egie
oNn

School of Computer Science

Scheme Flow Analysis Note 3 5/1/90

Super-G.
Copy, Constant, and Lambda Propagation
in Scheme

Olin Shivers

shivers@cs.cmu.edu

Thisis an informal note intended for limited distribution. The text will reappear
in my dissertation; it appears here for interested parties who don’'t want to wait. The
explication of the technique is arough sketch, and assumes you are familiar with my
paper “Data-Flow Analysis and Type Recovery in Scheme.”

1 Copy propagation

Copy propagation isastandard code improvement technique that is based on data-flow
analysis. Itis, for example, treated in chapter 10 of the Dragon book. Copy propagation
essentially isremoving variablesthat are just redundant copies of other variables. That
is, if a reference x+3 to a variable x has only defs of the form x := y, and y is
unchanged aong intervening control paths, then we can subgtitute y for its copy x:
y+3. If we can do thiswith all the references to x, then we can remove the assignment
to x completely.

In Scheme, copy propagation is handled in some cases by simple 3-substitution.
We can substitutey for x in:

(let ((x y))

(£00 %)) = (foo y)



However, 3-substitution does not handle cases involving circular or join dependencies.
For example, consider the loop which multiplies each element in vec by x:

(letrec ((1p (A (y 1)
(cond ((>=1i 0)
(set (vref vec i) (* (vref vec 1) y))
(Ipy (-1 1)))))))
(1p x 20))

Clearly, references to y can be replaced by x, although simple /5-substitution will not
pick thisup.

Note that this sort of copy propagation can frequently and usefully be applied to
the continuation variable in the CPS expansions of loops. For example, consider the
iterativefactoria, partially CPS-expanded:

(define (fact n k)
(letrec ((1p (A (ans m c)
(if (= m 0) (c ans)
(Ip (* ans m) (- m 1) ¢)))))
(1p 1 n k)))

The loop’s continuation ¢ is aways bound to the procedure’s continuation k, and is
redundantly passed around the loop until it isinvoked on loop termination. Applying
copy propagation (and one round of usel ess-variabl e eliminationto clean up afterwards)
removes the iteration variable c entirely:

(define (fact n k)
(letrec ((1p (A (ans m)
(if (= m 0) (k ans)
(1p (* ans m) (- m 1))))))
(1Ip 1 n)))

This sort of situation crops up al the time in CPS-expanded |oops.

The general form of Scheme copy propagation, then, is:

For agiven variable v, find al lexicaly inferior variables that are always
bound to the value of v, and replace their references with references to v.

With this definition, Scheme copy propagation acts as a sort of “super-5” substitution
rule. (If weallow side-effectstovariables, thiscan disall ow some possiblesubstitutions.



If, on the other hand, we use an intermediate representation that has no variable side-
effects, we can substitute at will. Thisis one of the attractions of the particular CPS
Scheme representation used by Orbit, the Transformational Compiler, and my work.
ML elegantly avoidstheissueatogether: variablescannot be side-effected at the source
level.)

Note that the environment problem rears its head here. For example, we cannot
substitutex for y in the following code:

(let ((£ (X (x g) (if (null? g) (A O x)
(let ((y (g))) ... v ...0))))
(f 3 (f 5 nil)))

Even though y is certainly bound to x (because g isboundto (A () x) at that point),
it's the wrong binding of x — we need the one that is in the y reference’s context.
Scheme alows us to have multiple bindings of the same variable around at the same
time; we haveto be careful when we are doing copy propagation to keep these multiple
environments separate.

1.1 Copy propagation and reflow

We can handle the environment problem with an analysis similar to the onein “Data
Flow Analysis and Type Recovery in Scheme.”

Suppose we have some lambda ¢ = (A (x y z) ...), and we wish to perform
copy propagation on x. That is, we want to find the lexically inferior variables that are
always bound to the (Iexically apparent) value of x so we can replace them withx. We
do areflow, starting with each entry to £. Aswe enter ¢, we create a perfect contour
for ¢’svariables. All thelexicaly inferior lambdas in this scope will be closed over the
perfect contour, and so won't get their references to x confused with other bindings of
X.

In order to perform the analysis, we need an abstract value domain of two values:
avaue to represent whatever is bound to the binding of x that we're tracking, and a
valueto represent everything else in the system. Call x’s value 0 and the other value 1.
Theinitia system state when we begin areflow by entering ¢ isthat

o the current binding of x hasvaue 0

o al other bindingsin the environment — including the current bindings of y and
z and other extant bindings of x — and al valuesin the abstract store have value
1



Aswe proceed through the abstract interpretation, whenever we enter alambda ¢’ that
islexically inferior to ¢, we check to seeif ¢’ isclosed over the perfect ¢ contour we're
tracking. If itis, we save away the value sets passed in as arguments to the variabl es of
.

After we've reflowed £ from al its call sites, we examine each lexicaly inferior
variable. Consider the value set accumulated for variable v. If itis @, then v’slambda
was never called — it’sdead code. If itis {0}, thenitisaways bound to the value of x
initslexical context, and so isa candidate for copy propagation— we can legitimately
replace all references to v with x. If itis{0, 1} or {1}, thenit can potentially be bound
to another value, and so is not a candidate for copy propagation.

Noticethe conservative natureof theanalysis: thepresence of 1 inavalue set marks
avariable as anon-copy. Thisis because after setting up theinitia perfect contour, all
the other variable bindingsto value sets happen in approximate contours. This means
that different bindings can get mapped together. If our analysis arranges for this to
affect the analysis in the safe direction, thisidentification is OK. Ruling out a possible
copy is erring on the safe side, and that is the effect we get by unioning together the
value setsand looking for 1's .

The genera agorithm | outline here is quite inefficient; I’ ve kept it as simple as
possible to get the basic idea across. A rea implementation could be tuned up for
greater efficiency.

2 Constant propagation

Constant propagation is another standard code i mprovement based on data-flow analy-
sis. In brief, if the only def of x that reaches sin(x) isx:=3. 14, then we can replace
sin(x) withsin(3.14) (and, subsequently, -1.0).

In the Scheme and ML world, where we bind variables instead of side-effecting
them, this corresponds to finding variables that are always bound to constants, and
replacing their references with the constant. Again, 3-substitution spotsthe easy cases.
E.g.

(1et.((X 3.14)) = (sin 3.14)
(sin x))

Again, we need something more powerful to spot circular and join dependencies.

Constant propagation is much easier (and cheaper) than copy propagation because
we don’t have to worry about the environment problem. Constants are not sensitiveto
their environmental context. They can be freely migrated around a program in ways



that variables cannot. The analysis procedure for constant propagation can therefore
be based on the simple control-flow analysis | present in “The Semantics of Scheme
Control-Flow Analysis.” We just augment the variable environment (and the store)
to include constants as well as procedures. When we perform a call with a constant
argument a, we just pass the singleton set {a} as the corresponding value set. When
the analysis converges, we look up the data that was bound to a given variable v under
all itscontours. If there's only one such datum, and it’s a constant, not a procedure, we
can go ahead and replace all references to v with the constant.

3 Lambda propagation

In the CPS Scheme intermediate representation | use, a call argument can beavariable,
aconstant, or alambda. Copy and constant propagation are essentially just finding out
when a variable is bound to a known variable or constant, and doing the appropriate
substitution. Clearly there's one important case left to be done: binding avariableto a
known lambda, which we can call “lambda propagation.”

Withlambda propagation, the environment problemreturnsinforce. Likevariables,
lambda expressions are not context-independent. A procedure is a lambda plus its
environment. When we move alambda from one control point to another, in order for
it to evaluate to the same procedure we must be sure that environment contexts at both
pointsare equivalent. Thisis reflected by the “environment consonance” conditionin
the following statement of lambda propagation:

For a given lambda /, find al the places it is used in contexts that are
environmentally consonant with its point of closure.

By “environmentally consonant,” | meanthat all thelambda sfreevariablesarelexicaly
apparent at the point of use, and are also bound to the same values as they are a the
lambda'spoint of closure. That is, if wedeterminethat lambda? = (A (x) (+ x y))
iscalled fromcall ¢ = (g z), we must aso determine that ¢ appears in the scope of
y, and further, that it isthe same binding of y that pertained when we closed ¢. In this
sense, the more free variables alambda has, the more constraints there are on it being
“environmentally consonant” with other control points. At one extreme, combinators
— lambdas with no free variables — are environmentally consonant with any call site
in the program, and can be substituted at any point, completely unconstrained by the
lexical context.

3.1 Simplifyingthe consonance constraint

Suppose we want to find al the places we can substitute lambda expression ¢ =
A (x) ...y ... z...w. fisclosed over three free variables. y, z, and w.



Let us suppose that y is the innermost free variable, that is, £'s lexical context looks
something likethis:

(A (w)
A (=)
Ay
(/\ (a)
.E.:.(/\ x) ...y ... 2z ... w)
D)
eel)
cel)
o)

We can substitute ¢ only within the scope of y. (Notice that since a is not free in £,
occurrences of ¢ can migrate outside of its scope.) The key to ensuring environment
consonance is to realise that if we ensure that ¢ is consonant with its innermost free
variable— y — then it is consonant with the rest of itsfree variables. For example, if
we cal ¢ from acall context that binds y in the same run-time contour as ¢ is closed
over, then we can be sure the same goes for z and w.

Given this observation, we can see that alambda propagation analysis really only
needs to be careful about a single contour: the one over the innermost free variable's
lambda. In areflow-based anaysis procedure, this means we need to track only one
perfect contour at atime.

3.2 Lambda propagation and reflow

Given a lambda p, we will do lambda propagation for al inferior lambdas ¢ whose
innermost free variableisbound by 1. We perform areflow from all callsto an abstract
closure over 1. Aswe enter i beginning the reflow, we allocate a perfect contour for
p'svariables. Aswe proceed through theabstract interpretation, wewill make closures,
some over the perfect contour that we're tracking. Just as in copy propagation, when
we enter alambda y’ that islexicaly inferior to i, we check to seeif 1/ isclosed over
the perfect 1 contour. If itis, we save away the val ue sets passed in as argumentsto the
variablesof p'.

When we're done with our reflows, we examine each variable v that is lexically
inferior to p. Consider the value set accumulated for v. If (1) it consists entirely of



closures over asingle lambda ¢, (2) ¢ islexicaly inferior to p, (3) ¢'s innermost free
variable is bound by y, and (4) each closure over ¢ has the perfect contour for p's
scope, then we win: ¢ can be substituted for any reference »: v to v — thereferenceis
guaranteed to evaluate to a closure over £ and the environment that pertainsat »:v is
consonant with the onethat ¢ is closed over.

3.3 Constraintson lambda substitution

Once we' ve found the variables for which we can substitute a given lambda, we must
decide which cases are appropriate. If alambda can be substituted at multiplepointsin
a program, performing all the substitutions can lead to code blow-up. We might wish
tolimit our substitutionsto cases where there isonly one possibletarget, or thelambda
isbelow acertain size. We might choose some subset of thereferences to substitutefor,
where the compiler thinks there is payoff in expanding out the lambda, leaving other
references unchanged.

We have to be careful when substituting alambda for multiple variable references
if more than one of the references isa call argument (instead of a call procedure), lest
we break the egness of procedures. For example, we cannot substitutefor x in

(let ((x (A O #£))) (eq? x x))

Duplicatingthe lambdawill cause the eq? test toreturn false. (ML avoidsthisproblem
by disallowing eq tests on procedures.)

One case definitely worth treating with caution iswhen alambdais used in itsown
body, eg.:

(letrec ((fact (A (n)
(if (=n 0) 1
(* n (fact (- n 1)))))))
(fact m))

Lambda propagation tells us we can legitimately substitute the lambda definition of
fact for the variable reference fact in its own body, giving us (after one round of
substitution):

(letrec ((fact (A (n)
(if (=n0) 1
(*n (X (@) (f (=n0) 1
(* n (fact (- n 1)))))
(=n 1NN
(fact m))



Clearly, blindly performing this substitution can get us into an infinite regress. This
sort of situation can happen without 1etrec, in cases involving self-application

(et ((1p0 (A (1p1) (1p1l 1p1)))) (1p0 1p0))
or indirection through the store:

(let* ((pair (cons #f #£f))
(1p (A O ((car pair)))))
(set-car! pair 1p)

(1p))

Substituting a lambda for a variable inside the lambda’s body is not necessarily a bad
thingto do. It amountsto loop unrolling, which can be desirable in some contexts. But
the code optimiser must be aware of thiscase, and avoid it when it isundesirable.

Most of these substitution constraintsal so pertain to code improversthat use simple
(B-substitution; detail ed discussions are found in the Rabbit, Orbit and Transformational
Compiler theses. In any event, all these caveats and this backing and filling should
indicate to the reader that lambda propagation is not such a trivial thing. With the
exception of procedural egness, these caveats are all issues of implementation, not
semantics (code blow-up is not, for example, a semantic concern). This makes me
somewhat suspicious of the procedural eqness requirement.

A final note on lambda propagation. Aswe' ve just seen, there are many constraints
determining when we can substitute a lambda for a variable known to be bound to
aclosure over that lambda: the variable's reference context must be environmentally
consonant with thelambda’s point of closure; the variable must bereferenced only once
(to avoid code blow-up); and so forth. However, even when these constraints are not
satisfied, it is useful to know that a variable reference must evaluate to a closure over
aparticular lambda. The compiler can compile a procedure call as a simple branch to
a known location instead of a jump to a run-time value which must be loaded into a
register. If al callsto alambda are known calls, the compiler can factor the lambda
out of the run-time representation of the closure, alowing for smaller, more efficient
representations. Thisisexactly what Orbit’s strategy analysisdoes, for the simple cases
it can spot.

Note that the sort of information required for the general version of Orbit’s strategy
analysisis just the basic control-flow information provided by the analyses devel oped
in “Control-Flow Anaysisin Scheme’ and “The Semantics of Scheme Control-Flow
Anaysis”



4 Cleaning up

When we substitute an expression — a variable, a constant or a lambda — for &l
references to some variable v, then v becomes a useless variable. It is therefore a
candidate for being removed from its lambda's parameter list. This transformation is
the one used by the second phase of useless-variable elimination; my note on UVE
describes the particulars. The following sequence of transformations shows the role of
UVE in post-substitution cleanup.

;35 Original loop
(letrec ((1p (A (sum n c)
(if (= 0 n) (c sum)
(1p (+ sum n) (- n 1) ¢)))))
(1p 0 m k))

;;; After copy propagation
(letrec ((1p (A (sum n c)
(if (= n 0) (k sum)
(Ip (+ sum n) (- n 1) k)))))
(1p 0 m k))

;33 After UVE
(letrec ((1p (A (sum n)
(if (= n 0) (k sum)
(Ip (+ sum n) (- n 1))))))
(1p 0 m))

5 Summary

Copy and constant propagation are classica code improvements based on data-flow
analysis. Standard imperativelanguagestypically use side-effectsto associate variables
withvalues, and thisiswhat the standard formul ationsof copy and constant propagation
focuson. In Scheme, however, variablesaretypically associated with val ues by binding
them. With this change of emphasis, copy and constant propagation become simply
special cases of an interesting generalisation of the A-calculus 5-subgtitutionrule. This
is particularly true in the CPS Scheme internal representation, where side-effects are
not allowed to interfere with the substitution rules. This “super-5” mode of code
improvement gives us one more aternativeto copy and constant propagation: “lambda
propagation” — substituting lambda expressions for variabl e references.



In the case of copy and lambda propagation, the context-dependence of variable
references and lambda expressions requires our analysis to be sensitive to the envi-
ronment that exists at the source and target points of the expression being substituted.
Thisisthe environment problem mentioned in “ Control-Flow Analysisin Scheme;” its
solutionis based on the general technique presented in “Data-Flow Analysis and Type
Recovery in Scheme.”

References

Aho, Sethi, Ullman. Compilers, Principles, Techniques and Tools. Addison-Wesley
(1986).

Richard Kelsey. Compilation by Program Transformation. YALEU/DCS/RR-702.
Ph.D. dissertation, Yale University (May 1989). (A conference-length version of this
appearsin POPL 89.)

David Kranz. ORBIT: An Optimizing Compiler for Scheme. YALEU/DCS/RR-632.
Ph.D. dissertation, Yae University (February, 1988). (A conference-length version of
thisappearsin SIGPLAN 86.)

Olin Shivers. Control-flow analysis in Scheme. Proceedings of SGPLAN '88 Con-
ference on Programming Language Design and |mplementation (June 1988). (Also
available as Technical Report ERGO-88-60, CMU School of Computer Science, Pitts-
burgh, Penn.)

Olin Shivers. CPS data-flow analysis example. Working note #1 (May 1, 1990).

OlinShivers. Data-flow analysisand typerecovery in Scheme. Technical Report CMU-
CS-90-115, CMU School of Computer Science, Pittsburgh, Penn. (March 1990). (Also
to appear in Topicsin Advanced Language Implementation, ed. Peter Lee, MIT Press.)

Olin Shivers. The semantics of Scheme control-flow analysis. (In preparation)

Olin Shivers. The semantics of Scheme control-flow analysis (Prelim). Technica Re-
port ERGO-90-090, CMU School of Computer Science, Pittsburgh, Penn. (November
1988).

Olin Shivers. Useless-variable elimination. Working note #2 (April 27, 1990).

Guy Lewis Steele Jr. Rabbit: A Compiler for Scheme. MIT Artificia Intelligence
Laboratory Technical Report 474, May 1978.

10



