overcooked domain, an efficient solution requires
the robots to asynchronously work on independent subtasks
(e.g., in scenario A, one robot gets a plate while another two
robots pick up and chop vegetables; and in scenario B, the
right robot transports items while the left two robots prepare
the salad). This large amount of independence explains why
Mac-Dec-Q (solid purple) and Mac-IAC (solid blue) can
solve the task well. This also indicates that using local
information is enough for robots to achieve high-quality

behaviors. As a result, Mac-Cen-Q (solid brown) and Mac-
CAC (solid orange) learn slower because they must figure
out the redundant part of joint information in much larger
joint macro-level history and action spaces than the spaces
in the decentralized case. The primitive-action-based
methods begin to learn but perform poorly in such long-
horizon tasks.

4.2.2. Property analysis of macro-action-based CTDE
Q-learing. Figure 9 shows the results of three variants of
our macro-action-based CTDE Q-learning algorithm,
MacDec-DDRQN: (a) with centralized exploration as the
default; (b) with decentralized exploration (Dec-Explore);
(c) with parallel environments (Parallel) compared with our
fully decentralized method (MacDec-Q) and fully central-
ized method (MacCen-Q).

In the Box Pushing domain, the key sequential coop-
erative behavior such as going to the big box and pushing it
at the same moment is much easier to be generated from the
centralized perspective than the decentralized way. Thus,
relying on centralized exploration, MacDec-DDRQN ach-
ieves near-centralized performance and better sample effi-
ciency than fully decentralized learning, MacDec-Q. The
joint Q-value function learned in Dec-Explore is purely
based on decentralized data, so it fails to provide better
target actions for decentralized policy updates. The failure
of Parallel shows that, in this particular domain, having a

Figure 6. Experimental environments.

Figure 7. Value-based approaches with macro-actions versus primitive-actions.
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well-trained joint Q-value function from a separate envi-
ronment but without the centralized cooperative behavior
data may hurt the learning on decentralized policies.

Due to the aforementioned attribute of the independence
in subtasks solving over agents, in the Overcooked domain,
MacDec-Q performs the best while MacCen-Q leans slowly
because of the huge joint-macro-action space (153). The
variants of our CTDE-based approaches, therefore, cannot
learn high-quality solutions, as they all rely on the guidance
from the trained joint Q-value function (refer to the argmax
operator in equation (24)).

In the warehouse domain, Mac-Dec-Q cannot solve this
problem well due to its natural limitations and the domain’s
partial observability. In particular, it is difficult for the gray
robot (arm) to learn an efficient way to find the correct tools
purely based on local information and very delayed rewards
that depend on the mobile robots’ behaviors. Take advan-
tage of join information over agents, MacCen-Q eventually
outperforms all other methods. The Parallel way achieves
significant improvement while learning decentralized pol-
icies. The failure of Dec-Explore and MacDec-DDRQN
with centralized exploration demonstrates the necessity of
using centralized data to achieve well-trained joint Q-value
functions as well as the importance of having realistic
decentralized data for decentralized policy training, which
are attained in a Parallel manner.

4.2.3. Advantage of having individual centralized
critics. Figure 10 shows the evaluation of our methods in
all three domains. As each agent’s observation is extremely
limited in Box Pushing, we allow centralized critics in both
Mac-IAICC and Naive Mac-IACC to access the state
(agents’ poses and boxes’ positions), but use the joint
macro-observation-action history in the other two domains.

In the Box Pushing task (the left two at the top row in
Figure 10), Naive Mac-IACC (green) can learn policies
almost as good as the ones for Mac-IAICC (red) for the
smaller domain, but as the grid world size grows, Naive
Mac-IACC performs poorly while Mac-IAICC keeps its
performance near the centralized approach. From each
agent’s perspective, the bigger the world size is, the more
time steps a macro-action could take, and the less accurate
the critic of Naive Mac-IACC becomes since it is trained
depending on any agent’s macro-action termination. Con-
versely, Mac-IAICC gives each agent a separate centralized
critic trained with the reward associated with its own macro-
action execution.

In Overcooked-A (the third one at the top row in
Figure 10), as Mac-IAICC’s performance is determined by
the training of three agents’ critics, it learns slower than
Naive Mac-IACC in the early stage but converges to a
slightly higher value and has better learning stability than
Naive Mac-IACC in the end. The result of scenario B (the
last one at the top row in Figure 10) shows that Mac-IAICC
outperforms other methods in terms of achieving better

Figure 8. Actor-critic approaches with macro-actions versus primitive-actions.

Figure 9. Comparison of value-based methods with macro-
actions.
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sample efficiency, a higher final return and a lower variance.
The middle wall in scenario B limits each agent’s moving
space and leads to a higher frequency of macro-action
terminations. The shared centralized critic in Naive Mac-
IACC thus provides more noisy value estimations for each
agent’s actions. Because of this, Naive Mac-IACC performs
worse with more variance. Mac-IAICC, however, does not
get hurt by such environmental dynamics change. Both
Mac-CAC and Mac-IAC are not competitive with Mac-
IAICC in this domain.

In the Warehouse scenarios (the bottom row in
Figure 10), Mac-IAC (blue) performs the worst due to the
same reason as MacDec-Q mentioned above. In contrast, in
the fully centralized Mac-CAC (orange), both the actor and
the critic have global information so it can learn faster in the
early training stage. However, Mac-CAC eventually gets
stuck at a local optimum in all five scenarios due to the
exponential dimensionality of joint history and action
spaces over robots. By leveraging the CTDE paradigm, both
Mac-IAICC and Naive Mac-IACC perform the best in
warehouse A. Yet, the weakness of Naive Mac-IACC is
clearly exposed when the problem is scaled up in Ware-
house B, C, and D. In these larger cases, the robots’
asynchronous macro-action executions (e.g., traveling be-
tween rooms) become more complex and cause more
mismatching between the termination from each agent’s
local perspective and the termination from the centralized
perspective, and therefore, Naive Mac-IACC’s performance
significantly deteriorates, even getting worse than Mac-IAC
in Warehouse-D. In contrast, Mac-IAICC can maintain its
outstanding performance, converging to a higher value with
much lower variance, compared to other methods. This
outcome confirms not only Mac-IAICC’s scalability but
also the effectiveness of having an individual critic for each
agent to handle variable degrees of asynchronicity in
agents’ high-level decision-making.

4.2.4. Comparative analysis between actor-critic and value-
based approaches in decentralized and centralized training
paradigms. Here, we compare our actor-critic methods
(Mac-IAC and Mac-CAC) with the value-based approaches
(Mac-Dec-Q and Mac-Cen-Q), shown in Figure 11. As
aforementioned, the Box Pushing task requires agents to
simultaneously reach the big box and push it together. This

Figure 10. Comparison of macro-action-based asynchronous actor-critic methods.

Figure 11. Comparisons of macro-action-based decentralized and
centralized methods.
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consensus is rarely achieved when agents independently
sample actions using stochastic policies in Mac-IAC and
it is hard to learn from pure on-policy data. By having a
replay buffer, value-based approaches show much
stronger sample efficiency than on-policy actor-critic
approaches in this domain with a small action space
(the first row in Figure 11). Such an advantage is sus-
tained by the decentralized value-based method (Mac-
Dec-Q) but gets lost in the centralized one (Mac-Cen-Q)
in the Overcooked domains due to a huge joint macro-
action space (153) (the middle row in Figure 11). On the
contrary, our actor-critic methods can scale to large do-
mains and learn high-quality solutions. This is particu-
larly noticeable in Warehouse-A, where the policy
gradient methods quickly learn a high-quality policy
while the centralized Mac-Cen-Q is slow to learn and the
decentralized Mac-Dec-Q is unable to learn. In addition,
the stochastic policies in actor-critic methods potentially
have a better exploration property so that, in Warehouse
domains, Mac-IAC can bypass an obvious local-optima
that Mac-Dec-Q falls into, where the robot arm greedily
chooses Wait-M to avoid more penalties.

4.2.5. Comparative analysis between actor-critic and value-
based approaches in CTDE paradigm. We also conduct
comparisons between our CTDE-based actor-critic method
(Mac-IAICC) and our CTDE-base Q-learning methods
(MacDec-DDRQN and Parallel-MacDec-DDRQN). In the
Box Pushing task, we consider MacDec-DDRQN with a
centralized ϵ-greedy policy for exploration, as it performs
the best referred to Figure 10. Taking advantage of a replay
buffer, MacDec-DDRQN learns much faster than Mac-
IAICC (shown in the top row in Figure 12). Although
Mac-IAICC possesses a centralized critic to provide a
global action-value estimation, its overall performance is
still limited by the on-policy data generated only in de-
centralized execution, where the bigger the world is, the
lower the probability for sampling the aforementioned
cooperation would be.

In the Overcooked domain, Parallel-MacDec-DDRQN
cannot learn any good behaviors, which makes sense as
fully decentralized learning has solved this problem very
well (as shown in Figure 11). Also, in Figure 11, we have
seen that the centralized Q-function learns quite slowly

due to the huge joint macro-action space, so it becomes
the bottleneck in Parallel-MacDec-DDRQN such that it
cannot offer a good target action for optimizing decen-
tralized action-value functions and hurts the learning (the
top row in Figure 13). Mac-IAICC successfully avoids
the dilemma of the exponential joint action space by
letting each agent learn an individual joint history-value
function as the critic.

The results in Figure 10 have proved the necessity of
having parallel environments to learn different Q-value
functions in solving the warehouse task, we thus con-
sider Parallel-MacDec-DDRQN in two warehouse scenar-
ios and show the comparison with Mac-IAICC in Figure 13.
According to the results of Mac-Dec-Q (purple curve)
shown in Figure 11, we can conclude that the centralized Q-
value function involved in Parallel-MacDec-DDRQN pre-
vents the decentralized policies from a very bad local op-
timum. But eventually, the learned decentralized policies
converge to another local optimum. We suspect the way of
using the centralized Q-net to optimize decentralized pol-
icies (as in equation (24)) limits the improvement. One
hypothesis is that the target action suggested by the cen-
tralized Q-net conditioning on joint information actually
cannot always be reproduced by the decentralized Q-nets
conditioning on only local information. Finally, Mac-
IAICC’s leading performance over three scenarios further
demonstrates its strong scalability to large and long-horizon
problems.

5. Experiments on hardware

5.1. Experimental setup

While evaluating the proposed approaches in simulation,
we also extend the environment of Warehouse-A

Figure 12. Comparisons of Mac-IAICC and MacDec-DDRQN.

Figure 13. Comparisons of Mac-IAICC and parallel-MacDec-
DDRQN.
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(Figure 6(e)) to a hardware domain. Figure 14 provides an
overview of the real-world experimental setup. An open
area is divided into regions: a tool room, a corridor, and
two workshops, to resemble the configuration shown in
Figure 6(e). This mission involves one Fetch Robot (Wise
et al., 2016) and two Turtlebots (Koubaa et al., 2016) to
cooperatively find and deliver three YCB tools (Calli
et al., 2015), in the order: a tape measure, a clamp, and an
electric drill, required by each human in order to assemble
an IKEA table. This real-world setup mirrors the simu-
lated environment (Figure 6(e)) in a certain ratio in terms
of warehouse dimensions and robot execution speeds. In
the experiments, we train decentralized policies in the

simulator and then deploy them on the real robots under
the following two scenarios separately: (A) two humans
work at the same speed on their assembly tasks; (B) the
human in workshop-0 is faster than the other human on
the assembly task.

5.2. Results

Figure 15 shows the sequential collaborative behaviors of
the robots in one hardware trial under scenario A. Fetch
was able to find tools in parallel such that two tape
measures (Figure 15(a)), two clamps (Figure 15(b)), and
two electric drills, were found instead of finding all three
types of tool for one human and then moving on to the
other which would result in one of the humans waiting.
Fetch’s efficiency is also reflected in the behaviors such
that it passed a tool to the Turtlebot that arrived first
(Figure 15(b)) and continued to find the next tool when
there was no Turtlebot waiting beside it (Figure 15(c)).
Meanwhile, Turtlebots were clever such that they suc-
cessfully avoided delayed delivery by sending tools one
by one to the nearby workshop (e.g., T-0 focused on W-0
shown in Figures 15(b) and 15(d), and T-1 focused on W-
1 shown in Figure 15(c)), rather than waiting for all tools
before delivering, traveling a longer distance to serve the
human at the diagonal, or prioritizing one of the humans
altogether.Figure 14. Overview of Warehouse-A hardware domain.

Figure 15. Collaborative behaviors generated by running the decentralized policies learned byMac-IAICC in scenario A. Turtlebot-0 (T-
0) is bounded in red and Turtlebot-1 (T-1) is bounded in blue. (a) After staging a tape measure at the left, Fetch looks for the second one
while Turtlebots approach the table; (b) T-0 delivers a tap measure to W-0 and T-1 waits for a clamp from Fetch; (c) T-1 delivers a clamp
toW-1, while T-0 carries the other clamp and goes to W-0, and Fetch searches for an electric drill; (d) T-0 delivers an electric drill (the last
tool) to W-0 and the entire delivery task is completed.

Xiao et al. 17



Figure 16 shows more complex and interesting collab-
orative behaviors under scenario B, where the team of
robots prioritized the faster human (with a black shirt) and
successfully delivered all tools in time. More concretely,

Fetch was smart to successively find a tape measure
(Figure 16(a)) and a clamp (Figure 16(b)) for the faster
human first, followed by passing one tool to each Turtlebot,
which gave Turtlebots a chance to deliver the tools

Figure 16. Collaborative behaviors generated by running the decentralized policies learned byMac-IAICC in scenario B. Turtlebot-0 (T-
0) is bounded in red and Turtlebot-1 (T-1) is bounded in blue. (a) Fetch passes a tape measure to T-1 and T-0 is waiting for a tool; (b) T-1
delivers a tape measure to W-0, while Fetch is passing a clamp to T-0; (c) T-0 delivers a clamp to W-0 and Fetch is passing the other tape
measure to T-1; (d) T-1 delivers a tape measure to W-1, while T-0 returns the tool room; (e) T-0 sends an electric drill to W-0 and the faster
human obtains all required tools, while Fetch finds the other clamp; (f) T-0 arrives at W-1 to observe the slower human’s status, and
Fetch passes the clamp to T-1; (g) T-1 delivers a clamp toW-1, and T-0 waits beside Fetch; (h) T-0 delivers an electric drill (the last tool) to
the slower human and the entire delivery task is completed.
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separately (Figure 16(b) and (c)) rather than letting only one
Turtlebot send both tools that would lead to the human
pausing there. Interestingly, instead of finding the third tool
for the faster human, Fetch realized that it had to find the
other tape measure (Figure 16(c)) to avoid a delayed de-
livery to the slower human, and then T-0 who received the
tape measure from Fetch immediately transported it to the
slower human (Figure 16(d)). Meanwhile, Fetch had staged
the last tool, an electric drill (Figure 16(d)), that the faster
human needed, and T-1 carried it to the W-0 at the right time
(Figure 16(e)). After observing the faster human had re-
ceived all necessary tools, T-1 was impressively clever such
that it first went to W-1 to check the human’s status
(Figure 16(f)) and then collaborate with T-0 to assist the
slower human together: T-0 conveyed the other clamp
(Figure 16(g)) and T-1 eventually delivered the other
electric drill (Figure 16(h)).

6. Related work

To scale up learning in MARL problems, hierarchy has
been introduced into multi-agent scenarios. One line of
hierarchical MARL is still focusing on learning
primitive-action-based policy for each agent while
leveraging a hierarchical structure to achieve knowledge
transfer (Yang et al., 2021), credit assignment (Ahilan and
Dayan, 2019), and low-level policy factorization over
agent (Vezhnevets et al., 2020). In these works, as the
decision-making over agents is still limited at the low-
level, none of them has been evaluated in large-scale
realistic domains. Instead, by having macro-actions, our
methods equip agents with the potential capability of
exploiting abstracted skills, sub-task allocation, and
problem decomposition via hierarchical decision-
making, which is critical for scaling up to real-world
multi-robot tasks.

Another line of the research allows agents to learn
both a high-level policy and a low-level policy, but the
methods either force agents to perform a high-level
choice at every time step (de Witt et al., 2019; Han
et al., 2019) or require all agents’ high-level decisions
have the same time duration (Nachum et al., 2019; Wang
et al., 2020b, 2021a; Xu et al., 2021; Yang et al., 2020a),
where agents are actually synchronized at both levels. In
contrast, our frameworks are more general and appli-
cable to real-world multi-robot systems because they
allow agents to asynchronously execute at a high level
without synchronization or waiting for all agents to
terminate.

Recently, some asynchronous hierarchical approaches
have been developed. Wu et al., 2021a extend Deep Q-
Networks (Mnih et al., 2015) to learn a high-level pixel-
wise spatial-action-value map for each agent in a fully
decentralized learning way. Our work, however, accepts
any representations of high-level actions. Menda et al.
(2019) frame multi-agent asynchronous decision-making
problems as event-driven processes with one assumption

on the acceptable of losing the ability to capture low-level
interaction between agents within an event duration and
the other on homogeneous agents, but our frameworks
rely on the time-driven simulator used for general multi-
agent and single-agent RL problems and do not have the
above assumptions. Chakravorty et al. (2019) adapt a
single-agent option-critic framework (Bacon et al., 2017)
to multi-agent domains to learn all components (e.g., low-
level policy, high-level abstraction, high-level policy)
from scratch, but learning at both levels is difficult and
the proposed method does not perform well even in small
TeamGrid (Maxime and Julien, 2020) scenarios. Yu et al.
(2023) directly extend MAPPO (Yu et al., 2022) to Dec-
POSMDPs (Omidshafiei et al., 2017a), but the proposed
framework is limited to homogeneous robots and they
only consider spatial goal positions as macro-actions in
navigation domains. Instead, our methods allow het-
erogeneous robots and accept any type of macro-actions.
More important to note is that none of the existing works
provides a general asynchronous and hierarchical multi-
agent reinforcement learning framework to solve multi-
agent problems with macro-actions under partial
observability.

7. Conclusion

In this paper, we consider fully cooperative multi-agent
systems where agents are allowed to asynchronously
execute macro-actions under partial observability. Such
asynchronicity matches the nature of real-world multi-
robot behavior, and it also raises the key challenge of
when to perform updates and what information to
maintain in MARL with macro-actions. To address this
challenge, we introduce the first formulation and ap-
proaches to extend deep Q-nets for learning decentralized
and centralized macro-action-value functions, together
with two new replay-buffers, Mac-CERTs and Mac-
JERTs, to correctly capture agents’ sequential macro-
action-based experiences for asynchronous policy up-
dates. These two approaches build up the base for de-
veloping MARL algorithms with macro-actions. Next,
we present MacDec-DDRQN and Parallel-MacDec-
DDRQN, the first set of value-based frameworks
achieving CTDE with macro-actions, to learn better
decentralized policies for solving complex tasks.

Since value-based algorithms do not scale well to large
action spaces, we further formulated a set of macro-
action-based actor-critic algorithms that allow agents to
asynchronously optimize parameterized policies via
policy gradients: a decentralized actor-critic method
(Mac-IAC), a centralized actor-critic method (Mac-
CAC), and two CTDE-based actor-critic methods (Na-
ive Mac-IACC and Mac-IAICC). These are the first
approaches to be able to incorporate controllers that may
require different amounts of time to complete (macro-
actions) in a general asynchronous multi-agent actor-
critic framework.
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Empirically, our methods are able to learn high-
quality macro-action-based policies, allowing agents
to perform asynchronous collaborations in a variety of
multi-robot domains. Importantly, our most advanced
method, Mac-IAICC, demonstrates its strong scalability
and efficiency by achieving outstanding performance in
long-horizon and large domains over other methods.
Additionally, the practicality of Mac-IAICC is validated
in a real-world multi-robot setup based on the warehouse
domain.

Our formalism and methods open the door for other
macro-action-based multi-agent reinforcement learning
methods ranging from extensions of other current
methods to new approaches and domains. We expect
even more scalable learning methods that are feasible
and flexible enough in solving realistic multi-robot
problems.
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Note

1. Our approach could also be applied to other models with
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Appendix

A. Appendix

A.1. Macro-action-based policy gradient theorem. As
POMDPs can always be transformed to history-based
MDPs, we can directly adapt the general Bellman equa-
tion for the state values of a hierarchical policy (Sutton et al.,
1999) to a macro-action-based POMDP by replacing the
state s with a history h as follows (for keeping the notation
simple, we use τ to represent the number of time steps taken
by the corresponding macro-action m, and we use h to
represent macro-observation-action history):

VΨðhÞ ¼
X
m

ΨðmjhÞQΨðh,mÞ (33)

QΨðh,mÞ ¼ rcðh,mÞ þ
X
h0
Pðh0jh,mÞVΨðh0Þ (34)

where

rcðh,mÞ ¼ Eτ ∼ βm , stmjh
Xtmþτ�1

t¼tm

γtrt

" #
(35)

Pðh0jh,mÞ¼Pðz0jh,mÞ¼
X∞
τ¼1

γτPðz0,τjh,mÞ (36)

¼
X∞
τ¼1

γτPðτjh,mÞPðz0jh,m, τÞ (37)

¼
X∞
τ¼1

γτPðτjh,mÞPðz0jh,m, τÞ (38)

¼Eτ∼βm γτEsjh Es0 js,m,τ½Pðz0jm,s0Þ�
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(39)

Next, we follow the proof of the policy gradient theorem
(Sutton et al., 2000):
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¼ Eh∼ ρΨθ ,m∼Ψθ
=θ logΨθðmjhÞQΨθðh,mÞ� �

(49)

B. Theoretical analysis on trajectory squeezing

We provide a theoretical analysis about the idea of
squeezing sequential experience based on the termination of
macro-actions and the macro-action-based policy optimi-
zation in our proposed methods. Let us use the example
given in Amato et al. (2019) and perform a further deri-
vation. We consider a two-agent joint macro-action-based

policy Ψ⃗ and agents begins with macro-actions hm1, m2i at
state s, we can have

QΨ⃗ðm1,m2, sÞ ¼
X
o1, o2

Oðo1, o2, a1, a2, sÞ

�
X
a1, a2
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h
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(50)
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(55)

For simplicity, the above example uses single observa-
tion instead of observation-action history, which can be
easily extended to the history case. If we continue unrolling
the “neither terminate” component, like QΨ⃗ðm1,m2, s0Þ in
equation (2), we will eventually have

QΨ⃗ðm1,m2,sÞ¼Rðm1,m2,sÞ
þ

X
s0,o01,o

0
2

pm1,m2
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0
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1
,m0

2
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1,m

0
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0Þ

(56)

where

Rðm1,m2, sÞ ¼E½R1 þ γR2 þ/þ γτ�1Rτ j
S0 ¼ s,A1ð0 : τ�1Þ ∼ πm1,A2ð0 : τ�1Þ ∼ πm2�

(57)

pm1,m2
s, o1, o2, s0, o01, o

0
2
¼

X∞
τ¼1

γτpðs0, τÞOðo01, o02, s0Þ (58)

where p s0, τð is the probability that the joint macro-action
terminates in s0 after k steps.

Therefore, according to equation (57), we choose to squeeze
experience in both decentralized and centralized learning ap-
proaches; according to equations (52)–(55), we define termi-
nation of a joint macro-action as when any agent’s macro-action
is completed; according to equation (56), the single agent op-
timal value functions and optimal Bellman equations to options
and to policies over options. Sutton et al. (1999) can be easily
extended to both decentralized policy and centralized policy
optimization in our cases.

Note that, the algorithms proposed in this paper do not
explicitly keep the time information, but during learning,
the observations and rewards are sampled with the proba-
bility in the above equations. Thus, we are still evaluating
policies correctly. It would be an interesting future research
direction to develop methods that remember the time in-
formation, which would end up with a richer policy class
and could potentially do better than our squeezing approach.
Future methods could keep track of times steps or macro-
observations at each step but this would also be more
complicated. Our approach is correct (i.e., it can learn ac-
curate values for macro-action policies), but other choices
are possible that use more (or less) information.

C. Asynchronous actor-critic algorithms

In this section, we present the pseudo code of each
proposed macro-action-based actor-critic algorithm. We
describe all methods in the on-policy learning manner while
off-policy learning can be achieved by applying importance
sampling weights and not resetting the buffer.
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Macro-Action-Based Independent Actor-Critic (Mac-IAC):

Macro-Action-Based Centralized Actor-Critic (Mac-CAC):

where m⃗undone is the sub-joint-macro-action over the
agents who have not terminated their macro-actions and will
continue running.

Naive Mac-IACC:

In the pseudo code of Naive Mac-IACC presented
below, we assume the accessible centralized information x
is joint macro-observation-action history in the centralized
critic.
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Macro-Action-Based Independent Actor with Individual Centralized Critic (Mac-IAICC):
In the pseudo code of Mac-IAICC presented below, we assume the accessible centralized information x is joint

macro-observation-action history in the centralized critic.
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D. Domain descriptions

D.1. Box Pushing. Goal. The objective of the two robots
is to learn collaboratively push the middle big box to the
goal area at the top rather than pushing (Figure 17) a small
box on each own.

State Space (S). The global state information consists of
the position and orientation of each robot and each box’s
position in a grid world.

Primitive-Action Space (A). Move forward, turn-left,
turn-right, and stay.

Macro-Action Space (M).
• One-step macro-actions: Turn-left, Turn-right, and

Stay.
• Multi-step macro-actions: Move-to-small-box(i) that

navigates the robot to the red spot below the corresponding
small box and terminates with robot facing the box; Move-
to-big-box(i) that navigates the robot to a red spot below the
big box and terminate with robot facing the big box; Push
that operates the robot to keep moving forward and ter-
minate while arriving the world’s boundary, touching the
big box along or pushing a small box to the goal.

Observation Space (O and Z). In both the primitive-
observation and macro-observation, each robot is only al-
lowed to capture one of five states of the cell in front of it:
empty, teammate, boundary, small box, big box.

Dynamics (T). The transition in this task is deterministic.
Boxes can only be moved toward the north when the robot
faces the box and moves forward. The small box can be
moved by a single robot while the big box requires two
robots to move it together.

Rewards (R). The team receives +300 for pushing big
box to the goal area and +20 for pushing a small box to the
goal area. A penalty �10 is issued when any robot hits the
boundary or pushes the big box on its own.

Episode Termination. Each episode terminates when
any box is pushed to the goal area, or when 100 time steps
have elapsed.

D.2. Overcooked. Goal. Three robots need to learn
cooperating with each other to prepare a Tomato-Lettuce-
Onion salad and deliver it to the “star” counter cell as soon
as possible. The challenge is that the recipe of making a

tomato-lettuce-onion salad is unknown to robots. Robots
have to learn the correct procedure in terms of picking up
raw vegetables, chopping, and merging in a plate before
delivering.

State Space (S). The environment is a 7 × 7 grid world
involving three robots, one tomato, one lettuce, one onion,
two plates, two cutting boards, and one delivery cell. The
global state information consists of the positions of each
robot and above items, and the status of each vegetable:
chopped, unchopped, or the progress under chopping.

Primitive-Action Space (A). Each robot has five
primitive-actions: up, down, left, right and stay. Robots can
move around and achieve picking, placing, chopping and
delivering by standing next to the corresponding cell and
moving against it (e.g., in Figure 18(a), the pink robot can
move right and then move up to pick up the tomato).

Macro-Action Space (M). Here, we first describe the
main function of each macro-action and then list the cor-
responding termination conditions.

· Five one-step macro-actions that are the same as the
primitive ones;

· Chop, cuts a raw vegetable into pieces (taking three time
steps) when the robot stands next to a cutting board and
an unchopped vegetable is on the board, otherwise it
does nothing; and it terminates when:
– The vegetable on the cutting board has been chopped

into pieces;
– The robot is not next to a cutting board;
– There is no unchopped vegetable on the cutting

board;
– The robot holds something in hand.

· Get-Lettuce, Get-Tomato, and Get-Onion, navigate the
robot to the latest observed position of the vegetable, and
pick the vegetable up if it is there; otherwise, the robot
moves to check the initial position of the vegetable. The
corresponding termination conditions are listed below:
– The robot successfully picks up a chopped or un-

chopped vegetable;
– The robot observes the target vegetable is held by

another robot or itself;
– The robot is holding something else in hand;
– The robot’s path to the vegetable is blocked by an-

other robot;
– The robot does not find the vegetable either at the

latest observed location or the initial location;
– The robot attempts to enter the same cell with another

robot, but has a lower priority than another robot.
· Get-Plate-1/2, navigates the robot to the latest observed

position of the plate, and picks the vegetable up if it is
there; otherwise, the robot moves to check the initial
position of the vegetable. The corresponding termination
conditions are listed below:
– The robot successfully picks up a plate;
– The robot observes the target plate is held by another

agent or itself;
– The robot is holding something else in hand;Figure 17. Experimental environments.
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– The robot’s path to the plate is blocked by another
robot;

– The robot does not find the plate either at the latest
observed location or at the initial location;

– The robot attempts to enter the same cell with another
robot but has a lower priority than another robot.

· Go-Cut-Board-1/2, navigates the robot to the corre-
sponding cutting board with the following termination
conditions:
– The robot stops in front of the corresponding cutting

board, and places an in-hand item on it if the cutting
board is not occupied;

– If any other robot is using the target cutting board, the
robot stops next to the teammate;

– The robot attempts to enter the same cell with another
robot but has a lower priority than another robot.

· Go-Counter (only available in Overcook-B,
Figure 6(c)), navigates the robot to the center cell in
the middle of the map when the cell is not occupied,
otherwise it moves to an adjacent cell. If the robot is
holding an object the object will be placed. If an object is
in the cell, the object will be picked up.

· Deliver, navigates the robot to the “star” cell for de-
livering with several possible termination conditions:
– The robot places the in-hand item on the cell if it is

holding any item;
– If any other robot is standing in front of the “star”

cell, the robot stops next to the teammate;
– The robot attempts to enter the same cell with another

robot, but has a lower priority than another robot.

Observation Space (O and Z): The macro-observation
space for each robot is the same as the primitive observation
space. Robots are only allowed to observe the positions and
status of the entities within a 5 × 5 view centered on the robot.
The initial positions of all the items are known to robots.

Dynamics (T): The transition in this task is deter-
ministic. If a robot delivers any wrong item, the item will
be reset to its initial position. From the low-level per-
spective, to chop a vegetable into pieces on a cutting
board, the robot needs to stand next to the cutting board
and execute left three times. Only the chopped vegetable
can be put on a plate.

Reward (R): +10 for chopping a vegetable, +200 terminal
reward for delivering a tomato-lettuce-onion salad, �5 for
delivering any wrong entity, and �0.1 for every time step.

Episode Termination: Each episode terminates either
when robots successfully deliver a tomato-lettuce-onion
salad or reach the maximal time steps, 200.

D.3. Warehouse tool delivery. In this Warehouse Tool
Delivery domain, we consider four different scenarios
shown in Figure 19 with many variants in terms of both the
number of robots and the number of humans as well as
having faster human (orange) in the environment.

Goal. Under all scenarios, in each workshop, a human
is working on an assembly task involving four subtasks
to be finished (each subtask takes amount of primitive
time steps). At the beginning, each human has already
got the tool for the first subtask and immediately starts. In
order to continue, the human needs a particular tool for
each following subtask. In the scenarios, humans either
work in the same speed (Figures 19(a), 19(b), 19(d)) or
have one of them working faster (the orange one in
Figures 19(c) and 19(e)). A team of robots includes a
robot arm (gray) with the duty of finding tools for each
human on the table (brown) and passing them to mobile
robots (green, blue and yellow) who are responsible for
delivering tools to the humans. The objective of the
robots is to assist the humans to finish their assembly
tasks as soon as possible by finding and delivering the
correct tools in the proper order. To make this problem
more challenging, the correct tools needed by each hu-
man are unknown to robots, which has to be learned
during training in order to perform timely delivery
without letting humans wait.

State Space (S). The environment is either a 5 × 7
(Figures 19(a) and (e)) or a 5 × 9 (Figures 19(b)–(d))
continuous space. A global state consists of the 2D position
of each mobile robot, the execution status of the arm robot’s
current macro-action (e.g., how many steps are left for
completing the macro-action, but in real-world, this should
be the angle and speed of each arm’s joint), the subtask each
human is working with a percentage indicating the progress
of the subtask, and the position of each tool (either on the
brown table or carried by a mobile robot). The initial state of
every episode is deterministic as shown in Figure 19, where
humans always start from the first step.

Macro-Action Space (M).
The available macro-actions for each mobile robot include:
• Go-W(i) navigates to the red waypoint at the corre-

sponding workshop;

Figure 18. Experimental environments.
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• Go-TR navigates to the red waypoint (covered by the
blue robot in Figures 19(c) and (d)) at the right side of the
tool room;

• Get-Tool navigates to a pre-allocated waypoint besides
the arm robot and waits over there until either 10 time steps
have passed or received a tool from the gray robot.

The available macro-actions for the arm robot include:
• Search-Tool(i) takes 6 time steps to find tool i and place

it in a staging area (containing at most two tools) when the
area is not fully occupied, otherwise freezes the robot for the
same amount of time;

• Pass-to-M(i) takes 4 time steps to pass the first found
tool to a mobile robot from the staging area;

• Wait-M takes 1 time step to wait for mobile robots
coming.

Macro-Observation Space (Z).
The arm robot’s macro-observation includes the infor-

mation about the type of each tool in the staging area and
which mobile robot is waiting beside.

Each mobile robot always observes its own position and
the type of each tool carried by itself, while observing the
number of tools in the staging area or the subtask a human
working on only when locating at the tool room or the
workshop, respectively.

Dynamics (T). Transitions are deterministic. Each mo-
bile robot moves in a fixed velocity 0.8 and is only allowed

to receive tools from the arm robot rather than from
humans. Note that each human is only allowed to possess
the tool for the next subtask from a mobile robot when the
robot locates at the corresponding workshop and carries
the correct tool. Humans are not allowed to pass tools
back to mobile robots. There are enough tools for humans
on the table in the tool room, such that the number of each
type of tool exactly matches the number of humans in the
environment. Humans cannot start the next subtask
without obtaining the correct tool. Humans’ dynamics on
their tasks are shown in Table 1.

Rewards (R). The team receives a +100 reward when a
correct tool is delivered to a human in time while getting

Figure 19. Experimental environments.

Table 1. The Number of Time Steps Taken by Each Human on Each Subtask in Scenarios.

Scenarios Warehouse-A Warehouse-B Warehouse-C Warehouse-D

Human-0 [27,20,20,20] [40,40,40,40] [38,38,38,38] [40,40,40,40]
Human-1 [27,20,20,20] [40,40,40,40] [38,38,38,38] [40,40,40,40]
Human-2 N/A [40,40,40,40] [27,27,27,27] [40,40,40,40]
Human-3 N/A N/A N/A [40,40,40,40]

Table 2. Number of Neurons on Each Layer in Networks for All
Methods in Domains.

Domain
Box

pushing Overcooked Warehouse

Actor & Critic
& Q-network Dec Cen Dec Cen Dec Cen

MLP-1 32 32 32 128 32 32
MLP-2 32 32 32 128 32 32
GRU 32 64 32 64 32 64
MLP-3 32 32 32 64 32 32
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an extra �20 penalty for a delayed delivery such that the
human has paused over there. A �10 reward occurs when
the gray robot does Pass-to-M(i) but the mobile robot i is
not next to it, and a �1 reward is issued every time step.

Episode Termination. Each episode terminates when all
humans obtain all the correct tools for all subtasks, other-
wise, the episode will run until the maximal time steps
(200 for Warehouse-A and E, 250 for Warehouse-B and C,
300 for Warehouse-D).

E. Training details

Our results are generated by running on a cluster of
computer nodes under “CentOS Linux” operating system. We

use the CPUs including “Dual Intel Xeon E5-2650,” “Dual
Intel Xeon E5-2680 v2,” “Dual Intel Xeon E5-2690 v3.”

E.1. Network architecture. For all domains, all methods
apply the same neural network architecture for both actor &
critic network and Q-network. Each of them consists of two
fully connected (FC) layers with Leaky-Relu activation
function, one GRU layer (Cho et al., 2014) and one more FC
layer followed by an output layer. The number of neurons in
each layer for Decentralized (Dec) or Centralized (Cen)
actor, critic and Q-network are shown in Table 2. Empirical
experiments show that centralized actor and critic usually
need more neurons to deal with larger joint macro-
observation and macro-action spaces.
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