
Bottom-up β-reduction:
uplinks and λ-DAGs

Olin Shivers1 and Mitchell Wand2

1 Georgia Institute of Technology
2 Northeastern University

Abstract. Representing aλ-calculus term as a DAG rather than a tree allows
us to represent the sharing that arises fromβ-reduction, thus avoiding combina-
torial explosion in space. By adding uplinks from a child to its parents, we can
efficiently implementβ-reduction in a bottom-up manner, thus avoiding com-
binatorial explosion in time required to search the term in a top-down fashion.
We present an algorithm for performingβ-reduction onλ-terms represented as
uplinked DAGs; discuss its relation to alternate techniques such as Lamping
graphs, explicit-substitution calculi and director strings; and present some tim-
ings of an implementation. Besides being both fast and parsimonious of space,
the algorithm is particularly suited to applications such as compilers, theorem
provers, and type-manipulation systems that may need to examine terms in-
between reductions—i.e., the “readback” problem for our representation is trivial.
Like Lamping graphs, and unlike director strings or the suspensionλ-calculus,
the algorithm functions by side-effecting the term containing the redex; the rep-
resentation isnot a “persistent” one. The algorithm additionally has the charm
of being quite simple: a complete implementation of the core data structures and
algorithms is 180 lines of SML.

1 Introduction

Theλ-calculus [2, 5] is a simple language with far-reaching use in the programming-
languages and formal-methods communities, where it is frequently employed to repre-
sent, among other objects, functional programs, formal proofs, and types drawn from
sophisticated type systems. Here, our particular interest is in the needs of client appli-
cations such as compilers, which may useλ-terms to represent both program terms as
well as complex types. We are somewhat less focussed on the needs of graph-reduction
engines, where there is greater representational license—a graph reducer can represent
a particularλ-term as a chunk of machine code (e.g., by means of supercombinator ex-
traction), because its sole focus is onexecutingthe term. A compiler, in contrast, needs
to examine, analyse and transform the term in-between reductions, which requires the
actual syntactic form of the term be available at the intermediate steps.

Of the three basic operations on terms in theλ-calculus—α-conversion,β-reduction,
andη-reduction—it isβ-reduction that accomplishes the “heavy lifting” of term ma-
nipulation. (The other two operations are simple to implement.) Unfortunately, naı̈ve
implementations ofβ-reduction can lead to exponential time and space blowup.

To appear inProceedings of the European Symposium on Programming(ESOP), Edinburgh,
Scotland, April 2005.

There are only three forms in the basic language:λ expressions, variable references,
and applications of a function to an argument:

t ∈ Term ::= λx.t | x | tf ta

where “x” stands for a member of some infinite set of variables.
β-reduction is the operation of taking an application term whose function subterm

is aλ-expression, and substituting the argument term for occurrences of theλ’s bound
variable in the function body. The result, called thecontractum,can be used in place of
the original application, called theredex. We write

(λx.b) a ⇒ [x 7→a]b

to express the idea that the redex applying functionλx.b to argumenta reduces to the
contractum[x 7→ a]b, by which we mean termb, with free occurrences ofx replaced
with terma.

We can define the core substitution function with a simple recursion:

[y 7→ t][[x]] = t x = y
[y 7→ t][[x]] = x x 6= y
[x 7→ t][[tf ta]] = ([x 7→ t]tf)([x 7→ t]ta)
[x 7→ t][[λy.b]] = λy′.([x 7→ t][y 7→y′]b) y′ fresh inb andt.

Note that, in the final case above, when we substitute a termt under aλ-expression
λy.b, we must first replace theλ-expression’s variabley with a fresh, unused variable
y′ to ensure that any occurrence ofy in t isn’t “captured” by the[x 7→ t] substitution. If
we know that there are no free occurrences ofy in t, this step is unnecessary—which is
the case if we adopt the convention that everyλ-expression binds a unique variable.

It is a straightforward matter to translate the recursive substitution function defined
above into a recursive procedure. Consider the case of performing a substitution[y 7→ t]
on an applicationtf ta. Our procedure will recurse on both subterms of the applica-
tion. . . but we could also use a less positive term in place of “recurse” to indicate the
trouble with the algorithmic handling of this case: search. In the case of an application,
the procedure will blindly searchbothsubterms, even though one or both may have no
occurrences of the variable for which we search. Suppose, for example, that the func-
tion subtermtf , is very large—perhaps millions of nodes—but contains no occurrences
of the substituted variabley. The recursive substitution will needlessly search out the
entire subterm, constructing an identical copy oftf . What we want is some way to direct
our recursion so that we don’t waste time searching into subterms that do not contain
occurrences of the variable being replaced.

2 Guided tree substitution

Let’s turn to a simpler task to develop some intuition. Consider inserting an integer into
a set kept as an ordered binary tree (Fig. 1). There are three things about this simple
algorithm worth noting:

2

Procedure addItem(node, i)

if node = nil then

new := NewNode()

new.val := i

new.left := nil

new.right := nil

else if node.val < i then

new := NewNode()

new.val := node.val

new.left := node.left

new.right := addItem(node.right,i)

else if node.val > i then

new := NewNode()

new.val := node.val

new.right := node.right

new.left := addItem(node.left,i)

else new := node

return new

Fig. 1. Make a copy of ordered binary treenode, with added entryi. The original tree is not
altered.

– No search
The pleasant property of ordered binary trees is that we have enough information
as we recurse down into the tree to proceed only into subtrees that require copying.

– Steer down; build up
The algorithm’s recursive control structure splits decision-making and the actual
work of tree construction: the downward recursion makes the decisions about which
nodes need to be copied, and the upward return path assembles the new tree.

– Shared structure
We copy only nodes along the spine leading from targeted node to the root; the
result tree shares as much structure as possible with the original tree.

3 Guiding tree search with uplinks

Unfortunately, in the case ofβ-reduction, there’s no simple, compact way of determin-
ing, as we recurse downwards into a tree, which way to go at application nodes—an
application has two children, and we might need to recurse into one, the other, both,
or neither. Suppose, however, that we represent our tree using not only down-links that
allow us to go from a parent to its children, but also with redundant up-links that allow
us to go from a child to its parent. If we can (easily) find the leaf node in the original
tree we wish to replace, we can chase uplinks along the spine from the old leaf to the
tree root, copying as we go (Fig. 2). The core iteration of this algorithm is thec 7→ c′

upcopy:

�� AA
p

c c’ o
⇒ �� AA,,

p

c c’ o

p’

3

d fe hgba c x

Fig. 2.Replacing a single leaf in a binary tree by following uplinks. Here, we make a copy of the
original tree, replacing leafc with x.

We take a childc and its intended replacementc′, and replicate the parentp of c, making
thec 7→c′ substitution. This produces freshly-created nodep′; we can now iterate, doing
ap 7→p′ upcopy into the parent ofp at the next step, and so on, moving up through the
original tree until we reach the root.

Note the similar properties this upcopy algorithm has with the previous algorithm:
no search required; we build as we move upwards; we share as much structure as pos-
sible with the old tree, copying only the nodes along the “spine” leading from the leaf
back to the root. For a balanced tree, the amount of copying is logarithmic in the total
number of nodes. If we can somehow get our hands on the leaf node to be replaced in
the old tree, the construction phase just follows uplinks to the root, instead of using a
path saved in the recursion stack by the downwards search.

4 Upcopy with DAGs

We can avoid space blowup when performingβ-reduction onλ-calculus terms if we can
represent them as directed acyclic graphs (DAGs), not trees. Allowing sharing means
that when we substitute a large term for a variable that has five or six references inside
its bindingλ-expression, we don’t have to create five or six distinct copies of the term
(that is, one for each place it occurs in the result). We can just have five or six references
to the same term. This has the potential to provide logarithmic compression on the
simple representation ofλ-calculus terms as trees. These term DAGs can be thought of
as essentially a space-saving way to represent term trees, so we can require them, like
trees, to have a single top or root node, from which all other nodes can be reached.

When we shift from trees to DAGs, however, our simple functional upcopy algo-
rithm no longer suffices: we have to deal with the fact that there may be multiple paths
from a leaf node (a variable reference) of our DAG up to the root of the DAG. That
is, any term can have multiple parents. However, we can modify our upwards-copying
algorithm in the standard way one operates on DAGs: we search upwards along all pos-
sible paths, marking nodes as we encounter them. The first time we copy up into a node
n, we replicate it, as in the previous tree algorithm, and continue propagating the copy
operation up the tree to the (possibly multiple) parents ofn. However, before we move
upwards fromn, we first store the copyn′ away in a “cache” field ofn. If we later
copy up inton via its other child, the presence of the copyn′ in the cache slot ofn will
signal the algorithm that it should not make a second copy ofn, and should not proceed

4

Procedure upcopy(childcopy, parent, relation)

if parent.cache is empty then

parcopy := NewNode()

if relation is "left child" then

parcopy.left := childcopy

parcopy.right := parent.right

else

parcopy.right := childcopy

parcopy.left := parent.left

parent.cache := parcopy

for-each <grandp,gprel> in parent.uplinks do

upcopy(parcopy, grandp, gprel)

else

parcopy := parent.cache

if relation is "left child"

then parcopy.left := childcopy

else parcopy.right := childcopy

Fig. 3. Procedureupcopy makes a copy of a binary DAG, replacing therelation child (left or
right) of parentwith childcopy.

upwards fromn—that has already been handled. Instead, it mutates the existing copy,
n′, and returns immediately.

The code to copy a binary DAG, replacing a single leaf, is shown in Fig. 3.
Every node in the DAG maintains a set of its uplinks; each uplink is represented as
a 〈parent, relation〉 pair. For example, if nodec is the left child of nodep, then the pair
〈p, left-child〉 will be one of the elements inc’s uplink set.

The upcopy algorithm explores each edge on all the paths from the root of the
DAG to the copied leaf exactly once; marking parent nodes by depositing copies in
their cache slots prevents the algorithm from redundant exploration. Hence this graph-
marking algorithm runs in time proportional to the number of edges,not the number
of paths (which can be exponential in the number of edges). Were we to “unfold” the
DAG into its equivalent tree, we would realise this exponential blowup in the size of
the tree, and, consequently, also in the time to operate upon it. Note that, analogously
to the tree-copying algorithm, the new DAG shares as much structure as possible with
the old DAG, only copying nodes along the spine (in the DAG case, spines) from the
copied leaf to the root.

After an upcopy has been performed, we can fetch the result DAG from the cache
slot of the original DAG’s root. We must then do another upwards search along the
same paths to clear out the cache fields of the original nodes that were copied, thus
resetting the DAG for future upcopy operations. This cache-clearing pass, again, takes
time linear in the number of edges occurring on the paths from the copied leaf to the
root. (Alternatively, we can keep counter fields on the nodes to discriminate distinct
upcopy operations, and perform a global reset on the term when the current-counter
value overflows.)

5

5 Operating onλ-DAGs

We now have the core idea of our DAG-basedβ-reduction algorithm in place, and can
fill in the details specific to ourλ-expression domain.

Basic representationWe will represent aλ-calculus term as a rooted DAG.

Sharing Sharing will be generally allowed, and sharing will berequiredof variable-
reference terms. That is, any given variable will have no more than one node in the DAG
representing it. If one variable is referenced by (is the child of) multiple parent nodes in
the graph, these nodes will simply all contain pointers to the same data structure.

Bound-variable short-cutsEveryλ-expression node will, in addition to having a refer-
ence to its body node, also have a reference to the variable node that it binds. This, of
course, is how we navigate directly to the leaf node to replace when we begin the upcopy
for a β-reduction operation. Note that this amounts to anα-uniqueness condition—we
require that everyλ-expression bind a unique variable.

Cache fields Every application node has a cache field that may either be empty or
contain another application node.λ-expression nodes do not need cache fields—they
only have one child (the body of theλ-expression), so the upcopy algorithm can only
copy up through aλ-expression once during aβ-reduction.

Uplinks Uplinks are represented by〈parent, relation〉 pairs, where the three possible
relations are “λ body,” “application function,” and “application argument.” For example,
if a noden has an uplink〈l, λ-body〉, thenl is aλ-expression, andn is its body.

Copyingλ-expressionsWith all the above structure in place, the algorithm takes shape.
To perform aβ-reduction of redex(λx.b) a, whereb anda are arbitrary subterms, we
simply initiate anx 7→a upcopy. This will copy up through all the paths connecting top
nodeb and leaf nodex, building a copy of the DAG witha in place ofx, just as we
desire.

Application nodes, having two children, are handled just as binary-tree nodes in
the general DAG-copy algorithm discussed earlier: copy, cache & continue on the first
visit; mutate the cached copy on a second visit.λ-expression nodes, however, require
different treatment. Suppose, while we are in the midst of performing the reduction
above, we find ourselves performing ac 7→ c′ upcopy, for some internal nodec, into a
λ parent ofc: λy.c. The general structure of the algorithm calls for us to make a copy
of theλ-expression, with bodyc′. But we must also allocate a fresh variable,y′, for our
new λ-expression, since we require allλ-expressions to bind distinct variables. This
gives usλy′.c′. Unfortunately, if old bodyc contains references toy, these will also
occur inc′—noty′. We can be surec′ contains no references toy′, sincey′ was created
afterc′! We need to fix up bodyc′ by replacing all its references toy with references to
y′.

Luckily, we already have the mechanism to do this: before progressing upwards to
the parents ofλy.c, we simply initiate ay 7→y′ upcopy through the existing DAG. This

6

upcopy will proceed along the paths leading from they reference, up through the DAG,
to theλy.c node. If there are such paths, theymustterminate on a previously-copied
application node, at which point the upcopy algorithm will mutate the cached copy and
return.

Why must these paths all terminate on some previously copied application node?
Because we have already traversed a path fromx up to λy.c, copying and caching
as we went. Any path upwards from they reference must eventually encounterλy.c,
as well—this is guaranteed by lexical scope. The two paths must, then, converge on
a common application node—the only nodes that have two children. That node was
copied and cached by the originalx-to-λy.c traversal.

When they 7→ y′ upcopy finishes updating the new DAG structure and returns, the
algorithm resumes processing the originalc 7→c′ upcopy, whose next step is to proceed
upwards with a(λy.c) 7→ (λy′.c′) upcopy to all of the parents ofλy.c, secure that the
c′ sub-DAG is now correct.

The single-DAG requirementWe’ve glossed over a limitation of the uplink representa-
tion, which is that a certain kind of sharing is not allowed: after aβ-reduction, the orig-
inal redex must die. That is, the model we have is that we start with aλ-calculus term,
represented as a DAG. We choose a redex node somewhere within this DAG, reduce it,
andalter the original DAG to replace the redex with the contractum. When done, the
original term has been changed—where the redex used to be, we now find the contrac-
tum. What wecan’t do is to choose a redex, reduce it, and then continue to refer to the
redex or maintain an original, unreduced copy of the DAG. Contracting a redex kills
the redex; the term data structure is not “pure functional” or “persistent” in the sense of
the old values being unchanged. (We can, however, first “clone” a multiply-referenced
redex, splitting the parents between the original and the clone, and then contract only
one of the redex nodes.)

This limitation is due to the presence of the uplinks. They mean that a subterm
can belong to only one rooted DAG, in much the same way that the backpointers in
a doubly-linked list mean that a list element can belong to only one list (unlike a
singly-linked list, where multiple lists can share a common tail). The upcopy algo-
rithm assumes that the uplinks exactly mirror the parent→child downlinks, and traces
up through all of them. This rules out the possibility of having a node belong to multiple
distinct rooted DAGs, such as a “before” and “after” pair related by theβ-reduction of
some redex occurring within the “before” term.

Hence the algorithm, once it has finished the copying phase, takes the final step
of disconnecting the redex from its parents, and replacing it with the contractum. The
redex application node is now considered dead, since it has no parents, and can be
removed from the parent/uplink sets of its children and deallocated. Should one of its
two children thus have its parent set become empty, it, too, can be removed from the
parent sets of its children and deallocated, and so forth. Thus we follow our upwards-
recursive construction phase with a downwards-recursive deallocation phase.

It’s important to stress, again, that this deallocation phase is not optional. A dead
node must be removed from the parent sets of its children, lest we subsequently waste
time doing an upcopy from a child up into a dead parent during a later reduction.

7

Termination and the top applicationAnother detail we’ve not yet treated is termina-
tion of the upcopy phase. One way to handle this is simply to check as we move up
through the DAG to see if we’ve arrived at theλ-expression being reduced, at which
point we could save away the new term in some location and return without further
upward copying. But there is an alternate way to handle this. Suppose we are contract-
ing redex(λx.b) n, for arbitrary sub-termsb andn. At the beginning of the reduction
operation, we first check to see ifx has no references (an easy check: is its uplink set
empty?). If so, the answer isb; we are done.

Otherwise, we begin at theλ-expression being reduced and scan downwards fromλ-
expression to body, until we encounter a non-λ-expression node—either a variable or an
application. If we halt at a variable, itmustbex—otherwisex would have no references,
and we’ve already ruled that out. This case can also be handled easily: we simply scan
back through this chain of nestedλ-expressions, wrapping freshλ-expressions around
n as we go.

Finally, we arrive at the general case: the downward scan halts at the topmost appli-
cation nodea of sub-termb. We make an identical copya′ of a, i.e.one that shares both
the function and argument children, and installa′ in the cache slot ofa.

Now we can initiate anx 7→ n upcopy, knowing that all upwards copying must
terminate on a previously-copied application node. This is guaranteed by the critical,
key invariant of the DAG: all paths from a variable reference upward to the rootmust
encounter theλ-node binding that variable—this is simply lexical-scoping in the DAG
context. The presence ofa′ in the cache slot ofa will prevent upward copying from
proceeding abovea. Nodea acts as a sentinel for the search; we can eliminate the root
check from the upcopy code, for time savings.

When the upcopy phase finishes, we passa′ back up through the nested chain of
λ-expressions leading froma back to the topλx.b term. As we pass back up through
eachλ-expressionλy.t, we allocate a freshλ-expression term and a fresh variabley′

to wrap around the valuet′ passed up, then perform ay 7→ y′ upcopy to fix up any
variable references in the new body, and then pass the freshly-createdλy′.t′ term on
up the chain. (Note that the extended example shown in Sec. 7 omits this technique to
simplify the presentation.)

6 Fine points

These fine points of the algorithm can be skipped on a first reading.

Representing uplinksA node keeps its uplinks chained together in a doubly-linked list,
which allows us to remove an uplink from a node’s uplink set in constant time. We will
need to do this, for example, when we mutate a previously copied noden to change one
of its children—the old child’s uplink ton must be removed from its uplink set.

We simplify the allocation of uplinks by observing that each parent node has a fixed
number of uplinks pointing to it: two in the case of an application and one in the case
of a λ-expression. Therefore, we allocate the uplink nodes along with the parent, and
thread the doubly-linked uplink lists through these pre-allocated nodes.

An uplink doubly-linked list elementappearsin the uplink list of the child, but
the elementbelongsto the parent. For example, when we allocate a new application

8

node, we simultaneously allocate two uplink items: one for the function-child uplink to
the application, and one for the argument-child uplink to the application. These three
data structures have identical lifetimes; the uplinks live as long as the parent node they
reference. We stash them in fields of the application node for convenient retrieval as
needed. When we mutate the application node to change one of its children, we also
shift the corresponding uplink structure from the old child’s uplink list to the new child’s
uplink list, thus keeping the uplink pointer information consistent with the downlink
pointer information.

The single-reference fast pathConsider a redex(λx.b) n, where theλ-expression being
reduced has exactly one parent. We know what that parent must be: the redex application
itself. This application node is about to die, when all references to it in the term DAG are
replaced by references to the contractum. So theλ-expression itself is about to become
completely parentless—i.e., it, too, is about to die. This means that any node on a path
from x up to theλ-expression will also die. Again, this is the key invariant provided by
lexical scope: all paths from a variable reference upward to the rootmustencounter the
λ-expression binding that variable. So if theλ-expression has no parents, then all paths
upwards from its variable must terminate at theλ-expression itself.

This opens up the possibility of an alternate, fast way to produce the contractum:
when theλ-expression being reduced has only one parent, mutate theλ-expression’s
body, altering all ofx’s parents to refer instead ton. We do no copying at all, and may
immediately take theλ-expression’s body as our answer, discarding theλ-expression
and its variablex (in general, aλ-expression and its variable are always allocated and
deallocated together).

Opportunistic iteration The algorithm can be implemented so that when a node is
sequencing through its list of uplinks, performing a recursive upcopy on each one, the
final upcopy can be done with a tail recursion (or, if coded in a language like C, as a
straight iteration). This means that when there is no sharing of nodes by parents, the
algorithm tends to iteratively zip up chains of single-parent links without pushing stack
frames.

7 Extended example

We can see the sequences of steps taken by the algorithm on a complete example in
Fig. 4. Part 4(a) shows the initial redex, which is(λx.(x(λy.x(uy)))(λy.x(uy))) t,
where the(λy.x(uy)) subterm is shared, andt andu are arbitrary, unspecified sub-
terms with no free occurrences ofx or y. To help motivate the point of the algorithm,
imagine that the sub-termst andu are enormous—things we’d like to avoid copying or
searching—and that theλx node has other parents besides application1—so we cannot
blindly mutate it at will, without corrupting what the other parents see. (If theλx node
doesn’thave other parents, then the single-reference fast-path described in the previous
section applies, and weareallowed to mutate the term, for a very fast reduction.)

In the following subfigure, 4(b), we focus in on the body of theλ-expression being
reduced. We iterate over the parents of its variable-referencex, doing anx 7→ t upcopy;

9

@1

λx

x

y

3

@

4

λy

@5

2

@

@

u

t

(a)

t

x

y

3

@

λy

@5

2

@

u

@3’

4

@

(b)

@2

t

@2’

x

y

3

4

λy

@5

@

u

@3’

@

(c)

t

4@

@2’ @2

4’@

x

y

3

λy

@5

@

u

@3’

(d)

@2
@2’

4@4’@

λyλy’

t

x

y

3

@5

@

u

@3’

(e)

t

@2
@2’

4@4’@

λyλy’

@5@5’
x

y

3

u

@3’

y’

@

(f)

t

@2
@2’

4@4’@

λy

@5@5’

λy’

x

y

3

u

@3’

y’

@

(g)

t

@2
@2’

4@4’@

λyλy’

@5@5’
x

y

3

u

@3’

y’

@

(h)

t

@2
@2’

4@4’@

λy’

@5@5’

λy

x

y

3

u

@3’

y’

@

(i)

t

4’@

λy’

@5’

@2’

u

3’

y’

@

(j)

Fig. 4.A trace of a bottom-up reduction of the term(λx.(x(λy.x(uy)))(λy.x(uy)))t, where the
(λy.x(uy)) term is shared, and sub-termst andu are not specified.

this is the redex-mandated substitution that kicks off the entire reduction. The first par-
ent ofx is application 3, which is copied, producing application3′, which has function
child t instead of the variable referencex, but has the same argument child as the orig-
inal application 3, namely theλy term. The copy3′ is saved away in 3’s cache slot, in
case we upcopy into 3 from its argument child in the future.

Once we’ve made a copy of a parent node, we must recursively perform an upcopy
for it. That is, we propagate a3 7→ 3′ upcopy to the parents of application3. There is
only one such parent, application 2. In subfigure 4(c), we see the result of this upcopy:
the application2′ is created, with function child3′ instead of3; the argument child,λy,
is carried over from the original application2. Again, application2′ is saved away in
the cache slot of application2.

Application 2 is the root of the upcopy DAG, so once it has been copied, control
returns to application3 and its3 7→3′ upcopy. Application 3 has only one parent, so it is
done. Control returns tox and itsx 7→ t upcopy, which proceeds to propagate upwards
to the second parent ofx, application 4.

10

We see the result of copying application 4 in subfigure 4(d). The new node is4′,
which has function childt where4 hasx; 4′ shares its argument child, application 5,
with application4. Once again, the copy4′ is saved away in the cache slot of application
4.

Having copied application4, we recursively trigger a4 7→4′ upcopy, which proceeds
upwards to the sole parent of application 4. We make a copy ofλy, allocating a fresh
variabley′, with the new body4′. This is shown in subfigure 4(e).

Since the newλy′ term binds a fresh variable, while processing theλy term we must
recursively trigger ay 7→ y′ upcopy, which begins in subfigure 4(f). We iterate through
the parents of variable-referencey, of which there is only one: application5. This is
copied, mapping childy to replacementy′ and sharing function childu. The result,5′,
is saved away in the cache slot of application5.

We then recursively trigger a5 7→ 5′ upcopy through the parents of application
5; there is only one, application4. Upon examining this parent (subfigure 4(g)), we
discover that4 already has a copy,4′, occupying its cache slot. Rather than create a
second, new copy of4, we simply mutate the existing copy so that its argument child
is the new term5′. Mutating rather than freshly allocating means the upcopy proceeds
no further; responsibility for proceeding upwards from4 was handled by the thread of
computation that first encountered it and created4′. So control returns to application
5, which has no more parents, and then toy, who also has no more parents, so control
finally returns to theλy term that kicked off they 7→y′ copy back in subfigure 4(f).

In subfigure 4(h), theλy term, having produced its copyλy′, continues the upcopy
by iterating across its parents, recursively doing aλy 7→ λy′ upcopy. The first such
parent is application3, which has already been copied, so it simply mutates its copy to
have argument childλy′ and returns immediately.

The second parent is application2, which is handled in exactly the same way in sub-
figure 4(i). Theλy term has no more parents, so it returns control to application4, who
has no more parents, and so returns control to variable referencex. Sincex has no more
parents, we are done. The answer is application2′, which is shown in subfigure 4(j). We
can change all references to application1 in the DAG to point, instead, to application2′,
and then deallocate1. Depending on whether or not the children of application1 have
other parents in the DAG, they may also be eligible for deallocation. This is easily per-
formed with a downwards deallocation pass, removing dead nodes from the parent lists
of their children, and then recursing if any child thus becomes completely parentless.

8 Experiments

To gain experience with the algorithm, a pair of Georgia Tech undergraduates imple-
mented threeβ-reduction algorithms: the bottom-up algorithm (BUBS), a reducer based
on the suspensionλ-calculus (SLC, see Sec. 9.1), and a simple, base-line reducer, based
on the simple top-down, blind-search recursive procedure described in Sec. 1. For a toy
client application that would generate many requests for reduction, we then built a pair
of simple normalisers (one total and one weak-head) on top of the reducers. We did two
independent implementations, the first in SML, and a second, in C; the C implementa-
tion gave us tighter control over the algorithm and data structures for the purposes of

11

CPU time (ms) # reductions
BUBS SLC Simple BUBS Tree

(fact 2) 0 10 10 123 180
(fact 3) 0 20 20 188 388
(fact 4) 0 40 ∞ 286 827
(fact 5) 0 160 ∞ 509 2045
(fact 6) 10 860 ∞ 1439 7082
(fact 7) 20 5620 ∞ 7300 36180
(fact 8) 190 48600 ∞ 52772245469
nasty-I 30 740 ∞ 7300 8664
pearl10 0 N/A N/A 10 N/A
pearl18 0 N/A N/A 18 N/A
tree10 0 0 0 1023 1023
tree18 740 2530 1980 262143262143

Fig. 5. Timings for three different implementations of reduction. The system gave us a measure-
ment precision of 10 ms; an entry of 0ms means below the resolution of the timer—i.e., less than
10ms; a measurement of∞means the measurement was halted after several cpu-minutes.

measurement. The SLC and simple reducers managed storage in the C implementation
with the Boehm-Demers-Weiser garbage collector, version 6.2; the BUBS algorithm
requires no garbage collector.

Space limitations restrict us to presenting a single set of comparisons from these
tests (Fig. 5). The “fact” entries are factorial computations, with Church-numeral en-
codings. “Nasty-I” is a 20,152-node tree of S and K combinators that reduces to I. A
“tree i” entry is a full binary tree of applications,i deep, with I combinators at the leaves;
a “pearli” is this tree collapsed to a DAG—a linear sequence ofi application nodes with
a single I leaf. We compiled the code with gcc 2.95.4 -g -O2 -Wall and performed the
test runs on an 800 MHz PIII (256 KB cache), 128 MB RAM, Debian GNU/Linux 3.0
system. These measurements are fairly minimal; we are currently porting Shao’sFLINT

[14] system to BUBS to get a more realistic test of the algorithm in actual practice.
One of the striking characteristics of the bottom-up algorithm is not only how fast

it is, but how well-behaved it seems to be. The other algorithms we’ve tried have fast
cases, but also other cases that cause them to blow up fairly badly. The bottom-up
algorithm reliably turns in good numbers. We conjecture this is the benefit of being able
to exploit both sharing and non-sharing as they arise in the DAG. If there’s sharing, we
benefit from re-using work. If there’s no sharing, we can exploit the single-parent fast
path. These complementary techniques may combine to help protect the algorithm from
being susceptible to particular inputs.

9 Related work

A tremendous amount of prior work has been carried out exploring different ways to
implementβ-reduction efficiently. In large part, this is due toβ-reduction lying at the
heart of the graph-reduction engines that are used to execute lazy functional languages.
The text by Peyton Joneset al. [13] summarises this whole area very well.

12

However, the focus of the lazy-language community is on representations tuned for
execution, and the technology they have developed is cleverly specialised to serve this
need. This means, for example, that it’s fair game to fix on a particular reduction or-
der. For example, graph reducers that overwrite nodes rely on their normalisation order
to keep the necessary indirection nodes from stacking up pathologically. A compiler,
in contrast, is aλ-calculus client that makes reductions in a less predictable order, as
analyses reveal opportunities for transformation.

Also, an implementation tuned for execution has license to encode terms, or parts
of terms, in a form not available for examination, but, rather, purely for execution.
This is precisely what the technique of supercombinator compilation does. Our primary
interest at the beginning of this whole effort was instead to work in a setting where
the term being reduced is always directly available for examination—again, serving the
needs of a compiler, which wants to manipulate and examine terms, not execute them.

9.1 Explicit-substitution calculi

One approach to constructing efficientλ-term manipulators is to shift to a language
that syntactically encodes environments. The “suspensionλ-calculus” developed by
Nadathuret al. [12] is one such example that has been used with success in theorem
provers and compilers. However, these implementations are quite complex, inflict de
Bruijn encodings on the client, and their “constant-time” reductions simply shift the
burden of the reduction to readback time. In the terms we’ve defined, these technolo-
gies use “blind search” to find the variables being substituted. Also, their use of de
Bruijn encodings is a barrier to sharing internal structure: de Bruijn-index references
are context dependent.E.g., if a term λx.y appears multiple times underneath aλy
parent, the index used for they reference can vary.

One of the major algorithmic payoffs of these representations, lazy reduction, is not
so useful for compilers, which typically must examine all the nodes of a term in the
course of processing a program. SLC has been successfully employed inside a compiler
to represent Shao’sFLINT typed intermediate language [14], but the report on this work
makes clear the impressive, if not heroic, degree of engineering required to exploit this
technology for compiler internals—the path to good performance couples the core SLC
representation with hash consing as well as memoisation of term reductions.

The charm of the bottom-up technique presented here is its simplicity. The data
structure is essentially just a simple description of the basic syntax as a datatype, with
the single addition of child→parent backpointers. It generalises easily to the richer lan-
guages used by real compilers and other language-manipulation systems. It’s very sim-
ple to examine this data structure during processing; very easy to debug the reduction
engine itself. In contrast to more sophisticated and complex representations such as
SLC, there are really only two important invariants on the structure: (1) all variables
are in scope (any path upwards from a variable reference to the root must go through
the variable’s bindingλ-expression), and (2) uplink backpointers mirror downlink ref-
erences.

13

9.2 Director strings

Director strings [7] are a representation driven by the same core issue that motivates
our uplink-DAG representation: they provide a way to guide search when performing
β-reduction. In the case of director strings, however, one can do the search top-down.
Unfortunately, director strings can impose a quadratic space penalty on our trees. Up-
linked λ-DAGs are guaranteed to have linear space requirements. Whether or not the
space requirements for a director strings representation will blow up in practice de-
pends, of course, on the terms being manipulated. But the attraction of a linear-space
representation is knowing that blow-up is completely impossible.

Like the suspensionλ-calculus, director strings have the disadvantage of not be-
ing a direct representation of the original term; there is some translation involved in
converting aλ-calculus term into a director strings.

Director strings can be an excellent representation choice for graph-reducing nor-
malising engines. Again, we are instead primarily focussed on applications that require
fine-grained inter-reduction access to the term structure, such as compilers.

9.3 Optimal λ reduction

The theory of “optimalλ reduction” [10, 9, 6] (or, OLR), originated by Lévy and Lamp-
ing, and developed by Abadi, Asperti, Gonthier, Guerrini, Lawall, Mairsonet al., is a
body of work that shares much with bottom-upβ-reduction. Both representλ-terms
using graph structure, and the key idea of connecting variable-binders directly to value-
consumers of the bound variable is present in both frameworks—and for the same rea-
son, namely, from a desire that substitution should be proportional to the number of
references to the bound variable, removing the need to blindly search a term looking
for these references.

However, the two systems are quite different in their details, in fairly deep ways.
Lamping graphs allowincremental reductionby means of adding extra “croissant,”
“bracket” and “fan” nodes to the graph. This exciting alternative model of computation,
however, comes with a cost: the greatly increased complexity of the graph structure and
its associated operations. In particular, in actual use, the croissant and bracket marks can
frequently pile up uselessly along an edge, tying up storage and processing steps. It also
makes it difficult to “read” information from the graph structure. As Gonthier, Abadi
and Ĺevy state [6], “it seems fair to say that Lamping’s algorithm is rather complicated
and obscure.” The details of this complexity have prevented OLR-based systems from
widespread adoption.

9.4 Two key issues: persistence and readback

Our comparisons with other techniques have repeatedly invoked the key issues of per-
sistence and readback. Our data structure is not a “persistent” one—performing a reduc-
tion inside a term changes the term. If an application needs to keep the old term around,
then our algorithm is not a candidate (or, at least, not without some serious surgery).
So perhaps it is unfair to compare our algorithm’s run times to those of persistent algo-
rithms, such as SLC or director strings.

14

However, we can turn this around, and claim that the interesting feature of our al-
gorithm is that itexploitslack of persistence. If an application doesn’t need persistence,
it shouldn’t have to pay for it. The standard set of choices are invariably persistent; our
algorithm provides an alternative design point. (Note that reduction on Lamping graphs
is also not persistent, which is, again, either a limitation or a source of efficiency, de-
pending on your point of view.)

The other key, cross-cutting issue is readback. An application that doesn’t need to
examine term structure in-between reductions has greater flexibility in its requirements.
If readback is a requirement, however, then Lamping graphs and the SLC are much less
attractive. Readback with our representation is free: one of the pleasant properties of a
DAG is that it can be viewed just as easily as a tree; there is no need to convert it.

Thus, bottom-upβ-reduction is a technology which is well suited to applications
which (1) don’t need persistence, but (2) do need fine-grained readback.

10 Conclusion

We certainly are not the first to consider using graph structure to represent terms of the
λ-calculus; the ideas go back at least to 1954 [4, 15]. The key point we are making is
that two of these ideas work together:

– representingλ-terms as DAGS to allow sharing induced byβ-reduction, and
– introducing child→parent backpointers andλ→variable links to efficiently direct

search and construction.

The first idea allows sharingwithin a term, while the second allows sharingacrossa
reduction, but they are, in fact, mutually enabling: in order to exploit the backpointers,
we need the DAG representation to allow us to build terms without having to replicate
the subterm being substituted for the variable. This is the source of speed and space
efficiency.

The algorithm is simple and directly represents the term without any obscuring
transform, such as combinators, de Bruijn indices or suspensions, a pleasant feature
for λ-calculus clients who need to examine the terms. It is also, in the parlance of the
graph-reduction community, fully lazy.

11 Acknowledgements

Bryan Kennedy and Stephen Strickland, undergraduates at Georgia Tech, did the entire
implementation and evaluation reported in Sec. 8. We thank, of course, Olivier Danvy.
Zhong Shao provided helpful discussions on the suspensionλ-calculus. Chris Okasaki
and Simon Peyton Jones tutored us on director strings. Harry Mairson and Alan Bawden
provided lengthy and patient instruction on the subtleties of optimal lambda reduction
and Lamping graphs.

15

References

1. Andrea Asperti and Stefano Guerrini.The Optimal Implementation of Functional Program-
ming Languages.Cambridge University Press, 1999.

2. Henk Barendregt.The Lambda Calculus.North Holland, revised edition, 1984.
3. Alan Bawden. Personal communication, November 2002. Alan wrote the compiler, a toy

exercise for Scheme, sometime in the late 1980’s.
4. N. Bourbaki.Théorie des ensembles.Hermann & C. Editeurs, 1954.
5. Alonzo Church.The Calculi of Lambda Conversion.Princeton University Press, 1941.
6. Georges Gonthier, Martı́n Abadi and Jean-Jacques Lévy. The geometry of optimal lambda

reduction. InConference Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 15–26, January 1992.

7. J. R. Kennaway and M. R. Sleep. Director strings as combinators. ACM Transactions on
Programming Languages and Systems, 10, pages 602–626, (October 1988).

8. Richard A. Kelsey. A correspondence between continuation-passing style and static single
assignment form. InACM SIGPLAN Workshop on Intermediate Representations, SIGPLAN
Notices, vol. 30, no. 3, pages 13–22, January 1995.

9. John Lamping. An algorithm for optimal lambda-calculus reduction. InProceedings of
the Seventeenth Annual ACM Symposium on Principles of Programming Languages, pages
16–30, January 1990.

10. Jean-Jacques Lévy. Réductions Correctes et Optimales dans le Lambda-calcul.Ph.D. thesis,
Universit́e ParisVII , 1978.

11. R. Milner, M. Tofte, R. Harper, D. MacQueen.The Definition of Standard ML (Revised).
MIT Press, 1997.

12. Gopalan Nadathur and Debra Sue Wilson. A notation for lambda terms: A generalization of
environments.Theoretical Computer Science198(1–2):49–98, May 1998.

13. Simon L. Peyton Jones.The Implementation of Functional Programming Languages.
Prentice-Hall, 1987.

14. Zhong Shao, Christopher League, and Stefan Monnier. Implementing typed intermediate
languages. InProceedings of the 1998 ACM SIGPLAN International Conference on Func-
tional Programming Languages, September 1998.

15. C. P. Wadsworth.Semantics and pragmatics of the lambda-calculus.PhD dissertation,
Oxford University, 1971.

16

