
Chris Amato and Frans Oliehoek

A Concise Introduction to Cooperative

Multi-Agent Reinforcement Learning

(Part 2)

Overview

• Define the cooperative multi-agent RL (MARL) problem

• Quickly describe background on deep RL

• Discuss the current state-of-the art for the different classes of solutions

• Centralized training and execution

• Decentralized training and execution: IQL, decentralized REINFORCE, deep
extensions

• CTDE: VDN, QMIX, QPLEX, MADDPG, MAPPO

• Identify misconceptions/issues with current methods

• Applications, code, other topics, and the future (LLMs?)

Cooperative MARL

• Cooperative case represented as Decentralized POMDP: <I, S, {Ai}, T, R, {Ωi}, O, >

• I, a finite set of agents

• S, a set of states

• Ai, each agent’s set of actions

• T, the state transition model: 𝑃(𝑠′|𝑠, 𝒂)

• R, the reward model: 𝑅(𝑠, 𝒂)

• Ωi, each agent’s finite set of observations

• O, the observation model: 𝑃(𝒐|𝑠′, 𝒂)

• h, horizon or discount

Cooperative MARL

• Cooperative case represented as Decentralized POMDP: <I, S, {Ai}, T, R, {Ωi}, O, >

• I, a finite set of agents

• S, a set of states

• Ai, each agent’s set of actions

• T, the state transition model: 𝑃(𝑠′|𝑠, 𝒂)

• R, the reward model: 𝑅(𝑠, 𝒂)

• Ωi, each agent’s finite set of observations

• O, the observation model: 𝑃(𝒐|𝑠′, 𝒂)

• h, horizon or discount

Objective: Maximize the (discounted) sum of future (joint) rewards Cooperative

Cooperative MARL

• Cooperative case represented as Decentralized POMDP: <I, S, {Ai}, T, R, {Ωi}, O, >

• I, a finite set of agents

• S, a set of states

• Ai, each agent’s set of actions

• T, the state transition model: 𝑃(𝑠′|𝑠, 𝒂)

• R, the reward model: 𝑅(𝑠, 𝒂)

• Ωi, each agent’s finite set of observations

• O, the observation model: 𝑃(𝒐|𝑠′, 𝒂)

• h, horizon or discount

Objective: Maximize the (discounted) sum of future (joint) rewards

Calculate a set of optimal policies for each agent i*: Hi → Ai that maximize joint objective

Decentralized partially observable execution

Deep RL background
D(R)QN and PG/AC

DRQN

• Use a neural network to
approximate Q(h,a)

• Learn a history representation ෨ℎ

• Output all Q-values for a history
to make argmaxing easier

Target network

Replay buffer

Hausknecht and Stone –

AAAI fall symposia 15

https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf
https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf
https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf

Advantage Actor-Critic (A2C)

• Policy gradient with policy
and value models

• Probabilistic (or continuous)
policy

• Learn a history
representation ෨ℎ

• On-policy updates

Centralized MARL
Models and methods

Centralized MARL

Assumptions:

• a centralized controller chooses actions for each
agent, a

• each agent takes the chosen actions a = ⟨a1,...,an⟩,

• the centralized controller observes the resulting
observations o = ⟨o1,...,on⟩

• the (centralized) algorithm/controller observes o (and
a) and the joint reward r

Note: Not a Dec-POMDP (or POSG) anymore since execution is centralized

Centralized

Actor

Centralized

Critic

Centralized MARL (DRQN version)

• Traditional Q-learning: estimate Q-value with (x can be state, observation or history)

• Deep Q-Networks (DQN) (Mnih et al., Nature 15) uses a neural net for function approximation

• DRQN (Hausknecht and Stone, arXiv 15) adds a recurrent layer for memory

Helps with scalability

Helps with partial observability

For learning rate 𝛼

Joint history

𝑄 𝒉, 𝒂 ← 𝑄 𝒉, 𝒂 + 𝛼δ 𝛿 = 𝑄 𝒉, 𝒂 − 𝑟 + 𝛾max
𝒂′

𝑄 𝒉, 𝒂′

Centralized MARL methods

• Now just a (factored) single-agent problem

• Multi-agent MDP or POMDP (not Dec-POMDP/POSG)

• Can use any single-agent RL method

• But it doesn’t scale well

• And assumes centralized information and control

• Some methods exploit multi-agent factorization but not very active

• Coordination graphs [Guestrin et al., 2001]

• AlphaStar [Vinyals et al., 2019]

Decentralizing centralized solutions

Easy to ‘decentralize’ in a MMDP or MPOMDP

• MMDP

• S → A or S → Ai

• MPOMDP

• H → A or H → Ai

Hard in a Dec-POMDP

Once you have H → A how do you get Hi → Ai ?

Decentralized MARL
Models and methods

Decentralized MARL

Assumptions:

• each agent, i, observes its current observation, oi,
and takes action ai at the resulting history, hi,

• the (decentralized) algorithm/controller sees the
same information (oi and ai) as well as the joint
reward r.

Actor1

Actorn

Critic1

Criticn

Decentralized MARL

• Agents each learn separately

• Assumes training and execution are decentralized (e.g., lack of
communication)

• Is more scalable

• The realistic case for POSGs and online learning in Dec-POMDPs

• Each agent i learns a policy that maps from local histories to local actions i:
Hi → Ai

• Can also use any single-agent method here

• May be nonstationarity but there are many methods for dealing with that

• Many improvements: Distributed Q, ICML-00; Hysteretic Q, IROS-07,
ICML-17; Lenient Q JMLR-08, AAMAS-18; Likelihood Q, AAMAS-20; IPPO
arxiv-20

Actor1

Actorn

Critic1

Criticn

Decentralized Action-Value
Methods
IQL, Distributed Q, Hysteretic Q, Lenient Q

Deep extensions

Note: these methods were originally developed for the fully observable case

Independent Q-Learning (IQL)

• Just apply Q-learning pretending the other agents don’t exist

Tan – ICML 93

https://www.sciencedirect.com/science/article/pii/B9781558603073500496
https://www.sciencedirect.com/science/article/pii/B9781558603073500496
https://www.sciencedirect.com/science/article/pii/B9781558603073500496

Independent Q-Learning (IQL)

• Just apply Q-learning pretending the other agents don’t exist

• Where do the observations and joint rewards come from?

Tan – ICML 93

𝑃(𝒐|𝑠′, 𝒂) 𝑃(𝑠′|𝑠, 𝒂)

𝑅(𝑠, 𝒂)

https://www.sciencedirect.com/science/article/pii/B9781558603073500496
https://www.sciencedirect.com/science/article/pii/B9781558603073500496
https://www.sciencedirect.com/science/article/pii/B9781558603073500496

Important hidden information

• Agents don’t exist by themselves!

• Assumes other agents are acting according to some (fixed) policies

• Then learns as if in a POMDP where other agents are part of the environment:

• This is where non-stationarity comes from!

• Other learning agents change their policies over time

෠𝑃s are empirical probabilities from data during training

IQL properties

• IQL may not converge (Tan ICML 93)

• Convergence properties of Q-learning in Dec-POMDPs is an open question!

• Usually performs poorly (often used as a baseline)

• Note even with optimal Q-values, agents may not select the optimal action
without coordination when multiple actions are optimal (like equilibrium
selection)

Improving IQL with optimism

Distributed Q-learning (Lauer and Riedmiller ICML 00)

• Optimal in deterministic domains but problematic with stochasticity

Hysteretic Q-learning (Matignon et al. IROS 07)

with

• Use two learning rates

• Can be used in stochastic domains

Improving IQL with optimism

• Lenient Q-learning (Wei and Luke JMLR 16)

• Update on positive TD or randomly based on how many times the history-
action pair has been visited

• But need to maintain counts for those

Extension to the
deep case -
IDRQN

• Just DRQN applied to the
multi-agent case

• Still needs other agents to
act

Tampuu et al. – Plos one 17

Based on other agents

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395

Extension to the
deep case -
IDRQN

• Just DRQN applied to the
multi-agent case

• Still needs other agents to
act

• Independent buffers cause
poor performance (non-
stationarity)

Tampuu et al. – Plos one 17

Based on other agents

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395

Decentralized MARL (Dec-HDRQN)

• Traditional Q-learning: estimate Q-value with (x can be state, observation or history)

• Hysteresis (Matignon et al., IROS 07): two learning rates 𝜶 and 𝜷 (with 𝜷 < 𝜶)

• Still use DRQN (Hausknecht and Stone, arXiv 15) if partially observable

Omidshafiei, Pazis, Amato, How and Vian - ICML 17

Helps with coordination

Helps with scalability

Helps with partial observability

For learning rate 𝛼

𝑄 ℎ𝑖 𝑎𝑖 ← 𝑄 ℎ𝑖 , 𝑎𝑖 + 𝛼δ 𝛿 = 𝑄 ℎ𝑖 , 𝑎𝑖 − 𝑟 + 𝛾max
𝑎𝑖
′
𝑄 ℎ𝑖 , 𝑎𝑖

′
Local history

https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf

Decentralized Hysteretic DQN (Dec-HDRQN)

• Dec-HDRQN algorithm overview

• Use idea from previous slide to help with
cooperation, scalability and partial observability

• Each agent learns concurrently (not
independently)

• Use decentralized Concurrent Experience Replay
Trajectories (CERTs) (synchronized buffers) to
stabilize learning

• Current decentralized methods (e.g., IPPO) also use
some form of concurrent learning

Omidshafiei, Pazis, Amato, How and Vian - ICML 17

https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf

Other deep decentralized methods

• Several other extensions of tabular and single agent methods

• Deep lenient Q-learning (Palmer et al. AAMAS 18)

• Only for the fully observable case

• Add leniency values to the replay buffer for

• Likelihood Q-learning (Lyu et al. AAMAS 20)

• Uses distributional RL to estimate when other agents are exploring and use
that info to adjust learning rate

Decentralized Policy Gradient
Methods
Decentralized REINFORCE, IAC, IPPO

Decentralized REINFORCE

• Extends single agent
REINFORCE (Williams 92)

• Simple but has
convergence guarantees!

• joint gradient can be
decomposed into
decentralized
gradients

• I.e., this algorithm
converges to the same
values as a
centralized algorithm
(over decentralized
policies)

• Assumes concurrent
learning

Peshkin et al. – UAI 00

Note: this version generalizes the original algorithm which was defined for finite-state controllers

Based on other agents

Monte Carlo returns

Policy but no value function

https://dl.acm.org/doi/10.5555/2073946.2074003
https://dl.acm.org/doi/10.5555/2073946.2074003
https://dl.acm.org/doi/10.5555/2073946.2074003

Independent actor critic (IAC)

• Extends
Decentralized
REINFORCE to
the Actor Critic
case

Foerster et al. – AAAI 18

Policy and value model

On-policy error

Update both models

https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf
https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf
https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf

Other decentralized PG methods

• Can extend any single-agent PG method to the multi-agent case

• Independent PPO (IPPO) (de Witt et al. 20)

• A version of IAC with PPO as the base RL method

• Yu et al. (22) version uses parameter sharing (not DTE)

• More about IPPO and MAPPO in the CTDE discussion

• Not a very active area

Other topics

• Parameter sharing

• Agents share the same copy of policy and/or value networks

• I consider this a form of CTDE (since it assumes centralized info)

• Decentralized methods can easily use parameter sharing to potentially improve
performance

• Relationship with CTDE

• Centralized PG equal to decentralized PG so maybe not that different?

• Other forms of decentralization

• Communication during execution using ‘networked’ agents, e.g. (Zhang et al. 18)

Centralized Training for
Decentralized Execution (CTDE)
MARL
Models and methods

Centralized training for decentralized execution
(CTDE)

Assumptions

• each agent, i, observes its current observation, oi, and
takes action ai at the resulting history, hi, like DTE

• the (centralized) algorithm/controller observes joint
information 𝒐 and 𝒂 and the joint reward r (and
possibly other information such as the underlying state
s) like CTE

By far the most common type of (cooperative) MARL

Actor1

Actorn

Centralized

Critic

Centralized training for decentralized execution
(CTDE)

• Train offline for online execution

• Can use centralized info offline

• Still need to execute in a decentralized manner

• CTDE has become the dominant form of
(cooperative) MARL

• Many methods: MADDPG, NeurIPS-17; COMA
AAAI-18; QMIX, ICML-18; QPLEX, ICML-21;
MAPPO, NeurIPS DB-22

Actor1

Actorn

Centralized

Critic

CTDE Action-Value Methods
Value function factorization: VDN, QMIX, and QPLEX

Value function factorization methods

• Basic idea:

• Learn individual Q-values per agent as well as a
form of joint Q-function

• During training, learn individual Q-values from
joint one

• During execution, each agent uses individual Q-
values to select actions

Value decomposition networks (VDN)

• The first deep value function factorization/decomposition
method

• Represents joint Q-value as a sum of individual Q-
values:

• Trains solely based on (joint) RL loss

• Simple, scalable, but limited joint Q-value representation

DRQN

Sunehag et al. – arXiv 17

https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296

VDN algorithm

Only argmax over individual Q-functions

Learn from the joint Q-values

Target network

QMIX

• Extends VDN to represent monotonic functions

• (implemented with positive weights in mixer)

• Also, use state as input to mixer (with hypernetwork)

• Still argmax over indiv. Q-functions and train based on the joint
loss

• Can’t represent all Q-functions but still a state-of-the-art method

Rashid et al. – ICML 18

DRQN

https://proceedings.mlr.press/v80/rashid18a/rashid18a.pdf
https://proceedings.mlr.press/v80/rashid18a/rashid18a.pdf
https://proceedings.mlr.press/v80/rashid18a/rashid18a.pdf

Definition: Individual-Global-Max

For a joint action-value function Q(h,a) where h= ⟨ℎ1, … , ℎ𝑛⟩ is a joint action-observation
history, if there exist individual functions [Qi] such that:

Then [Qi] satisfy IGM for Q at h

• This is the main principle value factorization/decomposition methods: the argmax of the
joint value function is the same as the argmax of the individual Q-functions

• VDN and QPLEX satisfy this (as do QTRAN, QPLEX, etc.)

Individual Global-Max (IGM) Son et al.– ICML 19 (QTRAN)

https://proceedings.mlr.press/v97/son19a/son19a.pdf
https://proceedings.mlr.press/v97/son19a/son19a.pdf
https://proceedings.mlr.press/v97/son19a/son19a.pdf

QPLEX
Extends IGM to the advantage case

Definition: Advantage-based IGM

For joint and individual advantages:

A(h,a) = Q(h,a)-V(h) where V(h)= max
𝐚

Q(h,a) and Ai(hi,ai)= Qi(hi,ai)-Vi(hi) where Vi(hi)=max
𝑎𝑖

Qi(hi,ai)

For a joint action-value function Q(h,a) where h= ⟨ℎ1, … , ℎ𝑛⟩ is a joint action-observation history, if there
exist individual functions [Qi] such that:

Then [Qi] satisfy IGM for Q at h

• This is subtle but important! Non-standard advantage makes then 0 for optimal action and negative
otherwise! Used a a constraint to represent the full IGM function class

Wang et al.– ICLR 21

https://openreview.net/pdf?id=Rcmk0xxIQV
https://openreview.net/pdf?id=Rcmk0xxIQV
https://openreview.net/pdf?id=Rcmk0xxIQV

QPLEX architecture

• Architecture is a bit complicated but it performs
well

• Can sometimes outperform QMIX and is a
state-of-the-art method

• Other recent value factorization/decomposition
methods but not clear they outperform QMIX
and QPLEX

Wang et al.– ICLR 21

DRQN

https://openreview.net/pdf?id=Rcmk0xxIQV
https://openreview.net/pdf?id=Rcmk0xxIQV
https://openreview.net/pdf?id=Rcmk0xxIQV

State in value function factorization

• Is it cheating/wrong to use state during training?

• QMIX: Sound since state information gets
marginalized out

• QPLEX:

• Sound since similar to QMIX

• Less general with state (can’t represent all IGM
functions)

• Weighted QMIX: Probably not sound as uses
separate state-conditioned weights

Note: The paper also introduces a new algorithm DualMIX which I don’t discuss here

Marchesini et al.,--AAMAS 25

State in value function factorization

Why is the state helpful?

Benefit of state unclear in theory but may be
helpful in practice

Tried the methods with state (s), a random (r)
value, or a 0 value

Other information can outperform state info!

Marchesini et al.,--AAMAS 25

CTDE Policy Gradient Methods
Centralized critics: MADDPG, COMA, and MAPPO

Actor critic with a centralized critic

• Have an actor for each agent

• Learn a ’centralized’ Q-function

• Update each actor using this joint Q-value:

• Update the joint Q-value using the joint info:

A basic centralized critic approach

A policy network for each agent

A joint value network

Joint error calculation

The gradient using

Loop over agents

Use joint Q to update agent policies

MADDPG

• Designed for competitive or cooperative problems

• Off-policy (so uses reply buffer like DQN)

• Continuous action, so uses a Deterministic PG (Silver et al., ICML-14)

• Defined policies based on a single observation but should be:

• Learn centralized critic from the reply buffer and using target network θ-

• MADDPG is no longer widely used but the centralized critic have been adopted

Lowe et al.—NeurIPS 17

Note: For the cooperative CTDE case we assume a single shared critic among agents, do not consider learning policy models of the other agents, and do not consider

ensembles of other agent policies to improve robustness.

https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf

Counterfactual Multi-Agent Policy Gradients
(COMA)

• Centralized critic along with a counterfactual baseline to potentially help with variance
and credit assignment

• Calculate a per-agent advantage considering that difference between with the agent
did and the expected Q-value from policy and fixing other agents:

• Is implemented with agent ids to only require a single centralized critic network (rather
than one per agent)

• On-policy so the critic is updated as usual:

• Policy network update uses Ai instead of Q:

• COMA is also not widely used but very influential

Foerster et al.–AAAI 18

Note: COMA originally used state instead of history in the advantage and Q-values but this is incorrect as I’ll discuss later.

https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf
https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf
https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf

MAPPO

• MAPPO is a form of a centralized critic method

• Just use PPO as the base RL method

• Actor loss:

• Uses joint advantage:

• Use GAE but can be computed from V as 𝛅=

• Uses joint value function and local policy ratio:

• Critic loss:

• Can use other centralized info in the critic (more later)

• Simple, but works well and some form of this often works best

Yu et al. -- NeurIPS DB&B 22

Note: actual details in the paper are unclear so this is a more general version

https://openreview.net/pdf?id=YVXaxB6L2Pl
https://openreview.net/pdf?id=YVXaxB6L2Pl
https://openreview.net/pdf?id=YVXaxB6L2Pl
https://openreview.net/pdf?id=YVXaxB6L2Pl

IPPO

• Actor loss:

• Uses local advantage:

• Can also use GAE or other methods (e.g., n-step)

• Ratio same as before:

• The only difference is the use of Ai instead of A

• Critic loss (with clipping):

• Often performs similarly to MAPPO but sometimes lower

de Witt et al. –arXiv 20

https://arxiv.org/abs/2011.09533
https://arxiv.org/abs/2011.09533
https://arxiv.org/abs/2011.09533
https://arxiv.org/abs/2011.09533

• Centralized critic widely use but misunderstood

• We show in theory:

• Centralized Critic does not foster cooperation any better than Decentralized Critics

• Both unbiased estimates of the decentralized policy

• Centralized Critic exhibits more variance in policy gradient

• In practice:

• Centralized Critic – less bias, more variance

• Decentralized Critics – more bias, less variance

Contrasting Centralized and Decentralized Critics
in Multi-Agent Policy Gradient Lyu, Xiao, Daley and Amato – AAMAS21 Best Paper Nomination

Actor1

Actorn

Centralized

Critic

https://dl.acm.org/doi/10.5555/3463952.3464053
https://dl.acm.org/doi/10.5555/3463952.3464053
https://dl.acm.org/doi/10.5555/3463952.3464053

Multi-Agent Actor Critic
Decentralized and Centralized Critic

Decentralized actor and critic: pretend the other agents are part of the

environment (independent per agent)

Decentralized actor and centralized critic: update critic based on

centralized Q-value and then update each agent’s actor

Critic Centralization Cannot Solve Cooperation
Climb Game

Under uniform policy:

Decentralized 𝑄𝐴𝑙𝑖𝑐𝑒:

Centralized 𝑸:

𝑎1 𝑎2 𝑎3

-6.3 -7.6 3.6

Return Values for Climb Game

𝑎1 𝑎2 𝑎3

𝑎1 11 -30 0

𝑎2 -30 7 6

𝑎3 0 0 5

Alice

Bob

𝑎1 𝑎2 𝑎3

𝑎1 11 -30 0

𝑎2 -30 7 6

𝑎3 0 0 5

Alice

Alice

Bob

Under uniform policy:

Decentralized 𝑄𝐴𝑙𝑖𝑐𝑒:

Centralized 𝑸:

𝑎1 𝑎2 𝑎3

-6.3 -7.6 3.6

𝑎1 𝑎2 𝑎3

𝑎1 11 -30 0

𝑎2 -30 7 6

𝑎3 0 0 5

Policy gradients for 𝑎1:

∇ log 𝜋 𝑎1; 𝜃 −6.3 𝑤. 𝑝. 1

∇ log 𝜋 𝑎1; 𝜃 +11 𝑤. 𝑝.
1

3

∇ log 𝜋 𝑎1; 𝜃 −30 𝑤. 𝑝.
1

3

∇ log 𝜋 𝑎1; 𝜃 (0) 𝑤. 𝑝.
1

3

when 𝜋𝐵𝑜𝑏 =

Bob

Alice

Alice

Climb Game

𝑎1 𝑎2 𝑎3
1

3

1

3

1

3

Critic Centralization Cannot Solve Cooperation

Learning Value Functions

Centralized Critic
Decentralized

Critic

Actor Actor Actor Actor

Joint*

Local*

Decentralized

Critic

* the return/value/action in the

joint/local action-history space

Reward signal

Value

Action

Both estimating and updating decentralized policies

Centralized and Decentralized Critic Performance

on StarCraft Multi-Agent Challenge (SMAC), Box Pushing, Particle environments, Target Capture, etc.

Decentralized vs centralized critics

• Theoretically equivalent

• But that assumes learned critics

• Decentralized critics can be harder to learn

• When other agents change policies

• Higher bias

• Centralized critics can be harder to learn

• Large domains (action, obs, agents)

• Higher variance to marginalize out other agents

State-based Centralized Critics

State information is often available offline in a simulator

Implemented by pioneering Centralized Critic methods

COMA (Foerster et al. 2018), MADDPG (Lowe et al. 2017)

Followed by later methods

SQDDPG (Wang et al. 2020), LIIR (Du et al. 2019), LICA (Zhou et al. 2020),VDAC-mix (Su, Adams, and Beling 2021), DOP (Wang et al. 2021) and
MACKRL (Schroeder de Witt et al. 2019)

Obvious Advantages of State-based Centralized Critic

Compact, Fully Observable

Obvious Disadvantages of History-based Centralized Critic

Complexity from (potentially long) time horizon

Complexity from combining observations (and actions) from multiple agents

Partially Observable

A Deeper Understanding of State-Based Critics
in Multi-Agent Reinforcement Learning

State-based critics in MARL are popular but misunderstood

We show in theory:

State-based critics may be biased compared to History-based Critics

State-based critics may produce higher variance

We show empirically:

Both critics work well in different domains

Common benchmarks lack partial observability

The state-history-based critic is robust to various domains

Lyu, Baisero, Xiao and Amato – AAAI22

https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf
https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf
https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf
https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf
https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf
https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf

Centralized critics

Centralized critic

Conditions on history of all agents (joint history 𝒉)

State-based centralized critic

Conditions on the world state 𝑠

Centralized critics

Centralized critic

Conditions on history of all agents (joint history 𝒉)

State-based centralized critic

Conditions on the world state 𝑠

History-state-based centralized critic

Conditions on the joint history 𝒉 and world state 𝑠

Bias Example - Noisy Beverage Domain

/

25%

75%

/

Q(,) =

Q(,) =

Q(,) =

Q(,) =

• History Values

State Values

Q(,) = = Q(,)

Q(,) =

…

State value cannot represent the value of a particular history

State Values

Q(,) = = Q(,)

Q(,) =

…

Proofs in the paper

Experiments

Tested with advantage actor critic (A2C)

History critic

State critic

State-history critic

Used standard domains: small common

domains, SMACv1 (Starcraft) and partially

observable particle environments

Have additional experiments and base actor-

critic methods in the paper
Partially observable particle envs

SMAC v1

Common small environments

SMAC - StarCraft Multi-Agent Challenge

Partially Observable Particle Environments

Observation Radius = 0.8 Observation Radius = 1.6

Predator and Prey

Takeaways

Benchmark problems

• We need harder, more partially observable problems

Methods to use

• Decentralized critics and (centralized) state-history-based often work
the best

• MAPPO paper had a similar result

• Not really clear why

CTDE

• What is the best way to perform centralized training for decentralized
execution (that’s both principled and performs well)?

Other CTDE methods

• Many other extensions and approaches:

• E.g., FACMAC: Use a factored critic (doesn’t need IGM) (Peng et al., 2021)

• Parameter Sharing

• Alternating learning

• (Banerjee et al., 2012, Su et al., 2024)

• Sequential agent updates as in HATRPO and HAPPO (Kuba et al. 2022)

• Other agent modeling, e.g., LOLA (Foerster et al. 2018a)

Other topics

Many other topics in (cooperative) MARL that we don’t have time to cover

• Communication (Zhu et al., 2024)

• Ad hoc teamwork (Mirsky et al., 2022),

• Model-based methods (Wang et al., 2022)

• Exploration, offline methods, model-based methods, hierarchical methods, role
decomposition, multi-task approaches, etc.

https://link.springer.com/article/10.1007/s10458-023-09633-6
https://link.springer.com/chapter/10.1007/978-3-031-20614-6_16
https://arxiv.org/abs/2203.10603

• Traffic signal control (e.g., survey by
Wei et al. 2021)

• Autonomous vehicle control (e.g.,
survey by Zhang et al. 2024)

• Power systems, etc!

Applications

• Video games (e.g.,AlphaStar (Vinyals
et al., 2019)

• Centralized MARL for a team

• Warehouse robots (Krnjaic et al. 2024)

• Hierarchical CTDE approach

(Bokade et al., 2023)

Multi-agent RL with macro-actions
Xiao, Hoffman, Xia and Amato – ICRA20

https://ieeexplore.ieee.org/document/9196684
https://ieeexplore.ieee.org/document/9196684
https://ieeexplore.ieee.org/document/9196684
https://ieeexplore.ieee.org/document/9196684

Benchmarks

• Standard domains:

• Multi-agent Particle Envs (MPE) (PyTorch and JAX)

• Overcooked (PyTorch and JAX)

• SMAC v1 and v2 (PyTorch and JAX)

• Many many more inspired by applications

Environments and code

• PettingZoo

• Multi-agent version of gym

• Interface and some environments

• https://pettingzoo.farama.org/

• JAXMARL

• Efficient (JAX-based) baseline methods and environments

• https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax

• BenchMARL

• PyTorch baseline methods and environments

• https://github.com/facebookresearch/BenchMARL

• Several more…

https://pettingzoo.farama.org/
https://pettingzoo.farama.org/
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax

MARL and LLMs

• RL is widely used for LLMs

• MARL is not currently used for multi-agent LLMs (to best of my
knowledge)

• There is no reason it couldn’t be

• Open questions

• Use cases

• Control scheme

• MARLHF

• Training

• Benefits: specialization, robustness, scalability/performance

• Disconnect between academia and industry

https://developer.nvidia.com/blog/introduction-to-llm-agents/

https://www.microsoft.com/en-us/research/project/autogen/

Conclusion

• Cooperative multi-agent reinforcement learning is a very general setting that
fits with lots of applications

• A lot of work cooperative MARL

• Centralized training and execution

• Decentralized training and execution

• Centralized training for decentralized execution (CTDE)

• Academia and industry are working on improved methods to improve
scalability and performance

Conclusion

• Many open questions

• MARL for LLM agents

• Very scalable MARL

• Optimal MARL

• How to best do CTDE

• Multiagent approaches to ML (e.g., GANs, decentralized methods)

Our resources

• Dec-POMDP book

• Background on models and planning methods

• Book draft (An Initial Introduction to Cooperative
Multi-Agent Reinforcement Learning):
https://arxiv.org/abs/2405.06161

• Let us know what you think and what should be
changed/added for the final version!

• Slides will be available

• https://www.khoury.northeastern.edu/home/ca
mato/tutorials.html

https://arxiv.org/abs/2405.06161
https://arxiv.org/abs/2405.06161
https://www.khoury.northeastern.edu/home/camato/tutorials.html
https://www.khoury.northeastern.edu/home/camato/tutorials.html
https://www.khoury.northeastern.edu/home/camato/tutorials.html

	Slide 1
	Slide 8: Overview
	Slide 9: Cooperative MARL
	Slide 10: Cooperative MARL
	Slide 11: Cooperative MARL
	Slide 12: Deep RL background
	Slide 13: DRQN
	Slide 14: Advantage Actor-Critic (A2C)
	Slide 15: Centralized MARL
	Slide 16: Centralized MARL
	Slide 17: Centralized MARL (DRQN version)
	Slide 18: Centralized MARL methods
	Slide 20: Decentralizing centralized solutions
	Slide 21: Decentralized MARL
	Slide 22: Decentralized MARL
	Slide 23: Decentralized MARL
	Slide 24: Decentralized Action-Value Methods
	Slide 25: Independent Q-Learning (IQL)
	Slide 26: Independent Q-Learning (IQL)
	Slide 27: Important hidden information
	Slide 28: IQL properties
	Slide 29: Improving IQL with optimism
	Slide 30: Improving IQL with optimism
	Slide 31: Extension to the deep case - IDRQN
	Slide 32: Extension to the deep case - IDRQN
	Slide 33: Decentralized MARL (Dec-HDRQN)
	Slide 34: Decentralized Hysteretic DQN (Dec-HDRQN)
	Slide 35: Other deep decentralized methods
	Slide 36: Decentralized Policy Gradient Methods
	Slide 37: Decentralized REINFORCE
	Slide 38: Independent actor critic (IAC)
	Slide 39: Other decentralized PG methods
	Slide 40: Other topics
	Slide 41: Centralized Training for Decentralized Execution (CTDE) MARL
	Slide 42: Centralized training for decentralized execution (CTDE)
	Slide 43: Centralized training for decentralized execution (CTDE)
	Slide 44: CTDE Action-Value Methods
	Slide 45: Value function factorization methods
	Slide 46: Value decomposition networks (VDN)
	Slide 47: VDN algorithm
	Slide 48: QMIX
	Slide 49: Individual Global-Max (IGM)
	Slide 50: QPLEX
	Slide 51: QPLEX architecture
	Slide 52: State in value function factorization
	Slide 53: State in value function factorization
	Slide 54: CTDE Policy Gradient Methods
	Slide 55: Actor critic with a centralized critic
	Slide 56: A basic centralized critic approach
	Slide 57: MADDPG
	Slide 58: Counterfactual Multi-Agent Policy Gradients (COMA)
	Slide 59: MAPPO
	Slide 60: IPPO
	Slide 61
	Slide 62: Multi-Agent Actor Critic
	Slide 63: Critic Centralization Cannot Solve Cooperation
	Slide 64: Critic Centralization Cannot Solve Cooperation
	Slide 65: Learning Value Functions
	Slide 66
	Slide 68: Decentralized vs centralized critics
	Slide 69: State-based Centralized Critics
	Slide 70
	Slide 71: Centralized critics
	Slide 72: Centralized critics
	Slide 73: Bias Example - Noisy Beverage Domain
	Slide 74
	Slide 75: State Values
	Slide 76: State Values
	Slide 77: Experiments
	Slide 78: Common small environments
	Slide 79: SMAC - StarCraft Multi-Agent Challenge
	Slide 80: Partially Observable Particle Environments
	Slide 81: Takeaways
	Slide 82: Other CTDE methods
	Slide 83: Other topics
	Slide 84: Applications
	Slide 85: Multi-agent RL with macro-actions
	Slide 86: Benchmarks
	Slide 87: Environments and code
	Slide 88: MARL and LLMs
	Slide 89: Conclusion
	Slide 90: Conclusion
	Slide 91: Our resources

