Northeastern University
Khoury College of

Computer Sciences a ama S 2 O 2 5

A Concise Introduction to Cooperative
Multi-Agent Reinforcement Learning

(Part 2)

Chris Amato and Frans Oliehoek

Overview

* Define the cooperative multi-agent RL (MARL) problem

* Quickly describe background on deep RL

* Discuss the current state-of-the art for the different classes of solutions
* Centralized training and execution

* Decentralized training and execution: IQL, decentralized REINFORCE, deep
extensions

* CTDE: VDN, QMIX, QPLEX, MADDPG, MAPPO
* |dentify misconceptions/issues with current methods

* Applications, code, other topics, and the future (LLMs?)

Cooperative MARL

* Cooperative case represented as Decentralized POMDP: </, S, {A}, T, R, {Q}, O, &>

* |/, afinite set of agents

* S, aset of states

* A, each agent's set of actions

* T, the state transition model: P(s’|s, a)

* R, the reward model: R(s, a)

* (), each agent's finite set of observations

* (O, the observation model: P(o|s’, a)

°* h, horizon or discount 2

Cooperative MARL

* Cooperative case represented as Decentralized POMDP: </, S, {A}, T, R, {Q}, O, &>

* |/, afinite set of agents

* S, aset of states

* A, each agent's set of actions

* T, the state transition model: P(s’|s, a)

* R, the reward model: R(s, a)

* (), each agent's finite set of observations

* (O, the observation model: P(o|s’, a)

°* h, horizon or discount 2

Objective: Maximize the (discounted) sum of future (joint) rewards Cooperative

Cooperative MARL

* Cooperative case represented as Decentralized POMDP: </, S, {A}, T, R, {Q}, O, &>
* |/, afinite set of agents
* S, aset of states
* A, each agent’s set of actions
* T, the state transition model: P(s’|s, a)
* R, the reward model: R(s, a)
* (), each agent's finite set of observations

* (O, the observation model: P(o|s’, a)

°* h, horizon or discount 2

Objective: Maximize the (discounted) sum of future (joint) rewards

Calculate a set of optimal policies for each agent n;*: H. — A, that maximize joint objective

Decentralized partially observable execution

Deep RL background

D(R)QN and PG/AC

Algorithm 1 DRQN (finite-horizon*)

D RQ N Hausknecht and Sjtone — 1: set o, €, and C (learning rate, exploration, and target update frequency)
AAAI fall symposia 15 2: Initialize network parameters § and 6~ for @y and @,

3: D+

4: e+ 1 {episode index }

5: for all episodes do

6: h<+ 0 {initial history is empty}

* Use a neural network to o fori=1lwofdo | |
approximate Q(h Cl) 8: Choose a at h from Q°(h, -) with exploration (e.g., e-greedy)
/ 9: See reward r, observation

10: append a, o, T to D° Replay buffer

11: h < hao {update RNN state of the network }

12: end for

_ [gl 13: sample an episode from D
% az) 14: fort=1toHdo
N — Q(h a?) _ b 0
O0—— RNN | /4 —{ NN 15: —
16: a,0,1 + De(t) Target network
Q(h amw) 17 h:’ | h
, < nao
...---""""'# _

Perform gradient descent on parameters ¢ with learning rate o and loss: (y — Q%(h, a))2

[—
> 0

_ _ ~ h < k'
* Learn a history representation h 21: end for
22: ife mod C = 0 then

e,
—

* Output all Q-values for a history 2 o <
to make argmaxing easier 5 e et1
26: end for

27: return ()

https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf
https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf
https://cdn.aaai.org/ocs/11673/11673-51288-1-PB.pdf

Policy gradient with policy
and value models

Advantage Actor-Critic (A2C)

Algorithm 2 Advantage Actor-Critic (A2C) (finite-horizon)

Require: Actor model 7(a|h), parameterized by

Probabilistic (or Continuous) Require: Critic model V' (h), parameterized by 6

policy
3 T~
——pP(allh)
0—— RNN | [~/ —| NN _PP(sz.l.h)
— P(a"ﬁh'lh)

/ ‘_'_,_,_-'
h

Learn a history
representation h

On-policy updates

1: Initialized o, and S learning rates for actor and critic)
2: for all episodes do
3 hy« 0 {Empty initial history}

4: fort=0toH —1do

5: Choose a; at h; from 7(a|h;)

6: See reward r; and observation oy

7: hii 1 < hia;0, {Append new action and obs to previous history }
8: Compute value TD error: §; < r; + ’yf/(htﬂ) — V(ht)

9: Compute actor gradient estimate: v,V log 7(a;|h;)
{0: Update actor parameters 1) using gradient estimate (e.g., ¥ < ¥ + ay*0;V log m(a;|h:))
11: Compute critic gradient estimate: 597‘?;()%)
12: Update critic parameters 6 using gradient estimate (e.g., 6 < 0 + B*ycStVf/(ht))
13: end for
14: end for

Centralized MARL

Models and methods

Centralized MARL

Assumptions:

* a centralized controller chooses actions for each
agent, a

* each agent takes the chosen actions a = (a,,...,a,),

* the centralized controller observes the resulting
observations o = (0,,...,0,)

Centralized Centralized

* the (centralized) algorithm/controller observes o (and Actor
a) and the joint reward r

Critic

Note: Not a Dec-POMDP (or POSG) anymore since execution is centralized

Centralized MARL (DRQN version)

* Traditional Q-learning: estimate Q-value with (x can be state, observation or history)

Q(CU, CL) < Q(a’}, CL) + o For learning rate «
6 =Q(z,a) — (r +ymaxQ(z', a’))

* Deep Q-Networks (DQN) (Mnih et al., Nature 15) uses a neural net for function approximation

Q-function

Helps with scalability

* DRAQN (Hausknecht and Stone, arXiv 15) adds a recurrent layer for memory

: : - .. s &~ action : : -
Joint history n i @ 7() O - Helps with partial observability
e O |

Q(h,a) < Q(h,a) + ad § = Q(h,a)—(r+ymz,1XQ(h,a’))

Centralized MARL methods

* Now just a (factored) single-agent problem

* Multi-agent MDP or POMDP (not Dec-POMDP/POSG)

* Can use any single-agent RL method

* But it doesn't scale well

* And assumes centralized information and control

* Some methods exploit multi-agent factorization but not very active
* Coordination graphs [Guestrin et al., 2001]
* AlphaStar [Vinyals et al., 2019]

Decentralizing centralized solutions

Easy to ‘decentralize’ in a MMDP or MPOMDP
° MMDP
* S—Ao0rS—A,
* MPOMDP
* H—>AOrH— A
Hard in a Dec-POMDP

Once you have H — A how do you getH, — A, 7

Decentralized MARL

Models and methods

Decentralized MARL

Assumptions:

* each agent, i, observes its current observation, o,
and takes action q; at the resulting history, 4,

* the (decentralized) algorithm/controller sees the
same information (o; and a;) as well as the joint
reward r.

(@
O
O

Decentralized MARL

* Agents each learn separately

* Assumes training and execution are decentralized (e.g., lack of
communication)

* |s more scalable
* The realistic case for POSGs and online learning in Dec-POMDPs

. Each Egent I learns a policy that maps from local histories to local actions ;.

* (Can also use any single-agent method here

* May be nonstationarity but there are many methods for dealing with that

o Mana/ improvements: Distributed Q, ICML-00; Hysteretic Q, IROS-07,
ICM -2107; Lenient Q JMLR-08, AAMAS-18; Likelihood Q, AAMAS-20; IPPO
arxiv-

Decentralized Action-Value
Methods

|IQL, Distributed Q, Hysteretic Q, Lenient Q
Deep extensions

methods were originally developed for the fully observable case

Independent Q-Learning (IQL)

* Just apply Q-learning pretending the other agents don't exist

Algorithm 1 Independent Q-Learning for agent 2 (finite-horizon)

1: set o and € (learning rate, exploration)
2: Initialize (); for all h; € H;, a; € A,
3: for all episodes do

4: h; < {Empty initial history }
5: fort=1toH do

6: Choose a; at h; from Q;(h;, -) with exploration (e.g., e-greedy)

7: See joint reward 7, local observation o; {Depends on joint action a }
8: h. < h;a;o;

9. Q@r(h“ G,?;) <— Qg(h“ ai) + o [’T’ + 7y maxag Qt(h;, a;) — Qg(h“ 0,3):|

10: h; < h!

11: end for

12: end for

13: return (Q);

https://www.sciencedirect.com/science/article/pii/B9781558603073500496
https://www.sciencedirect.com/science/article/pii/B9781558603073500496
https://www.sciencedirect.com/science/article/pii/B9781558603073500496

Independent Q-Learning (IQL)

* Just apply Q-learning pretending the other agents don't exist

* Where do the observations and joint rewards come from?

Algorithm 1 Independent Q-Learning for agent 7 (finite-horizon)

1: set a and € (learning rate, exploration)

2: Initialize), for all h; € H;, a; € A, P(o|s',a) P(s'|s,a)
3: for all episodes do
4: h; <0 {Empty initial history}
5: fort=1toH do
R(s, a) 6: Choose a; at h; from Q;(h;, -) with exploration (e.g., e-greedy)
7 See joint reward 7, local observation o; {Depends on joint action a }
8: h. < h;a;0;
9: Qi(hi, a;) < Q;(hi,a;) + o [r +ymaxy Q;(hi, a) — Qi(hs, ;)
10: h; < h
11: end for
12: end for

13: return Q;

https://www.sciencedirect.com/science/article/pii/B9781558603073500496
https://www.sciencedirect.com/science/article/pii/B9781558603073500496
https://www.sciencedirect.com/science/article/pii/B9781558603073500496

Important hidden information

* Agents don't exist by themselves!
* Assumes other agents are acting according to some (fixed) policies

* Then learns as if in a POMDP where other agents are part of the environment:

Qi(h;,a;) = ZP a, h|h;, a;) ?“—I—’}fZﬁ’(oi\h,a) max Q;(h;, a;)

ach

* This is where non-stationarity comes from!

* Other learning agents change their policies over time

Ps are empirical probabilities from data during training

|QL properties

* |QL may not converge (Tan ICML 93)
* Convergence properties of Q-learning in Dec-POMDPs is an open question!
* Usually performs poorly (often used as a baseline)

* Note even with optimal Q-values, agents may not select the optimal action
without coordination when multiple actions are optimal (like equilibrium
selection)

Ql(hlaai) = Ql(hlafﬁ) Qz(hzaﬁé) — Q2(hzaag)

Q(hlahﬂaa’%aa’z) — Q(hlahﬁaa’%aa’%) < Q(h’lnhQ&a%&az) — Q(hlahﬂaa’%aa’%)

Improving IQL with optimism

Distributed Q-learning (Lauer and Riedmiller ICML 00)
Qi(hi, a;) = max {Qi(hi: a;),r + v max Q;(h;, GE)}

* Optimal in deterministic domains but problematic with stochasticity

Hysteretic Q-learning (Matignon et al. IROS 07)
Qi(hiy ;) = { o
Qi (h,z, a;, }8(5 else
* Use two learning rates

Wlth 5 — T+ 71115'*}{ Q(h’;:a’;) o Qi(hma’i)

* Can be used in stochastic domains

Improving IQL with optimism

* Lenient Q-learning (Wei and Luke JMLR 16)

Qi(hi,a;)+ad if 6>0 or rand~U(0,1)>1— e~ EKxT'(hi,a;)
Qi(hi, Ga‘) else

* Update on positive TD or randomly based on how many times the history-
action pair has been visited

Qi(h’i: Gz') — {

* But need to maintain counts for those

Extension to the
deep case -

I D RQN Tampuu et al. — Plos one 17

* Just DRQN applied to the
multi-agent case

* Still needs other agents to
act

Algorithm 2 Independent DRQN (IDRQN) for agent ¢ (finite-horizon*)

l:
2: Initialize network parameters 6 and 6~ for QQ;

3: D«

4: e 1 {episode index }
S:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:

19:

20:
21:
22:
23:
24
25:
26:
27:

set a, €, and C' (learning rate, exploration, and target update frequency)

for all episodes do
hi < 0 {initial history is empty }
fort =1toH do
Choose a; at h; from Q(h;, -) with exploration (e.g., e-greedy)
See joint reward 7, local observation o; {Depends on joint action a}
append a;, 0;, T to D¢
h;, < h;a;0; {update RNN state of the network}
end for
sample an episode from D Based on other agents
fort =1toH do
a;, 0;,7 < D(t)
h; — hﬁ-aioi
y =r+ymaxy Qf (h,a;)
Perform gradient descent on parameters € with learning rate « and loss: (y —QY(h;, az—))2

end for
if e mod C' = 0 then
0~ < 0
end if
e<—e+1
end for
return (),

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395

Extension to the
deep case -

I D RQN Tampuu et al. — Plos one 17

* Just DRQN applied to the
multi-agent case

* Still needs other agents to
act

* Independent buffers cause
poor performance (non-
stationarity)

Algorithm 2 Independent DRQN (IDRQN) for agent ¢ (finite-horizon*)

l:
2: Initialize network parameters 6 and 6~ for QQ;

3: D«

4: e 1 {episode index }
5:
6
7
8
9

10:
11:
12:
13:
14;
15:
16:
17:
18:

19:

20:
21:
22:
23:
24
25:
26:
27:

set a, €, and C' (learning rate, exploration, and target update frequency)

for all episodes do
hi < 0 {initial history is empty }
fort=1toH do
Choose a; at h; from Q(h;, -) with exploration (e.g., e-greedy)
See joint reward 7, local observation o; {Depends on joint action a}
append a;, 0;, T to D¢
h;, < h;a;0; {update RNN state of the network}
end for
sample an episode from D Based on other agents
forti =1toH do
a;, 0;,7 < D(t)
h; — hﬁ-aioi
y =7+ ymax, Q! (hj,a;)
Perform gradient descent on parameters 6 with learning rate « and loss: (y — QY(h;, a;)) ?

end for
if e mod C' = 0 then
0~ < 0
end if
e<—e+1
end for
return (),

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172395

Decentralized MARL (Dec-HDRQN)

Omidshafiel, Pazis, Amato, How and Vian - ICML 17

* Traditional Q-learning: estimate Q-value with (x can be state, observation or history)
Q(CC, CL) < Q(x, CL) + o For learning rate «
5 — Q(Qj, CL) — (T -+ ")/H}ZE}X Q(x,, a/))

* Hysteresis (Matignon et al., IROS 07): two learning rates a and £ (with # < a)

Q(.CC, CL) A Q(.CE, CL) + 5(5 if 0 <0 Helps with coordination
Q(xr,a) + a0 otherwise

* Still use DRQN (Hausknecht and Stone, arXiv 15) if partially observable

ol | Iy O '70 70 '7O argmax
O I {
) O—bspo %O %O .io > action
: O O O iO Helps with partial observability
O 0 O *—— recurrent (e.g, LSTM)

Helps with scalability

Local history

Q(h; a;) « Q(h;,a;) + ab § =Q(hy,a;) - (7" + y max Q(h;, a;))

L

https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf

Decentralized Hysteretic DQN (Dec-HDRQN)

Omidshafiel, Pazis, Amato, How and Vian - ICML 17

* Dec-HDRQN algorithm overview

* Use idea from previous slide to help with
cooperation, scalability and partial observabillity

* Each agent learns concurrently (not
independently)

* Use decentralized Concurrent Experience Replay
Trajectories (CERTSs) (synchronized buffers) to
stabilize learning

* Current decentralized methods (e.g., IPPQO) also use
some form of concurrent learning

https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf
https://proceedings.mlr.press/v70/omidshafiei17a/omidshafiei17a.pdf

Other deep decentralized methods

* Several other extensions of tabular and single agent methods
* Deep lenient Q-learning (Palmer et al. AAMAS 18)

* Only for the fully observable case

* Add leniency values to the replay buffer (s, a:,r:, sei1, (st a)) fOr (s, a;) = 1 — e K*T(9(s0).a0)
* Likelihood Q-learning (Lyu et al. AAMAS 20)

* Uses distributional RL to estimate when other agents are exploring and use
that info to adjust learning rate

Decentralized Policy Gradient
Methods

Decentralized REINFORCE, IAC, IPPO

Decentralized REINFORCE -...c.c.._u0

* Extends single agent
REINFORCE (williams 92)

* Simple but has
convergence guarantees!

* joint gradient can be

decomposed into
decentralized
gradients

l.e., this algorithm
converges to the same
values as a |
centralized algorithm
(over decentralized
policies)

Assumes concurrent
learning

Algorithm 3 Decentralized REINFORCE for agent ¢ (finite-horizon)

Require: Individual actor models 7;(a;|h;), parameterized by ;
1: set a (learning rate)

. Policy but lue functi
2: for all episodes do olicy but ho vajue tunction

30 hio <+ 0 { Empty initial history}
:. ;f r(t_:@ 0to H — 1do Based on other agents {Empty ePlSOde}
6: Choose a;; at h;; from m;(a;{5; ;)
7 See joint reward r;,"10cal observation o, {Depends on joint action a}
8 append a; ¢, 0; ¢, T+ tO €p
9 Pit1 < hi1Q; 40y { Append new action and obs to previous history}
10: end for
11: fort=0toH —1do
Y1 1 Monte Carlo returns
12: Compute return at ¢ from ep: G, >, 7 'ry
13: Update parameters: ¢; < ¥; + ay'G;,V log m;(a;|h;)
14: end for
15: end for

Note: this version generalizes the original algorithm which was defined for finite-state controllers

https://dl.acm.org/doi/10.5555/2073946.2074003
https://dl.acm.org/doi/10.5555/2073946.2074003
https://dl.acm.org/doi/10.5555/2073946.2074003

Independent actor critic (IAC) s

Policy and value model

Algorithm 4 Independent Actor-Critic (IAC) (finite-horizon)

* Extends Require: Individual actor models m;(a;|h;), parameterized by 1);

Decentralized Require: Individual critic models V;(h), parameterized by 6,
1: for all episodes do

REIN FORCE to 2: hip <—p 0 {Empty initial history }

the Actor Critic 3 fort—0to — 1do

case 4: Choose a; ; at h; ; from 7;(a;|h; ;)
5: See joint reward 7, local observation o; {Depends on joint action a }
6: Ritv1 < Pi10;40; 4 { Append new action and obs to previous history }
7: Compute value TD error: d;; < r; + fﬂZ—(h@-,tH) — Vg(h”) On-policy error
8: Compute actor gradient estimate: v'9; ;V log m;(a; ¢|h; +)
9: Update actor parameters <; using gradient estimate (e.g., v¥; <+ ¥; +

a6,V logm;(a;t|hit))

10: Compute critic gradient estimate: 5@-,tVIZ-(hiﬁt) Update both models
11: Update critic parameters 6; using gradient estimate (e.g., 0; < 6; + 8v0; :VV;(hiy))
12: end for

13: end for

https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf
https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf
https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf

Other decentralized PG methods

* Can extend any single-agent PG method to the multi-agent case
* |Independent PPO (IPPO) (de Witt et al. 20)

* A version of IAC with PPO as the base RL method

°* Yu et al. (22) version uses parameter sharing (not DTE)

* More about IPPO and MAPPO in the CTDE discussion

* Not a very active area

Other topics

* Parameter sharing
* Agents share the same copy of policy and/or value networks
* | consider this a form of CTDE (since it assumes centralized info)

* Decentralized methods can easily use parameter sharing to potentially improve
performance

* Relationship with CTDE
* Centralized PG equal to decentralized PG so maybe not that different?
* Other forms of decentralization

* Communication during execution using ‘networked’ agents, e€.9. (Zhang et al. 18)

Centralized Training for
Decentralized Execution (CTDE)
MARL

Models and methods

Centralized training for decentralized execution
(CTDE)

Assumptions

* each agent, i, observes its current observation, o., and
takes action «, at the resulting history, , like DTE

= ', 4
| =l s
Iy
* ﬂl
. a

* the (centralized) algorithm/controller observes joint O T— =
information o and a and the joint reward » (and IRy ‘('

possibla/ other information such as the underlying state
s) like CTE

Centralized

000

Critic

By far the most common type of (cooperative) MARL [

—

Centralized training for decentralized execution
(CTDE)

* Train offline for online execution
* Can use centralized info offline

* Still need to execute in a decentralized manner

* CTDE has become the dominant form of
(cooperative) MARL

—

* Many methods: MADDPG, NeurlPS-17; COMA [
AAAI-18; QMIX, ICML-18; QPLEX, ICML-21;
MAPPO, NeurlPS DB-22 [

Centralized

000

Critic

—

CTDE Action-Value Methods

Value function factorization: VDN, QMIX, and QPLEX

Value function factorization methods

O(h,")
* Basic idea: 1

e Learn individual Q-values per agent as well as a Mti"i“gk - s
form of joint Q-function \ ;e w‘”‘ /

* During training, learn individual Q-values from 0,(h,,) 0.(h,")
joint one 0 0

* During execution, each agent uses individual Q- [-] [—]
values to select actions

| |

0; 0,

Value decomposition networks (VDN)

Sunehaqg et al. — arXiv 17

* The first deep value function factorization/decomposition

method O(h,’)
* Represents joint Q-value as a sum of individual Q- ﬁ‘
values: n O)hy) Ouhyy)
Q(h,a) ~ Z Qi(hi,a;) 1 1
RNN RNN
* Trains solely based on (joint) RL loss \ / \ /
1 1

£(6) = Echarosn| (v — D Qhi,)], where y =1+ max Q! (i, a)

* Simple, scalable, but limited joint Q-value representation

https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296

Algorithm 5 A version of value decomposition networks (VDN) (finite-horizon)

VD N I .th 1: set o, €, and C' (learning rate, exploration, and target update frequency)
a g O rl m . Initialize network parameters 6; for each (); (denoted Qf)

2
3: foralli, 60, < 0,
4: D+
5: e+ 1 {episode index }
6: for all episodes do
7: forall h; < () {initial history is empty)
Only argmax over individual Q-functions 8: fort=1toH do
9: for all 7, take a; at h; from QY (h;, -) with exploration (e.g., e-greedy)
10: See joint reward r;, and observations o,
11: append a, o, 7 to D¢
12: for all h; < h;a;0; {update RNN state of the network }
13: end for

14: sample an episode from D
15: fort=1toH do
16: for all i, h; «+ ()

17: a,o,r < D°(t)
18: foralli, b « hiao; Target network
_ 19: » y=r+7);maxy Q (ha)
Learn from the joint Q-values _ ot _ _ . 5
O, 20: for all i, do gradient descent on 6; with learning rate o and loss (y — Y. QY(h;, a;))
’ 21: for all i, h; < h!
‘a‘ 22: end for
Q,(h;,) Q.(h,,) 23: if e mod C = 0 then
1 1 24: for all 7, 0, < 0,
25: endif
26: e<—e+1
1 1 27: end for

0, 0, 28: return all @),

QM IX Rashid et al. — ICML 18 Q(;I,S,a)

Mixing - s
network

 Extends VDN to represent monotonic functions

I 1
h ? n hn? n
Q(hﬂ El) ~ fmﬂﬂﬂ(@i(hl! a’l)ﬂ SR Qﬂ—(hﬂﬂ a’ﬂ)) QZ‘I(ac]tii:m)selectQ (I accztizm select
* (implemented with positive weignts In mixer) Oi(h,) Ouhyy)
1 1
* Also, use state as input to mixer (with hypernetwork) { NN J [- }
* Still argmax over indiv. Q-functions and train based on the joint 1 1
loss
0 o,

L(0)=Echsaros>~D [(’y — Qﬁ(hj S, a))z] ,Where y =r + nyH_(h’, s',a),

and &' = (argmax Q1(h},a}),...,argmax Q,(h,,a,))

/
Ell ﬂ'n

e Can'trepresent all Q-functions but still a state-of-the-art method

https://proceedings.mlr.press/v80/rashid18a/rashid18a.pdf
https://proceedings.mlr.press/v80/rashid18a/rashid18a.pdf
https://proceedings.mlr.press/v80/rashid18a/rashid18a.pdf

IndiViduaI GIObaI'MaX (IGM) Son et al.— ICML 19 (QTRAN)

Definition: Individual-Global-Max

For a joint action-value function Q(h,a) where h= (h4, ..., h,,) Is a joint action-observation
history, if there exist individual functions /Q./ such that:

argmax, (1i(hi,a1)

argmax Q(h,a) =

argmax, @Qn(hn,an)

Then /Q,] satisfy IGM for Q at h

* This is the main principle value factorization/decomposition methods: the argmax of the
joint value function is the same as the argmax of the individual Q-functions

* VDN and QPLEX satisfy this (as do QTRAN, QPLEX, etc.)

https://proceedings.mlr.press/v97/son19a/son19a.pdf
https://proceedings.mlr.press/v97/son19a/son19a.pdf
https://proceedings.mlr.press/v97/son19a/son19a.pdf

QP LEX Wang et al.— ICLR 21

Extends IGM to the advantage case

Definition: Advantage-based IGM

For joint and individual advantages:

A(h,a) = Q(h,a)-V(h) where V(h)= ma?xQ(h,a) and A4.(h,a)= 0.(h,a)-V(h;) where Vi(h,-)=n}la_1xQ,-(h,-,a,-)

For a joint action-value function Q(h,a% where h= (h4, ..., h,;) Is a joint action-observation history, if there
exist individual functions /Q,/ such that:

argmax, Aj(hi,a)

argmax A (h,a) =
| ° argmax, Ap(hn,an,)
Then /Q,] satisfy IGM for Q at h "

* This is subtle but important! Non-standard advantag?e makes then 0 for optimal action and negative
otherwise! Used a a constraint to represent the full IGM function class

https://openreview.net/pdf?id=Rcmk0xxIQV
https://openreview.net/pdf?id=Rcmk0xxIQV
https://openreview.net/pdf?id=Rcmk0xxIQV

QPLEX arChiteCtu '@ wangetal—ICLR 21 O(h,s,a)

1
! Mixing ’ - 5
_ network
| L | | YO R

* Architecture is a bit complicated but it performs Ahis,ar) Vihis) Vi(hs) Ay(hqs,ay,)

well 1 1 1 1
S ﬂ[Transformation 1][Transformation n]_

* Can sometimes outperform QMIX and is a 1 1 1 1
state-of-the-art method Aj(ha)) Vih) Auhaay) Vi(h,)

* Other recent value factorization/decomposition éf(hf,fi) Q:(hma,g
methods but not clear they outperform QMIX factionselect T action select
and QPLEX Qi(hy,) Ou(hyy)

1 1
[RNN] [RNN]
1 1

O; Oy

https://openreview.net/pdf?id=Rcmk0xxIQV
https://openreview.net/pdf?id=Rcmk0xxIQV
https://openreview.net/pdf?id=Rcmk0xxIQV

State in Value fu nCtiOn faCtOrizatiOn Marchesini et al.,--AAMAS 25

* |s it cheating/wrong to use state during training?

O(h,)
]
» QMIX: Sound since state information gets ~ Mixing
marginalized out ' network | ™
! !
* Sound since similar to QMIX Oi(h1) Oulhny)
]]

* Less general with state (can't represent all IGM
functions) [RNN] [RNN]

. Probably not sound as uses " "

separate state-conditioned weights 0, 0

Note: The paper also introduces a new algorithm DualMIX which | don’t discuss here

State in Value fu nCtiOn faCtOrizatiOn Marchesini et al.,--AAMAS 25

Why is the state helpful?

Benefit of state unclear in theory but may be
helpful in practice

(fine-tuned) 5510z

QMIX 158 0.4
14514
14.7 = 0.1

16.2 = 2.1
18.0 = 0.6
18.3 = 0.8

Tried the methods with state (s), a random (r)
value, or a 0 value

QPLEX

T O = U

Other information can outperform state info!

CTDE Policy Gradient Methods

Centralized critics: MADDPG, COMA, and MAPPO

Actor critic with a centralized critic

* Have an actor for each agent

* | earn a 'centralized’ Q-function

* Update each actor using this joint Q-value:

V%'J — 41{11,3}”9 [Qﬂ(h: a)vtba: log Uy (aﬁ‘hﬁ)]

* Update the joint Q-value using the joint info:

L(0) =

L<h,arh/>~D

(y o Q(h: a))Q:

,where y =r +~yQ(h’,a’)

A basic centralized critic approach

Algorithm 6 Independent Actor Centralized Critic (IACC) (finite-horizon)

1: Initialize individual actor models (a;|h;), parameterized by ;
2: Initialize centralized critic model Q(h, a), parameterized by 6
3: for all episodes do

A policy network for each agent

A joint value network

4: hig<+ 0 { Empty initial history }
5. Denote h; as (h1 ¢,-..,hn0) {Notation for joint variables}
6: for all ¢, choose a; o at h; o from 7;(a;|h;)
7. Store a; as (aj g, - .., 0n)
8: fort=0toH—1do
9: Take joint action a;, see joint reward 7, and observations o,
10: forall:, h; 11 < h; 10,104 {Append new action and obs to previous history }
11: for all 7, choose a; ;1 at h; ;1 from m;(a;|h; ¢41)
| | 12: Store a; 11 as (@141, --,Qnt+1)
Joint error calculation 13: Oy <— 14 + '}/Q(htﬂ, ap41) — Q(ht, a) { Compute centralized TD error}
The gradient using 14: Compute critic gradient estimate: 5tV9Q(ht, ay)
£(0) = E<napps~n|(y — Q(h,a))*|, where y=r+1Q(W,a) 15: Update critic parameters 6 using gradient estimate (e.g., 8 < 0 + 55tV9Q(ht, a;) for
learning rate (3)
Loop over agents 16: for each agent 1 do
17: Compute actor gradient estimate: 'th(ht, a;)Vy, log m;(a;¢|his)
Use joint Q to update agent policies 18: Update actor parameters 1); using gradient estimate (e.g., ©¥; <+ ¥; +
ay'Q(h, a)V, log m;(a;|hi,) for learning rate)
19: end for
20: end for

21: end for

MAD D PG Lowe et al.—NeurlPS 17

* Designed for competitive or cooperative problems

* Off-policy (so uses reply buffer like DQN)

* Continuous action, so uses a Deterministic PG (Silver et al., ICML-14)
Vi = Ezanp |V, 1i(0:) VaQ™ (, a)

ﬂF#i(ﬂi)]

* Defined policies based on a single observation but should be:
V%J = ﬂm,aw'D [V%m(hg)an“(h,, El)

ili:#z‘(hi)]

* Learn centralized critic from the reply buffer and using target network &
L(6) = Ecnarwo~n| (y — Qo(h,))°], where y =1+ Q- (', a)

ai=p" (h;) Vi€l
* MADDPG is no longer widely used but the centralized critic have been adopted

Note: For the cooperative CTDE case we assume a single shared critic among agents, do not consider learning policy models of the other agents, and do not consider
ensembles of other agent policies to improve robustness.

https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf

Counterfactual Multi-Agent Policy Gradients
(COMA) Foerster et al.—AAAI 18

* Centralized critic along with a counterfactual baseline to potentially help with variance
and credit assignment

* Calculate a per-agent advantage considering that difference between with the agent
did and the expected Q-value from policy and fixing other agents:

A;(h,a) Zm ‘|h:)Q(h,a;,a_;)

* |s implemented with agent ids to only requwe a single centralized critic network (rather
than one per agent)

* On-policy so the critic is updated as usual: £ = t<h,a,r,hf>wp[(y — Q(h, a))Q],where y=r+7Q(l,a’)
* Policy network update uses A. instead of Q: ' Ai(hy, a,)Vy, log mi(ai | hi)
* COMA is also not widely used but very influential

Note: COMA originally used state instead of history in the advantage and Q-values but this is incorrect as I'll discuss later.

https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf
https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf
https://cdn.aaai.org/ojs/11794/11794-13-15322-1-2-20201228.pdf

MAP PO Yu et al. -- NeurlPS DB&B 22

MAPPO is a form of a centralized critic method

Just use PPO as the base RL method

clip

Actor loss: MAPPO(%) min (qui,iA,C]iP(?"w, 1 —€ 1+ E)A)
* Uses joint advantage: A(h,a) = Q(h,a) — V(h)

* Use GAE but can be computed from V as 6= r: + YV (hit1) — V(hy)

* Uses joint value function and local policy ratio: 7y, = . (ailhy)
i,0ld NI

Critic loss: £MAPPO(g) = max -(V(ht) - Ry)?, (clip(V(hL Vaa(h) — €, Voa(h) +¢€) - ﬁ’t) :

Can use other centralized info in the critic (more later)

Simple, but works well and some form of this often works best

Note: actual details in the paper are unclear so this is a more general version

https://openreview.net/pdf?id=YVXaxB6L2Pl
https://openreview.net/pdf?id=YVXaxB6L2Pl
https://openreview.net/pdf?id=YVXaxB6L2Pl
https://openreview.net/pdf?id=YVXaxB6L2Pl

I P PO de Witt et al. —arXiv 20

* Actorloss: £}, °(1;) = min (T%,@-Ai, clip(ry,i, 1 —€,1+ e)A-;;)

))

* Uses local advantage: A, =r, + ’Y‘Z‘(hz‘,t+1) — Vi(hiy)

* Can also use GAE or other methods (e.g., n-step)

T, (ailhi)
ﬂ-wi,gﬁd (ﬂ*’i |h”1)

* Ratio same as before: 7y,; =

* The only difference is the use of A; instead of A

* Critic loss (with clipping):

LIPPO(9) = max |(V;(his)) — Ry)?, (Clip(m(hi,t)): Viold(hit)) — € Vioia(hig)) + €) — Rt)

* Often performs similarly to MAPPO but sometimes lower

0"

https://arxiv.org/abs/2011.09533
https://arxiv.org/abs/2011.09533
https://arxiv.org/abs/2011.09533
https://arxiv.org/abs/2011.09533

Contrasting Centralized and Decentralized Critics
In Multi-Agent POlle Gradient Lyu. xiao, Daley and Amato — AAMAS21 Best Paper Nomination

* Centralized critic widely use but misunderstood
* We show In theory:
* Centralized Critic does not foster cooperation any better than Decentralized Critics
* Both unbiased estimates of the decentralized policy

* Centralized Critic exhibits more variance in policy gradient

* |n practice: [

—

Centralized

* Centralized Critic — less bias, more variance

000

Critic

—

* Decentralized Critics — more bias, less variance [

https://dl.acm.org/doi/10.5555/3463952.3464053
https://dl.acm.org/doi/10.5555/3463952.3464053
https://dl.acm.org/doi/10.5555/3463952.3464053

Multi-Agent Actor Critic

Decentralized and Centralized Critic

Initialize 0, ¢
for each training rollout e do
Empty and fill buffer with experience data using actors m
for Each batch t do
Unroll RNN using observations, actions and rewards
"for each agent ¢ do)
Calculate TD targets y°
¢i = ¢ — aVyui(yi — Q' (hi,a))? // update critic weights
0" =0"+aVyilogn'(a| h})Q'(hi,a}) // update actor weights
end for A
end for
end for

Initialize 0, ¢
for each training rollout e do

Empty and fill buffer with experience data using actors 7

for Each batch ¢t do

Unroll RNN using observations, actions and rewards

" Calculate TD targets v,
o=0¢—aV

or each agent 7 do |
3 0* = 60"+ aVyi logm*(a

(¢ — Q(htaat))2

)

h:)Q(hy,a;) // update actor weights }

// update critic weights

end for
end for
end for

\

Decentralized actor and critic: pretend the other agents are part of the
environment (independent per agent)

Q(hlfal)

Q(h,,a,)

Decentralized actor and centralized critic: update critic based on —-J
centralized Q-value and then update each agent’s actor \J

Critic Centralization Cannot Solve Cooperation

Climb Game
Alice
aq ar as
a, 11 -30 0
Bob
a, -30 ! 6
as; 0 0 S

Return Values for Climb Game

Under uniform policy:

Alice
QAlice:
a1 a- ag
Centralized Q: 63 | -76 | 36
Alice
al az a3
a, 11 -30 0
Bob
a -30 7 6
as 0 0 5

Critic Centralization Cannot Solve Cooperation
Climb Game

Policy gradients for a;:

Under uniform policy:

Onriv Alice
Atee: ay Vlog m(ay; 0)
Centralized Q: .3
Alice

a, Vlogm(a; 0) (+11) w.p. ;
ay 11 Vlogm(a; 0) (—30) w.p. g
Bob)
42 -30 Vlogm(a;0) (0) w.p. -

a; 0

aq ar as
1 1 1
3 3 3

Learning Value Functions

$

* the return/value/action in the
joint/local action-history space

Reward signal

3y 3

Decentralized

Centralized Critic Decentralized

Critic

1

Critic

$

Action

$ $

ch(ez) — 43a,h[v 1Og 7T7;(CL7; ‘ hz'; Hz)Qﬂ(hv a, ¢)]
= g, n, [V logmi(a; | hi; 0;)Ea_, n_,|Q (hiy h—s, ay, a—i)]]

Vo

Both estimating and updating decentralized policies

Centralized and Decentralized Critic Performance
on StarCraft Multi-Agent Challenge (SMAC), Box Pushing, Particle environments, Target Capture, etc.

Mean Test Return

Mean Test Return

Returns

= <o <

=

(=} (=}

o

Mean Test Return

Mean Test Return

=

g
(=}

2s_vs_lsc
8
.6
4
2 —— TAC
— TACC
0 2 4 6 8 10
Episode (k)
4x4
1.0
8
.6
4
2 — TJAC
— JACC
.0
0 20 40 60 80
Episode (k)
10x 10
1.0 — IAC
08 —— JACC
0.6
04
0.2
0.0
0 105 210 315 420
Episode (k)
4x4
200
150
100
0 — IAC
— JACC
0
0 1 2 3 4
Episode (k)
Cross
100
150
200
250 =
— 1160
0 2000000 4000000 6000000

Steps

3m
1.0
E08
=2
L
& 0.6
8
E 0.4
=02 —— JAC
—— JACC
0.0
0 2 4 6 8 10
Episode (k)
6x6
1.0
£08
g
% 0.6
&
=04
3
=02 —— IAC
—— IACC
0.0
0 35 70 105 140
Episode (k)
12x 12
1.0 =i
50.8 — JACC
D
& 0.6
&
~ 04
o
L
=02
0.0
0 140 280 420 560
Episode (k)
6x6
200
E 150
L
I~
% 100
=
s 30 —— IAC
—— IACC
0
0 1 2 3 4 5
Episode (k)
Antipodal
100
200
w
£
=
2 300
400 —— IAC
—— IACC
0 2000000 4000000 6000000
Steps

283z
1.0 . e
£038
a8
L
& 0.6
&
*é 0.4
=02 = JAC
— [ACC
0.0
0 2 4 6 8 10
Episode (k)
8x8
1.0
£08
2
[}
0.6
&
=04
3
=02 — IAC
— JACC
0.0
0 70 140 210 280
Episode (k)
10x 10
200
E 150
L
(-4
E 100
s 50 — TAC
4 —_ JACC
0
0 2 4 6
Episode (k)
8x8
200

Mean Test Return
W =) I
o o o

>
®!

—TACE
0
0 1 2 3 4 5
Episode (k)
Merge
—-100 s
—200
w “300
E
£ 400
[
=500
== NAC
—600 —— 1AGEE
0 1 2 3 4
Steps le6

200

—
W
<o

Mean Test Return
W =
o o

125

100

-
wn

Mean Test Return
W
(=)

(o]
W

200

&
S

Mean Test Return
W =
o o

100

Mean Test Return

10

Returns

4x4
—— JAC
— JAGCC
1 2 3 4
Episode (k)
obs range 0.4
— JTAC
— JACC

200 400 600 800
Episode (k)

12x 12
— TAC
— JACC
5 10 15 20
Episode (k)
10x 10

2 - 6
Episode (k)

Go Together

/V'“vaa'f—‘@max:—x

200

@
S

Mean Test Return
=
o

6x6

50 — TAC
— JACC
0
0 | 2 3 4 5
Episode (k)
obs_range 0.6
125
g 100
o
75
A
*é 50
= 25 —— IAC
— [ACC
0
0 200 400 600 800
Episode (k)
obs range 1.0
125
g 100
°
75
&
50
g
L
> 25 —— IAC
— [ACC
0
0 200 400 600 800
Episode (k)
12x 12
200
E 150
L
(="
3 100
=
§ 50
= IAC
— JACC
0
0 5 10 15 20
Episode (k)
Find Treasure
100
80
@ 60
g
=
3 40
2 — 1AC

— JACC

0 2 4 6 8
Steps le6

8x8
200
S 150
L
("4
é 100
= — 1AC
— TACC
0
0 | 2 3 4 5
Episode (k)
obs_range 0.8
125
£ 100
2
]
75
&
B 350
[+
L
= 25 —— IAC
— TACC
0
0 200 400 600 800
Episode (k)
obs_range 1.2
125
S 100
D
75
w
oo
50
g
L
= 25 —— IAC
— [ACC
0
0 200 400 600 800
Episode (k)
12 x 12
300
E 250
& 200
% 150
=
g 100
§ === 2lAC
50
—— JACC
0
0 5 10 15 20
Episode (k)
10 Dec-Tiger
0 W\/WMM\\\/\AW
172}
E =10 M
2
7
-20
— IAC
—30 —— JACC
0.0 0.5 1.0
Steps le6

Decentralized vs centralized critics

* Theoretically equivalent

* But that assumes learned critics

can be harder to learn
* \When other agents change policies :

* Higher bias

* Centralized critics can be harder to learn
* Large domains (action, obs, agents) S

* Higher variance to marginalize out other agents

State-based Centralized Critics

State information is often available offline in a simulator

Critic

Implemented by pioneering Centralized Critic methods Q(s,a)

COMA (Foerster et al. 2018), MADDPG (Lowe et al. 2017)

Followed by later methods

SQDDPG (wang et al. 2020), LIIR (Duetal. 2019), LICA (zhou et al. 2020), VDAC-mIX (Su, Adams, and Beling 2021), DOP (wang et al. 2021) and
MACKRL (Schroeder de Witt et al. 2019)

Obvious Advantages of State-based Centralized Critic
Compact, Fully Observable

Obvious Disadvantages of History-based Centralized Critic
Complexity from (potentially long) time horizon

Complexity from combining observations (and actions) from multiple agents

Partially Observable

A Deeper Understanding of State-Based Critics

in Multi-Agent Reinforcement Learning Lyu. Baisero, Xiao and Amato — AAAI22

State-based critics iIn MARL are popular but misunderstood
We show In theory:
State-based critics may be biased compared to History-based Critics
State-based critics may produce higher variance
We show empirically:
Both critics work well in different domains
Common benchmarks lack partial observability
The state-history-based critic Is robust to various domains

https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf
https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf
https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf
https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf
https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf
https://cdn.aaai.org/ojs/21171/21171-13-25184-1-2-20220628.pdf

Centralized critics

Centralized critic
Conditions on history of all agents (joint history h)

Vidh =

hp(h),a~m(h) Q7 (B, @)V, log mi(as; hi)]

State-based centralized critic
Conditions on the world state s

ViJ, =

4:h,sr\qo(h,s),a,rv'n'(h) [QW(Sa a)Vgi lOg Uy (a'i; hz)]

Centralized critics

Actor,

Centralized critic
Conditions on history of all agents (joint history h)

ViJh = Eh~ph),a~n(n) [QT (R, a)Ve, log mi(a;; h;)]

Actor,

State-based centralized critic
Conditions on the world state s
Vids = gh,srvp(h,s),arv'rr(h) [QW(Sa a’)vei lOg Ty (a’i; hz)]

Actor,

Actor,

History-state-based centralized critic

Actor,

Conditions on the joint history h and world state s
Vids = ﬂh,srvp(h,s),a,rvvr(h) [QW(Sa ha a’)vﬂi, 1Og Ty (a”i; h%)]

Actor,

Bias Example - Noisy Beverage Domain

@ /6 Ol
&) ﬁr?@ﬁ%@—» DY <ig

Jol

* History Values

e I e
Qe @ , &)=

jeed J8Y _ Jee] 8 _ Jee
Q(& & © ,a)=[EE

Q& & @ &)=E

JET R T It R I NS Cr R T B
Q& © &~ @ © ,a)=

State Values G = e e

Q(U‘\:—J,ﬂ):E‘
& 5 F)_F F)

‘ n Q(\J a © e © |,) = EsE
Q(O 3 ‘) IR Q(K_JG;}-([:j UD ‘D @D, -rD)= E

@ _ M B _fm @G _Fm)
"X © & o & o &)-m

o=
Q(\—J‘,‘)= [Q(u ,

"

State value cannot represent the value of a particular history

@ _ M B _fm @G _Fm)
"X © & o & o &)-m

O _ S &

Proofs in the paper

Experiments

Tested with advantage actor critic (A2C)
History critic
State critic
State-history critic

Used standard domains: small common
domains, SMACv1 (Starcraft) and partially
observable particle environments

Have additional experiments and base actor-
critic methods In the paper

Partially observable particle envs

~J]
-

Evaluation Return
o
S

Evaluation Return
| | |
[\) —_— —_— |
(= W (=) W O

|
[\
W

ommon small environments

Meeting-in-a-Grid

100

O
-

80

70

Evaluation Return

60

—t——-isl@ 50

0 100 200 300 400
Evaluation

Dec-Tiger

600

Evaluation Return
('S N W
S o S
S S S

N
S
-

= SHC

0 100 200 300 400 500
Evaluation

0 100

HC
== SHC

Find Treasure

200 300
Evaluation

Box Pushing

0 100

200 300
Evaluation

SC
HC

——SHC

400

400

500

300

280

Evaluation Return
N
o
S

W
W

W
)

Evaluation Return
I o
> On

W
W

100

100

Recycling

200
Evaluation

Cleaner

200
Evaluation

300

300

= SHC
400

400

Mean Test Won %

SMAC - StarCraft Multi-Agent Challenge

100

80

60

40

20

HC
—— SHC

0 200

2s vs lsc
400 600
Evaluation
100
80
N
8
= 60
o
=
§ 40
=

20

800

HC
—— SHC

100

80

60

40

Mean Test Won %

20

1000

1c3s5z

200

0 200

400
Evaluation

600

800

1000

3m

400
Evaluation

Mean Test Won %

600

100

80

60

40

20

— S5C
HC
— SHC

800 1000

200

100 283z
e—
20 HC
— SHC
2
<
§ 60
2
—~
§ 40
>
20 £
y/
0 o 200 400 600
Evaluation
bane vs bane
re— S
HC
— SHC

400 600 800
Evaluation

1000

800

1000

Partially Observable Particle Environments

Predator and Prey

Observation Radius = 0.8 Observation Radius = 1.6
120 120
—— SC — SC
HC HC
90 —— SHC 90 —— SHC
E — oc —— 0C
L
o
g 60 o 60
- ,
L
p
30 30
0 9 1000 2000 3000 4000 5000 6000 0

0 1000 2000 3000 4000 5000 6000

Evaluation ,
Evaluation

Takeaways Y

Benchmark problems W Wy
» We need harder, more partially observable problems
Methods to use

» Decentralized critics and (centralized) state-history-based often work
the best

 MAPPO paper had a similar result
* Not really clear why
CTDE

* What is the best way to perform centralized training for decentralized
execution (that's both principled and performs well)?

(a) Dec-Tiger (Nair et al. 2003)

Other CTDE methods

Many other extensions and approaches:

* E.g., FACMAC: Use a factored critic (doesn’t need IGM) (Peng et al., 2021)
Parameter Sharing

Alternating learning

°* (Banerjee et al., 2012, Su et al., 2024)

* Sequential agent updates as in HATRPO and HAPPO (Kuba et al. 2022)

Other agent modeling, e.g., LOLA (Foerster et al. 2018a)

Other topics

Many other topics in (cooperative) MARL that we don't have time to cover

e Communication (Zhu et al., 2024)

* Ad hoc teamwork (Mirsky et al., 2022),
* Model-based methods (\WWang et al., 2022)

* Exploration, offline methods, model-based methods, hierarchical methods, role
decomposition, multi-task approaches, etfc.

https://link.springer.com/article/10.1007/s10458-023-09633-6
https://link.springer.com/chapter/10.1007/978-3-031-20614-6_16
https://arxiv.org/abs/2203.10603

Applications

\'| Observation:

: s ~
1-=+| 1. number of vehicles Centralized Computer
2. number of halted vehicles

V|3, average speed of vehicles . [———————— R ——— &
. phasengp Joint State I\l_____l_____£____l____._._. _____ ——)
’ —_— Value
. .- Decentralized Policies Network
{] [] [J T
.. update

observation
range

= S S collect states

Delivery
5 ¥ Action:

location Select a phase

" lirom the list of

e available phases

‘| Reward:

| Total number of
halting vehicles
1 in the network

.| (penalty)

ﬂ AlphaStar

. * ."‘.__,. r
a.' 4 communicate
tratfic signal network Multi-Agent Environment (Traffic System) s

(BOkade et al., 2023) (b) An example of DTDE scheme

Multi intersection

* Video games (e.g.,AlphaStar (Vinyals e Traffic signal control (e.g., survey by
et al., 2019) Wei et al. 2021)

* Centralized MARL for a team * Autonomous vehicle control (e.g.,

o survey by Zhang et al. 2024)
* Warehouse robots (Krnjaic et al. 2024

. . * Power systems, etc!
* Hierarchical CTDE approach

Multi-agent RL with macro-actions

Xiao, Hoffman, Xia and Amato — ICRA20

https://ieeexplore.ieee.org/document/9196684
https://ieeexplore.ieee.org/document/9196684
https://ieeexplore.ieee.org/document/9196684
https://ieeexplore.ieee.org/document/9196684

Benchmarks

e Standard domains:

* Multi-agent Particle Envs (MPE) (PyTorch and JAX)

‘.}c;'roo 0‘
oft 28

* Overcooked (PyTorch and JAX)—, &%%

* SMAC v1 and v2 (PyTorch and JAX)

* Many many more inspired by applications

Environments and code

* PettingZoo
* Multi-agent version of gym
* |nterface and some environments

* https://pettingzoo.farama.org/

* JAXMARL

* Efficient (JAX-based) baseline methods and environments

* https://qgithub.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax

* BenchMARL

* PyTorch baseline methods and environments

* https://github.com/facebookresearch/BenchMARL

* Several more...

https://pettingzoo.farama.org/
https://pettingzoo.farama.org/
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax
https://github.com/FLAIROx/JaxMARL/tree/main/jaxmarl/environments/smax

Develop a Software
Gomoku game Qo
% '. .‘.

MARL and LLMs

* RL is widely used for LLMs

* MARL is not currently used for multi-agent LLMs (to best of my
knowledge)

* Thereis noreason it couldn’'t be
* Open questions

* Use cases

* Control scheme

° MARLHF

* Training

* Benefits: specialization, robustness, scalability/performance

e Disconnect between academia and industry https://www.microsoft.com/en-us/research/project/autogen/

Conclusion

* Cooperative multi-agent reinforcement learning is a very general setting that
fits with lots of applications

* A lot of work cooperative MARL
* Centralized training and execution
* Decentralized training and execution
* Centralized training for decentralized execution (CTDE)

* Academia and industry are working on improved methods to improve
scalability and performance

Conclusion

* Many open questions
* MARL for LLM agents
* Very scalable MARL
* Optimal MARL
* How to best do CTDE

* Multiagent approaches to ML (e.g., GANs, decentralized methods)

Our resources

* Dec-POMDP book
* Background on models and planning methods

* Book draft (An Initial Introduction to Cooperative
Multi-Agent Reinforcement Learning):

https://arxiv.org/abs/2405.06161

* Let us know what you think and what should be
changed/added for the final version!

* Slides will be available

* https://www.khoury.northeastern.edu/home/ca
mato/tutorials.html

SPRINGER BRILYS 1IN INTRALIGERT SYS T mS

. (mm Amo
A Concise

Introduction to
Decentralized

POMDPs

PN e
vl .Spm'.gc:

Contents

[

Introduction 5 4 CONTENTS
L1 Overview . Sy r 3 432 Abasic centralized critic approacho oL 43
1.2 The cooperative MARL problem: The Dec-POMDP 6 433 MADDPG . .o oiooe e e et e e e e e e 47
1.3 Background on (single-agent) reinforcement learning L. 9 434 COMAl 48
131 Value-basedmethods L.l 10 436 Smesmdonics L.l
1.32 Policy gradient methods o oL Lo oo oo 11 437 Choosing different types of decentralized and centralized critics 51
438 Methods that combine policy gradient and value factorization 51
Centralized trﬂi.“i.“g and execution ‘:CTEJ‘ 15 435 Other centralized criticmethodso o0 52
. 44 Otherforms of CTDE et e e 52
21 CTEOVEIVIEWot h i s i i e s m et assa s nna s e s s 15 441 Adding centralized information to decentralized methods 52
22 Centralized models o L e e e e e e e e e 16 442 Decentralizing centralized solutions 53
2.3 Centralized solutions L L L 17 5 Conclusion 55
24 Improvimg scalability oL L 18 5.1 Topicsnotdiscussedl 55
52 Ewvaluationdomainsl Lo 35
Decentralized training and execution (DTE) 19 S4 R LI
T O I I 19
3.2 Decentralized, value-based methods 0oL o000 0oL 20
321 Independent Q-learning (IQL) oo .. 20
322 Improving the perfformance of IQL.o 22
323 Deepextensions, issues, and fixeso oL L0000 24
3.3 Decentralized policy gradientmethodso Lo oo o000 0oL 28
331 Decentralized REINFORCE 2B
332 Independent actorcritic (IACYo Lo o000 249
333 Other decentralized policy gradient methods 0oL 30
34 Onhertopics L 3l
Centralized training for decentralized execution (CTDE) 33
4.1 CTDEOWSIVIEW L 0 it v bttt ettt e e e e e e e e e e e e e e e s 33
4.2 Value function factorization methodso Lo oo o000 34
421 VDN e e e e e e e e e e e e e 34
422 OMIX . . e e e e e e e e e 36
423 Weighted QMIX L. oo 3B
424 QTRAN L e e e e e e e e e e e e kL
425 QPLEX L e e e e e e e e e e e e 41
4.2.6 The use of state in factorization methods oo o000 42
4.3 Centralized criicmethods 0. oL Lo 43
431 Prelimimaries L0 e e e e e e e e e e e e e e 43

https://arxiv.org/abs/2405.06161
https://arxiv.org/abs/2405.06161
https://www.khoury.northeastern.edu/home/camato/tutorials.html
https://www.khoury.northeastern.edu/home/camato/tutorials.html
https://www.khoury.northeastern.edu/home/camato/tutorials.html

	Slide 1
	Slide 8: Overview
	Slide 9: Cooperative MARL
	Slide 10: Cooperative MARL
	Slide 11: Cooperative MARL
	Slide 12: Deep RL background
	Slide 13: DRQN
	Slide 14: Advantage Actor-Critic (A2C)
	Slide 15: Centralized MARL
	Slide 16: Centralized MARL
	Slide 17: Centralized MARL (DRQN version)
	Slide 18: Centralized MARL methods
	Slide 20: Decentralizing centralized solutions
	Slide 21: Decentralized MARL
	Slide 22: Decentralized MARL
	Slide 23: Decentralized MARL
	Slide 24: Decentralized Action-Value Methods
	Slide 25: Independent Q-Learning (IQL)
	Slide 26: Independent Q-Learning (IQL)
	Slide 27: Important hidden information
	Slide 28: IQL properties
	Slide 29: Improving IQL with optimism
	Slide 30: Improving IQL with optimism
	Slide 31: Extension to the deep case - IDRQN
	Slide 32: Extension to the deep case - IDRQN
	Slide 33: Decentralized MARL (Dec-HDRQN)
	Slide 34: Decentralized Hysteretic DQN (Dec-HDRQN)
	Slide 35: Other deep decentralized methods
	Slide 36: Decentralized Policy Gradient Methods
	Slide 37: Decentralized REINFORCE
	Slide 38: Independent actor critic (IAC)
	Slide 39: Other decentralized PG methods
	Slide 40: Other topics
	Slide 41: Centralized Training for Decentralized Execution (CTDE) MARL
	Slide 42: Centralized training for decentralized execution (CTDE)
	Slide 43: Centralized training for decentralized execution (CTDE)
	Slide 44: CTDE Action-Value Methods
	Slide 45: Value function factorization methods
	Slide 46: Value decomposition networks (VDN)
	Slide 47: VDN algorithm
	Slide 48: QMIX
	Slide 49: Individual Global-Max (IGM)
	Slide 50: QPLEX
	Slide 51: QPLEX architecture
	Slide 52: State in value function factorization
	Slide 53: State in value function factorization
	Slide 54: CTDE Policy Gradient Methods
	Slide 55: Actor critic with a centralized critic
	Slide 56: A basic centralized critic approach
	Slide 57: MADDPG
	Slide 58: Counterfactual Multi-Agent Policy Gradients (COMA)
	Slide 59: MAPPO
	Slide 60: IPPO
	Slide 61
	Slide 62: Multi-Agent Actor Critic
	Slide 63: Critic Centralization Cannot Solve Cooperation
	Slide 64: Critic Centralization Cannot Solve Cooperation
	Slide 65: Learning Value Functions
	Slide 66
	Slide 68: Decentralized vs centralized critics
	Slide 69: State-based Centralized Critics
	Slide 70
	Slide 71: Centralized critics
	Slide 72: Centralized critics
	Slide 73: Bias Example - Noisy Beverage Domain
	Slide 74
	Slide 75: State Values
	Slide 76: State Values
	Slide 77: Experiments
	Slide 78: Common small environments
	Slide 79: SMAC - StarCraft Multi-Agent Challenge
	Slide 80: Partially Observable Particle Environments
	Slide 81: Takeaways
	Slide 82: Other CTDE methods
	Slide 83: Other topics
	Slide 84: Applications
	Slide 85: Multi-agent RL with macro-actions
	Slide 86: Benchmarks
	Slide 87: Environments and code
	Slide 88: MARL and LLMs
	Slide 89: Conclusion
	Slide 90: Conclusion
	Slide 91: Our resources

