The Challenge of Hardware-Software Co-Verificatiort

Panagiotis Manolios

College of Computing
Georgia Institute of Technology
Atlanta, GA 30318
manol i os@c. gat ech. edu

Abstract. Building verified computing systems such as a verified compiler or
operating system will require both software and hardware verification &an

we decompose such verification efforts into mostly separate tasks, \aneiiy
hardware and the other software? What theorems should we provatsyécifi-
cation languages should we use? What tools should we build? To what eaten
the process be automated? We address these issues, using as aexamiptp
our recent and on-going work on refinement-based pipelined macéiifeation.

1 Introduction

The ultimate goal of the formal verification community is techanically verify com-
puting systems from the subatomic level up to high-levecgmations. In principle,
we know that this is possible. It is possible to describe taeadard model, quantum
mechanics, string theory, and, in general, whatever phlsiccomputational theory
we desire, using first-order logic.

However, it does not currently seem feasible to do this: tmdn effort required
is daunting. The differences in size and speed between tie@uic level and higher-
level subsystems such as disk arrays are astronomicalditicay the subatomic level
is inherently continuous and probabilistic; in fact, cmtreemiconductor devices not
only depend on quantum effects, but even take advantagewf.t®n the other hand,
higher-level abstractions tend to be discrete and (noajagtistic.

The main focus of this paper is on hardware-software cdigation, a central part
of the verification challenge which exhibits many of the eueristics of the general
problem,e.g, it spans multiple abstraction levels. Hardware verifmathas been an
active area of research for the last few decades and softwesifecation is currently
receiving renewed attention. Eventually, these now makilparate fields will have to
be combined, if we are to truly verify computing systemssihot just that it is desir-
able to have a verified hardware base for our software; maalecige problemss.g,
building a verified compiler [7] or operating system, inhehg involve both software
and hardware.

In the remainder of this paper, we briefly expand upon someeissues that arise
in extending current work on hardware verification to enalolfware verification. Our
viewpoints are shaped by our recent and on-going work ormaatiag proofs of cor-
rectness for pipelined machines, which we use as a runniaiggebe.

* This work was funded in part by NSF grants CCF-0429924, 11S-8437and CCF-0438871.

We start in Section 2 by considering what Dijkstra called‘fhleasantness” prob-
lem: what theorems should we prove? We outline a theory aferfent, our answer to
the pleasantness problem as it pertains to pipelined macfinfication, in Section 3.
We then look at pragmatics such as: what specification laygt@ause (Section 4) and
how to automate (Section 5) and evaluate (Section 6) thdtsetu Section 7, we dis-
cuss some of our recent work on hardware-software co-vatiidic. This work has led
us to start developing tools, a topic discussed in SectidieBconclude in Section 9.

2 The Pleasantness Problem

One of the major challenges in verification is what Dijkstedled the “pleasantness”
problem [5]: how do we determine the “right” theorems to @@\wor example, what
theorems establish that a device driver works correctly?, Wdepends, but it is worth

noting that the pleasantness problem can be mitigated by design. It is also worth

noting that many problems are inherently complex. For examphat does it mean
for floating-point arithmetic to be correct? It took many yeo settle on the IEEE
floating-point arithmetic standards 754 and 854, and Wiillldahan was awarded the
Turing award for his contributions to this effort.

Let us consider the pleasantness problem in the contexpefiped machine veri-
fication: what set of properties establishes that a pipélmachine behaves correctly?
Such a set might include a property that describes the bethafthe branch mispredic-
tion logic. This property might specify what should happening a branch mispredict:
what instructions are invalidated, what latches are adf&dtow the program counter is
updated, etc. The problem with this approach is that it iscteztr when one has “com-
plete coverage,” which leaves open the possibility thairexous corner cases remain.
Another problem involves the maintenance of such properéie any design changes
will necessitate an update of the properties. Designs willeugo numerous changes,
making the tracking of such correctness properties prodliem

For the above reasons, we use a correctness criterion basefirement that tack-
les the pleasantness problem by taking advantage of theidtish set architecture
interface. This leads to a notion of correctness that is fieti®d by changes to the
pipelined machine. The idea is to show that, to an externater, the implemen-
tation behaves in a fashion that is consistent with the fipation, the much simpler
instruction set architecture. The instruction set archites is arguably the most im-
portant interface in computer science. On the one handsithawed programmers to
think in terms of a machine that executes one instructiontae. On the other, it has
allowed hardware designers to build inherently parallethiges, with features such
as superscalar execution and deep pipelines, which sinadtesly process numerous
instructions at various stages of completion.

There is still the question of what kind of refinement theotenprove and, more
generally, the question of what correctness statementgitite a good answer to the
pleasantness problem. An important property of such coress statements is that,
once established, they enable us to ignore the internalseafytstem under consider-
ation in subsequent verification efforts. For example, #ablg notion of correctness
for pipelined machines would allow us to reduce the proof sudtware running on a

pipelined machine satisfies its specification, to a prodf e software runs correctly
on the instruction set architecture. To actually achieidbcomposition requires a no-
tion of correctness that preserves not only safety praiiut also liveness properties.
To see why, suppose that we have a proof of correctness ofigbkined machine which
does not preserve liveness properties. Now, considermydkiat a simple program, say
to sort an array of numbers, is correct. This requires a tatakctness proof at the in-
struction set architecture level. But, it also requiresrigkhe details of the pipelined
machine into account in order to establish that no deadlodiwelock occurs for any
execution of this particular program. Variants of the waibwn Burch and Dill notion
of correctness for pipelined machines [4] suffer from thisigbem [13]. The refinement
theorems we prove do not, as they preserve both safety amkbg properties.

Itis especially important to prove theorems that encapstifee behavior of systems
when many layers of abstraction are involved, as othenthigeyerification problem be-
comes unmanageable. An early pioneering body of work onghetitheorem proving
to verify systems from the netlist level up to a high-leveéldaage is the CLI stack [24].

Finally, we briefly discuss performance and dependabilibpprties, considered by
many to be beyond the reach of formal verification. For exampbw do weprove
that a microprocessor performs well? The problem with thissgjon is that it is vague,
notthat it is beyond the reach of formal methods. This is reailt pn instance of the
pleasantness problem. The best known methods of makingetfiermance question
precise depend on the use of benchmarks, sets of programs tnéa “representative”
of the kinds of applications the microprocessor will be usedun. Microprocessor
performance is then measured with respect to the benchmRekformance is now
very easy to reason about formally: just execute the modéieimicroprocessor on
the benchmarks and keep track of the time. Similarly, if wewkmwhat is meant by
“dependability,” then we can analyze dependability prapsrformally.

3 Refinement-Based Verification of Pipelined Machines

In this section we informally review the theory of refinemere use to manage the
pleasantness problem in the context of our work on pipelmadhine verification; for
a full account see [14, 15]. A theory of refinement defines wiheoncrete implementa-
tion refines (implements) an abstract specification. Inypglrefinement to pipelined
machine verification, the idea is to show thé, a machine modeled at the microarchi-
tecture level, a low level description that includes theefiipe, refined SA, a machine
modeled at the instruction set architecture level. A refi@enproof is relative to ae-
finement mayr, a function fromMVA states td SA states. The refinement mapshows
us how to view arVA state as ah SA state e.g, the refinement map has to hide t&
components (such as the pipeline) that do not appear ih$#e ThatMA refinesl SA
means that for every pair of statess such thatv is anlVA state and = r(w), we have
that for every infinite patlw starting ats, there is a “matching” infinite path starting
atw, and conversely. That andd “match” implies that applying to the states id
results in a sequence that is equivalentitop to finite stuttering (repetition of states).
This notion of refinement is based on stuttering bisimutaind implies that related
states satisfy the same next-time-free temporal logic tdemg.g, CTL* \ X) [2].

Stuttering is a common phenomenon when comparing systeiferent levels
of abstractiong.qg, if the pipeline is emptylMA will require several steps to complete
an instruction, whereadsSA completes an instruction during every step. We note that
stuttering bisimulation differs from weak bisimulation3[2in that weak bisimulation
allows infinite stuttering. Distinguishing between infeniand finite stuttering is im-
portant, because (among other things) we want to distihgigadlock (which usually
indicates an error) from stutter.

The above formulation of refinement requires reasoning taibfinite paths, some-
thing that is difficult to automate [25]. WEB-refinement is ajuiwalent formulation
that can be more readily verified mechanically, as it onlyunegg local reasoning in-
volving MA states, thd SA states they map to under the refinement map, and their
successor states [14]. WEB-refinement is a generally afyidiceotion. However, since
it is based on bisimulation, it is often too strong a notion @mthis case refinement
based on stutteringimulationshould be used (see [14, 15]).

An important feature of our theory of refinement is that it @npositional. This
allows us to verify machines in stagesMfrefinesM’, which refinesM”, thenM refines
M” (with respect to the composition of the refinement maps).

We have been pleasantly surprised by how many opportuntiteze have been to
exploit the generality of our theory of refinement. For exé@mphat the refinement
map used is just a parameter of our theory has enabled us torexternative re-
finement maps, some of which led to orders of magnitude imgmants in verification
times [21]. That our theory is compositional has allowed aiwerify complex ma-
chines one feature at a time, making it possible to obtaimérelous savings in terms
of verification times and in terms of the complexity of courtemples when errors are
discovered [18].

4 Specification Languages

Having addressed what to prove, we next consider what spetiifin language to use.
The available specification languages are quite varied feitndations ranging from
higher-order logics, to first-order logics, to construettype theory, to decidable frag-
ments of various logics, to temporal logics, etc. The maneés are not so much issues
of fundamental power, rather they are about expressivemessonvenience. A good
analogy is the situation in programming languages, wherguages are judged on their
ability to effectively describe computational processed,on their fundamental power,
as many simple languages encompass all that can be effgatmmputed. Similarly,
most of mathematics can be embedded in first order logic, B& Znd since our focus
is onmechanicalerification, any proof theory where the notion of proof icidable
can be easily handled in a simple first-order setting.

The connection between programming languages and spéoifidanguages is
deeper than the analogies above indicate. The systems terified are written in a
particular programming language. To verify such systenesywst be able to embed
the programming language in our specification languageadh, some specification
languages are just extensions of a programming langueage ACL2 [9,11] can be
thought of in this way, as it allows any ACL2 program to be uaegbart of a specifica-

tion. This makes it simpler for a single person to both wriddeand be involved in the
verification process, something that we expect will evelhtieecome routine practice.
We also expect that new languages will eventually be deeelapith verification as
a first-class concern: they will have formal semantics, aftioeory, various libraries
and APIs providing basic verification functionality, procieckers, theorem provers,
verified modules and libraries, etc. In fact, now seems lig@ad time to create such
a language, something that will require researchers wiplertise in programming lan-
guages and verification.

In our work, we found it important to have a general-purpgeecgication language
that allows us to clearly state the theorems of interest,athaws us to efficiently exe-
cute and test models, that has structuring mechanisms tagedarge scale verification
efforts, and that has existing libraries of theories. Itisdamportant that the theorem
proving engines used are highly efficient. This topic is d&sed in more detail in the
next section. We did not find a single tool that suited all ceeats and decided to inte-
grate UCLID with ACL2, as we discuss in Section 8.

5 Automation

A major verification challenge concerns automation. While itot possible to build a
general system which given a theorem produces a proof, ggsible to build, tune, or
extend systems so that they can be used in a highly autoneskah on a sufficiently
restricted class of problems.

As an example, we consider our experiences with pipelinechina verification.
Applying our refinement theorem requires, among other cemations, the construc-
tion of a suitable refinement map and well-founded rank fionst While there is no
general recipe for doing this, we have been exploring howtoraate these construc-
tions in the context of pipelined machine verification. Thaimidea is to discover
widely applicable schemes that can be easily (even medbpispecialized for the
particular machine in question. The commitment refinemeap i3, 14] is an exam-
ple of a refinement map that can be easily specialized foicp#at machines. This map
produces an instruction set architecture state from aipgeimachine state by sim-
ply invalidating all the partially executed instructionsdgprojecting out the instruction
set architecture components. An inductive invariant isimexl, but here, too, a general
scheme can be given: a state satisfies the invariant if, iaftatidating all of its par-
tially executed instructions, we can reach an equivaleestithin a fixed number of
steps determined by the pipeline length. Finally, a rankfion is needed and, again, a
general scheme is used that gives the number of steps tHsmpgenachine must take
before it changes state visible at the instruction set tectre level.

The next step is to simplify the statement of the refinemesridim. Here too, we
can specialize and simplify matters by strengthening thi& mefinement proof obli-
gation. The result is a formula expressible in the CLU lo@i; Jvhich can be decided
by the UCLID tool [12]. The major restriction is that the mézleve use are at the
term level they abstract away the datapath, require the use of numettmstractions,
implement a small subset of the instruction set, and aredan £xecutable.

Using the WEB-refinement framework as described up to thistpas allowed us
to significantly extend what can be done in a highly automéstion. For example,
a big advantage over previous work is that we can handleds®nin fact, we show
that with our approach the time spent proving liveness aatsaor only 5% of the total
verification time [16].

We discovered that the refinement maps used for pipelinechimawerification
can have a drastic impact on verification times. This led &ittroduction of a new
method of defining the commitment refinement map which giv&&-#old improvement
in verification times over the standard flushing and commitimefinement maps [19].
We also discovered a new class of refinement maps, that partiynit and partly flush,
that can provide several orders of magnitude improvementgiification times over
pure flushing or pure commitment refinement maps [21].

All of the above work can be automated. In fact, we have a Wt tool for gen-
erating complex pipelined machine models, including theeminess statements [20].

We end this section with a final example showing how to levertémp composi-
tional nature of our theory of refinement. We developed a ebovenient, easily-
applicable, and complete compositional proof rules anavelohow this allows us to
greatly extend the applicability of decision procedures/ésifying a complex, deeply
pipelined machine that state-of-the-art tools cannotendly handle. Our approach al-
lows us to reduce the previous monolithic approaches tdipgamachine verification
into a sequence of much simpler refinement steps. Not onlthare benefits in terms
of verification times, but even counterexamples are gelyaralch simpler [18].

6 Evaluation

Any verification effort will invariably require many dec@is, including which speci-
fication language to use, what theorems to prove, what thodgvelop, etc. In this
section, we make some observations about the evaluatiamcbfefforts and advocate
the use of end-to-end evaluations.

We start with a list of basic evaluation questions. Firstatwivas mechanically
verified and at what level? For example, there is a big gap detvthe trivial proof
that an abstract floating-point adder is correct and a proaf & netlist description
of the floating-point adder in a current microprocessor igeax. The devilis in the
details. In addition, it often seems that work which depemuspecial paper and pencil
“meta” theorems is valued more than work which develops dhelorems inside a
formal framework. But, if the point is to mechanically veriéis much as possible, the
latter approach should be preferred, even if it was not ‘faattic.”

Another basic question is: how much human effort was redq@ifdeasuring this
can be subtle, but the practice of classifying methods aegelfieing “fully” automatic
or not is counterproductive. For example, we have foundadkpects of our work that
are considered “automatic” by the research commueity, (defining refinement maps)
have taken far longer than aspects that are not considetechatic €.g, defining in-
variants). One should account for all user time, includimg time to define and for-
malize the problem and to determine and mechanically véhrgtheorems constituting
correctness.

Claims by authors should be backed up with enough data ticagelthe work
reported. This is a basic rule of science that is too oftemrigd. If there is a good
reason why the data cannot be released, then every eff@tease a sanitized version
of the reported work should be made. When we co-edited a botheoapplications of
ACL2 [8], we required every submission to include ACL2 prsofipts justifying every
formal claim made. This material is available on the Web [E@f example, Russinoff
and Flatau used ACL2 to verify several of the floating-poiithanetic operations in the
AMD Athlon processor. Obviously, AMD did not want to reledkese proof scripts, as
they contain Athlon floating-point designs. However, ththats were able to release a
precise description of their RTL language and the librarthebrems used. They also
defined, verified, and released a sanitized version of thérfeppoint multiplier [26].
Others researchers who could neither release their proptsaor produce sanitized
versions of their work were not able to contribute.

As a general principle, the evaluation of verification effashould focus on end-
to-end arguments. By this we mean that the stated contitbstiould be related to the
larger context in which the verification is taking place. Egample, consider a paper
that shows how abstractianleads to faster verification times than abstracfiorlow-
ever, if abstractiom is harder to mechanically justify than abstractfyrthen from an
end-to-end perspective, the use of abstradaii®a net loss. As another example, a neg-
ative end-to-end evaluation of a method that provides agad automation is possible
under various scenarios,g, the method may require a complex preprocessing step,
or may generate counterexamples that are hard to understamay require extensive
tool support, etc.

The end-to-end evaluation should also consider how the warkbe used in the
context of long-term verification. For example, there aremfone-time verification
costs such as embedding the semantics of some language themr@m prover or
developing a library of theorems applicable to a wide clds®lated problems. The
floating-point work we mentioned previously is a good exampgs these one-time
costs were leveraged in subsequent verification efforéjifg to drastic reductions
in manual effort required to verify subsequent floatingrpoiperations.

7 Hardware Verification that Enables Software Verification

Recently, we have started thinking about how to prove thatl&vel programs exe-
cuting on a pipelined machine behave correctly. The idea isse WEB-refinement
to prove that software running on a pipelined machine saesisfis specification by
first proving that the pipelined machine refines the instamcset architecture and then
showing that the software running on the instruction setigecture satisfies its spec-
ification. But, this requires the use of executable pipdingchine models, because
the correctness of software depends on the semantics nfétiens. However, in order
to take advantage of decision procedures, previous workaotware verification has
focused on term level models that abstract away the dataptbire the use of nu-
merous abstractions, implement a small subset of the pi&iruset, and are far from
executable. To bridge the gap between term level modelsittelbl, executable mod-

els is a major challenge, requiring that all of the absteextiemployed in term level
modeling are mechanically justified. We now briefly discussissues.

First, term-level models abstract away the datapath, gidinch of the real com-
plexity in an executable model. For example, decoding isetemtiusing a set of un-
interpreted functions. However, decoders for bit-levechaes are complicated and
notoriously difficult to get right in modern designs.

Even the ALU is modeled using uninterpreted functions, louptove theorems
about software, we need a model of the machine in which the &libterpreted.

Another form of abstraction concerns the instruction selff which is abstracted
away by only modeling one instruction per instruction cld&#, again, we really need
a model with the full instruction set in order to verify soéire.

The refinement theorem cannot be expressed in UCLID. Insteadheck what we
call the “core theorem,” whose proof accounts for most oftesfication time. The
core theorem requires “polluting” both the pipelined maehand the instruction set
architecture by adding extra inputs, control logic, antkstia control when and how the
refinement map is applied, among other things. This is qaitepticated and it is easy
to introduce errors, as we have often discovered. A pro@gsired to show that refine-
ment proofs based on polluted models imply refinement primoféhe original models.

As a final example, we consider branch prediction. BrancHiptien schemes are
sometimes abstracted using an integer to represent tieeo$tidite branch predictor and
uninterpreted functions which, given the current statehef branch predictor, return
the next state and a guess (taken or not) [27]. This seemdesinpugh, but using
this abstraction turns out to be quite cumbersome. Herels Whe branch predictor
depends on the program counter, which depends on the pragesane executing and
if all we have is one integer to represent the state of thedbranedictor, we have to use
some kind of @del encoding scheme to encode the state of the machine sitlyke
integer. The amount of work required to justify the abstaarcts more than the savings
it provides. Furthermore, if we have an infinite memory, #iistraction is not sound. A
much simpler abstraction which is easily justified just nsakendeterministic choices.

We end with two final observations. First, having an effidigakecutable pipelined
machine can be quite useful in industrial settings, as itaadk possible to have a
single “golden” reference model that can be used both foukition-based testing and
for formal verification. For example, Rockwell Collins use@L2 to develop, test, and
validate executable, bit- and cycle-accurate micropemanodels that ran at close to C
speeds [6]. Second, as mentioned in Section 2, it is crudwlkhe notion of refinement
used for hardware-software co-verification preservesiéigs properties.

8 Tools

Addressing the above issues requires the use of a tool thatescribe executable bit-
level designs, can reason about total correctness, cang®aahe proof process, etc.
ACL2 or any industrial-strength theorem prover can be usethis purpose. However,
specialized decision procedures have the potential tofsigntly extend what can be
handled automatically. For example, in one experimentpafthat took about 3 sec-
onds with UCLID required l§ days with ACL2 [17]. We therefore integrated UCLID

with ACL2, and were able to use ACL2 to reduce the proof thadxatutable, bit-level

machine refines its instruction set architecture to a proaf & term level abstraction
of the bit-level machine refines the instruction set ardhitee, which is then handled
automatically by UCLID. We also used our system to develgpeete, test, and verify
a dynamic programming solution to the Knapsack problemsTlue can exploit the

strengths of the two systems to prove theorems that are sstipe to even state using
UCLID and that would require heroic efforts using just ACL22].

An interesting observation is that verification tools havatumed to the point where
they can handle complex enough subproblems to make the ktwhose-grained inte-
gration described above worthwhile. This allows us to avb&well-known problems
with fine-grained integration [1]. We see many opportusiterrently for this kind of
tool integration.e.g, we are currently looking at combining static analysis teghes
with theorem proving.

9 Conclusions

Building truly reliable systems will require hardwaresedire co-verification. In this
paper we have outlined some of the issues, challenges, grattopities, using as a
running example our recent work on automating refinemendfprimvolving pipelined
machines.

References

1. R.S.BoyerandJ. S. Moore. Integrating decision procedureséutishic theorem provers: a
case study of linear arithmetic. Machine intelligence 1Jpages 83—124. Oxford University
Press, Inc., 1988.

2. M. Browne, E. M. Clarke, and O. Grumberg. Characterizing finitgok& structures in
propositional temporal logicTheoretical Computer Sciencg9, 1988.

3. R. E. Bryant, S. K. Lahiri, and S. Seshia. Modeling and verifyingesys using a logic of
counter arithmetic with lambda expressions and uninterpreted functiofs Brinksma and
K. Larsen, editorsComputer-Aided Verification—CAV 2002lume 2404 olLNCS pages
78-92. Springer-Verlag, 2002.

4. J. R. Burch and D. L. Dill. Automatic verification of pipelined micropreser control.
In Computer-Aided Verification (CAV '94yolume 818 ofLNCS pages 68-80. Springer-
Verlag, 1994.

5. E. W. Dijkstra. Science fiction and science reality in computing, 1986DB32. See URL
http://ww. cs. ut exas. edu/ user s/ EVD.

6. D. Greve, M. Wilding, and D. Hardin. High-speed, analyzable simtdatén Kaufmann
et al. [8], pages 113-135.

7. T. Hoare. The verifying compiler: A grand challenge for computiegearch. J. ACM
50(1):63-69, 2003.

8. M. Kaufmann, P. Manolios, and J. S. Moore, edito@omputer-Aided Reasoning: ACL2
Case StudiesKluwer Academic Publishers, June 2000.

9. M. Kaufmann, P. Manolios, and J. S. Moor€omputer-Aided Reasoning: An Approach
Kluwer Academic Publishers, July 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

M. Kaufmann, P. Manolios, and J. S. Moore. Supporting files@arputer-Aided Reason-
ing: ACL2 Case Studies”. See the link from URIt t p: / / ww. cs. ut exas. edu/ -
user s/ noor e/ acl 2, 2000.

M. Kaufmann and J. S. Moore. ACL2 homepage. See URLp://ww. cS. -
ut exas. edu/ user s/ noor e/ acl 2.

S. Lahiri, S. Seshia, and R. Bryant. Modeling and verification ofofatrder microproces-
sors using UCLID. InFormal Methods in Computer-Aided Design (FMCAD’02plume
2517 ofLNCS pages 142-159. Springer-Verlag, 2002.

P. Manolios. Correctness of pipelined machines. In W. A. Hungnlt.S. D. Johnson,
editors,Formal Methods in Computer-Aided Design—FMCAD 2088lume 1954 of. NCS
pages 161-178. Springer-Verlag, 2000.

P. Manolios.Mechanical Verification of Reactive Syster®hD thesis, University of Texas
at Austin, August 2001. See URAhtt p: // ww. cc. gat ech. edu/ ~manol i os/ -
publications. htm.

P. Manolios. A compositional theory of refinement for branchingtinin D. Geist and
E. Tronci, editors12th IFIP WG 10.5 Advanced Research Working Conference, CHARME
2003 volume 2860 o NCS pages 304-318. Springer-Verlag, 2003.

P. Manolios and S. Srinivasan. Automatic verification of safety amhdiss for XScale-
like processor models using WEB-refinements.Diesign Automation and Test in Europe,
DATE'04, pages 168-175, 2004.

P. Manolios and S. Srinivasan. A suite of hard ACL2 theorems grisirefinement-based
processor verification. In M. Kaufmann and J. S. Moore, ediféifth International Work-
shop on the ACL2 Theorem Prover and Its Applications (ACL2-200&)ember 2004. See
URL htt p: // www. cs. ut exas. edu/ user s/ noor e/ acl 2/ wor kshop- 2004/ .

P. Manolios and S. Srinivasan. A complete compositional reasér@mgwork for the ef-
ficient verification of pipelined machines. ICCAD-2005, International Conference on
Computer-Aided Desigr2005. To appear.

P. Manolios and S. Srinivasan. A computationally efficient metheddan commitment
refinement maps for verifying pipelined machines model\@M-IEEE International Con-
ference on Formal Methods and Models for Codesjzages 189-198, 2005.

P. Manolios and S. Srinivasan. A parameterized benchmark $higecbpipelined-machine-
verification problems. IrAdvanced Research Working Conference on Correct Hardware
Design and Verification Method2005. To appear.

P. Manolios and S. Srinivasan. Refinement maps for efficigificadion of processor mod-
els. InDesign Automation and Test in Europe, DATE'@ages 1304-1309, 2005.

P. Manolios and S. Srinivasan. Verification of executable pipelirechmes with bit-level
interfaces. INCCAD-2005, International Conference on Computer-Aided Dest05. To
appear.

R. Milner. Communication and ConcurrenciPrentice-Hall, 1990.

J. S. Moore. Special issue on system verificatidournal of Automated Reasoning(4),
1989.

K. S. Namjoshi. A simple characterization of stuttering bisimulation17th Conference
on Foundations of Software Technology and Theoretical Computerc&cieume 1346 of
LNCS pages 284-296, 1997.

D. M. Russinoff and A. Flatau. RTL verification: A floating-point mulép. In Kaufmann
et al. [8], pages 201-231.

M. N. Velev and R. E. Bryant. Formal verification of superscal&roprocessors with
multicycle functional units, exceptions, and branch predictionProceedings of the 37th
conference on Design Automatigrages 112-117. ACM Press, 2000.

